Electronics and communications engineering Books

2656 products


  • Non-standard Antennas

    ISTE Ltd and John Wiley & Sons Inc Non-standard Antennas

    10 in stock

    Book SynopsisThis book aims at describing the wide variety of new technologies and concepts of non-standard antenna systems – reconfigurable, integrated, terahertz, deformable, ultra-wideband, using metamaterials, or MEMS, etc, and how they open the way to a wide range of applications, from personal security and communications to multifunction radars and towed sonars, or satellite navigation systems, with space-time diversity on transmit and receive. A reference book for designers in this lively scientific community linking antenna experts and signal processing engineers.Table of ContentsIntroduction xv François LE CHEVALIER PART 1. EMERGING CONCEPTS 1 Chapter 1. Joint Diversity and Beamforming for Downlink Communications 3 Luc FÉTY, Danilo ZANATA-FILHO, João Marcos TRAVASSOS ROMANO and Michel TERRÉ Chapter 2. Acoustic Antennas for Biomedical and Industrial Ultrasonic Imaging 25 Louis-Pascal TRAN-HUU-HUE, Franck LEVASSORT, Dominique CERTON and Marc LETHIECQ Chapter 3. Space-time Exploration for Airborne Radars 69 François LE CHEVALIER Chapter 4. Multifunction Antenna System Concepts: Opportunity for Ultra-wideband Radars? 93 Joël LEMORTON, Christophe LE MOINE, Christian DELHOTE and Florent CHRISTOPHE PART 2. TECHNOLOGIES 101 Chapter 5. From a Molecule to an Electro-optic Antenna 103 Annabelle SCARPACI, Sylvain LE TACON, Arnaud GARDELEIN, Fabrice ODOBEL, Errol BLART, Dominique AVERTY, Hartmut GUNDEL, Nicolas BREUIL, Tchanguiz RAZBAN and Eric TANGUY Chapter 6. Terahertz Broadband Micro-antennas for Continuous Wave Imaging 119 Alain KREISLER, Ibrahim TÜRER, Xabier GAZTELU, Alexander SCHEURING and Annick DÉGARDIN Chapter 7. Dual Frequency Millimeter Feed 147 Jean-Pierre ADAM, Yannick BÉNIGUEL, André BERTHON, Laurent COSTES and Maarten VAN DER VORST Chapter 8. Reconfigurable Printed Antennas 157 Robert STARAJ Chapter 9. Wideband Antennas and Artificial Magnetic Conductors 183 Xavier BEGAUD Chapter 10. High Impedance Surface Close to a Radiating Dipole 201 PART 3. DETECTION/LOCALIZATION 213 Chapter 11. Advanced Processing for DOA Estimation 215 Pascal CHEVALIER and Anne FERRÉOL Chapter 12. Multifunction Airborne Antennas 241 Christian RENARD, Maxime ROMIER and Michel SOIRON Chapter 13. Active Sonar: Port/Starboard Discrimination on Very Low Frequency Triplet Arrays 255 Yves DOISY Chapter 14. Airborne High Precision Location of Radiating Sources 271 Thierry DELOUES, Dominique MÉDYNSKI and Dominique LE BIHAN Chapter 15. Ground-based Deformable Antennas 299 Guillaume LESUEUR Chapter 16. Automatic Take-off and Landing System 327 Pascal CORNIC Chapter 17. Anti-jamming for Satellite Navigation 343 Franck LETESTU, Fabien BERNARD and Guillaume CARRIE PART 4. ULTRA-WIDEBAND 385 Chapter 18. Ultra-wideband Antenna Systems 387 Joël ANDRIEU and Michèle LALANDE Chapter 19. Co-design of the Antenna with LNA for Ultra-wideband Applications 409 Michaël PELISSIER, Serge BORIES, Raffi BOURTOUTIAN and Christophe DELAVEAUD Chapter 20. Vector Spherical Harmonic Modeling of 3D-antenna Radiation Function or an UWB-RT Simulator 425 Roxana BURGHELEA, Stéphane AVRILLON and Bernard UGUEN List of Authors 453 Index 459

    10 in stock

    £189.00

  • Human-Computer Interactions in Transport

    ISTE Ltd and John Wiley & Sons Inc Human-Computer Interactions in Transport

    10 in stock

    Book SynopsisThe human-computer interactions are more and more present in our everyday life, and lead to many conceptual and methodological problems for the designers and evaluators of interactive systems. This book is about Human-Computer Interaction in Transport domain, in which the traveler becomes a user of information systems, particularly before and during the travel(s). This book will focus on traveler information and personalized systems, using a human-centered design approach.Table of ContentsIntroduction xiii Acknowledgements xix Chapter 1. Principles, Issues and Viewpoints of Traveler Information in a Multimodal Context 1 Guillaume USTER 1.1. Introduction 1 1.2. A complexity that must be mastered 2 1.3. Multimodal information 5 1.4. The viatic concept: accompany the traveler 8 1.5. Other traveler information-based representative research projects in a multimodal context 10 1.6. Viewpoints 16 1.7. Bibliography 17 Chapter 2. User Needs Analysis Methodology for the Design of Traveler Information Systems 21 Pierre MORIZET-MAHOUDEAUX, Annette VALENTIN and Assia MOULOUDI 2.1.Introduction 21 2.2. Traveler information: a pluridisciplinary matter 22 2.3. The example of the P@ss-ITS project 23 2.4. RAMSES methodology for the collection, analysis and modeling of user needs 24 2.5. RAMSES in the context of the P@ss-ITS project 35 2.6. Conclusion 45 2.7. Bibliography 46 Chapter 3. A Generic Method for Personalizing Interactive Systems: Application to Traveler Information 51 Mourad ABED, Abdouroihamane ANLI, Christophe KOLSKI and Emmanuelle GRISLIN 3.1.Introduction 51 3.2. Personalization in HCI: examples of existing approaches, at the origin of the approach proposed 52 3.3. PerMet: method for the development of personalized information systems 57 3.4. PerSyst: personalization system supporting the PerMet method 62 3.5. Application to the public transport of people: itinerary search 65 3.6. Discussion about the possibility of generalization relative to personalization 84 3.7. Conclusion 86 3.8. Bibliography 87 Chapter 4. A Formal Framework for Design and Validation of Multimodal Interactive Systems in Transport Domain 93 Linda MOHAND OUSSAÏD, Nadjet KAMEL, Idir AÏT SADOUNE, Yamine AÏT AMEUR, Mohamed AHMED NACER 4.1. Introduction 93 4.2. Concepts of multimodality 94 4.3. Formal design 97 4.4. Use of formal methods for input multimodality 100 4.5. Use of formal methods for output multimodality 109 4.6. Conclusion 124 4.7. Bibliography 125 Chapter 5. From Human-machine Interaction to Cooperation: Towards the Integrated Copilot 129 Thierry BELLET, Jean-Michel HOC, Serge BOVERIE and Guy BOY 5.1. Introduction 129 5.2. Copiloting and human-machine cooperation: context and stakes for the automobile 131 5.3. Three realizations of cooperative devices for the purposes of automobile copiloting 135 5.4. Discussion: towards an “intelligent” and “integrated” copilot 146 5.5. Conclusion 150 5.6. Acknowledgements 151 5.7. Bibliography 152 Chapter 6. ICT and New Human-machine Interactions for Trucks and Buses of the Future: e-Truck and e-Bus Perspectives 157 Bertrand DAVID, René CHALON and Bernard FAVRE 6.1. Introduction 157 6.2. Trucks in the context of ICT 159 6.3. Informational context of the truck 160 6.4. Bus in the context of ICT 161 6.5. Principles of IMERA and HMTD 163 6.6. RAE (real augmented environment) for e-Trucks and e-Buses 163 6.7. HMI (Human-Machine Interface) needs for the e-Truck and e-Bus 165 6.8. Mobile Learning from e-Truck and e-Bus perspectives 168 6.9. ICT in city delivery 171 6.10. ICT in the dynamic management of road networks 178 6.11. Examples of initiatives and projects in direct or indirect link with the e-Truck and e-Bus concepts 183 6.12. Conclusion 196 6.13. Bibliography 198 Chapter 7. User-centered Approach to Design an Adaptive Truck Driving Assistance: Detection of Vulnerable Users in Urban Areas 203 Annick MAINCENT, Hélène TATTEGRAIN, Marie-Pierre BRUYAS and Arnaud BONNARD 7.1. Introduction 203 7.2. Methodological principles for an anthropocentric design 205 7.3. Contextual analyses in natural situations 209 7.4. Specification of the assistance 214 7.5. Development and integration of assistance solutions on a driving simulator 218 7.6. Evaluation of solutions on a driving simulator 224 7.7. Conclusions and viewpoints 229 7.8. Bibliography 230 Chapter 8. Menu Sonification in an Automotive Media Center: Design and Evaluation 233 Nicolas MISDARIIS, Julien TARDIEU, Sabine LANGLOIS and Séverine LOISEAU 8.1. General context 233 8.2. Specifications of the problem: identification of functions 235 8.3. State of the art 239 8.4. Method of sound design: hybrid model for the sonification of a hierarchical menu 250 8.5. Evaluation protocols: general evaluation methods 255 8.6. Methodology adopted for evaluation of the system and initial results 265 8.7. Discussion and perspectives 274 8.8. Bibliography 278 Chapter 9. Consideration of the Travel Time Experience in the Conceptual Models of Personalized Interactive Applications 283 Arnaud BROSSARD, Mourad ABED, Christophe KOLSKI and Guillaume USTER 9.1. Transport: a field with particular needs in terms of personalization of information 283 9.2. The modeling of applications and consideration of the needs of users in the context of personalizing interactive applications 284 9.3. Specificities in the field of transport in the framework of a method of modeling personalized interactive applications 290 9.4. Application of the method 299 9.5. Conclusion 306 9.6. Bibliography 306 Chapter 10. Towards New Interactive Displays in Stations and Airports 311 Christophe JACQUET, Yacine BELLIK and Yolaine BOURDA 10.1. Introduction 311 10.2. Related work 313 10.3. Targeted characteristics of the system 314 10.4. The KUP model 315 10.5. Agent architecture 320 10.6. Allocation and instantiation in KUP 321 10.7. Implementation 324 10.8. Experiments 325 10.9. Conclusions and perspectives 339 10.10. Bibliography 340 Chapter 11. Transport: a Fertile Ground for the Plasticity of User Interfaces 343 Gaëlle CALVARY, Audrey SERNA, Christophe KOLSKI and Joëlle COUTAZ 11.1. Introduction 343 11.2. Evolution of human-computer interaction 344 11.3. User interface plasticity: user viewpoint 352 11.4. User interface plasticity: system viewpoint 355 11.5. Towards a problem space for the implementation of plastic user interfaces 358 11.6. Conclusion and perspectives 363 11.7. Acknowledgements 364 11.8. Bibliography 364 List of Authors 369 Index 373

    10 in stock

    £135.80

  • Solar Energy at Urban Scale

    ISTE Ltd and John Wiley & Sons Inc Solar Energy at Urban Scale

    10 in stock

    Book SynopsisIncreasing urbanization throughout the world, the depletion of fossil fuels and concerns about global warming have transformed the city into a physical problem of prime importance. This book proposes a multi-disciplinary and systematic approach concerning specialities as different as meteorology, geography, architecture and urban engineering systems, all surrounding the essential problem of solar radiation. It collects the points of view of 18 specialists from around the world on the interaction between solar energy and constructions, combining territorial, urban and architectural scales to better regulate energetic efficiency and light comfort for the sustainable city. The main subjects covered are: measures and models of solar irradiance (satellite observations, territorial and urban ground measurements, sky models, satellite data and urban mock-up), radiative contribution to the urban climate (local heat balance, radiative-aerodynamics coupling, evapotranspiration, Urban Heat Island), light and heat modeling (climate-based daylight modeling, geometrical models of the city, solar radiation modeling for urban environments, thermal simulation methods and algorithms) and urban planning, with special considerations for solar potential, solar impact and daylight rights in the temperate, northern and tropical climates, and the requirement of urban solar regulation. Contents 1. The Odyssey of Remote Sensing from Space: Half a Century of Satellites for Earth Observations, Théo Pirard. 2. Territorial and Urban Measurements, Marius Paulescu and Viorel Badescu. 3. Sky Luminance Models, Matej Kobav and Grega Bizjak. 4. Satellite Images Applied to Surface Solar Radiation Estimation, Bella Espinar and Philippe Blanc. 5. Worldwide Aspects of Solar Radiation Impact, Benoit Beckers. 6. Local Energy Balance, Pierre Kastendeuch. 7. Evapotranspiration, Marjorie Musy. 8. Multiscale Daylight Modeling for Urban Environments, John Mardaljevic and George Janes. 9. Geometrical Models of the City, Daniel G. Aliaga. 10. Radiative Simulation Methods, Pierre Beckers and Benoit Beckers. 11. Radiation Modeling Using the Finite Element Method, Tom van Eekelen. 12. Dense Cities in the Tropical Zone, Edward Ng. 13. Dense Cities in Temperate Climates: Solar and Daylight Rights, Guedi Capeluto. 14. Solar Potential and Solar Impact, Frédéric Monette and Benoit Beckers. Appendix 1. Table of Europe’s Platforms (Micro- and Minisatellites) for Earth Observations, Théo Pirard. Appendix 2. Commercial Operators of Earth Observation (EO) Satellites (as of January 1, 2012), Théo Pirard. Appendix 3. Earth’s Annual Global Mean Energy Budget, Benoit Beckers.Table of ContentsIntroduction xiii The Authors xvi Chapter 1. The Odyssey of Remote Sensing from Space: Half a Century of Satellites for Earth Observations 1 Théo PIRARD 1.1. To improve the weather forecasts 2 1.2. Technological challenges to spy and to map from orbit 3 1.3. Toward global environmental observers in space 6 1.4. The digital revolution of the ICTs for GIS applications 9 1.5. Suggested reading 12 Chapter 2. Territorial and Urban Measurements 13 Marius PAULESCU and Viorel BADESCU 2.1. Solar radiation at the Earth’s surface 13 2.2. Instrumentation 17 2.3. Radiation measurements in urban environment 29 2.4. Conclusions 33 2.5. Acknowledgments 33 2.6. Bibliography 33 Chapter 3. Sky Luminance Models 37 Matej KOBAV and Grega BIZJAK 3.1. CIE standard overcast sky (1955) 39 3.2. CIE standard clear sky (1996) 39 3.3. CIE standard general sky 40 3.4. All-weather model for sky luminance distribution – Perez 45 3.5. ASRC–CIE model 48 3.6. Igawa all-sky model 49 3.7. Absolute luminance 52 3.8. Visualization 54 3.9. Conclusion 54 3.10. Bibliography 55 Chapter 4. Satellite Images Applied to Surface Solar Radiation Estimation 57 Bella ESPINAR and Philippe BLANC 4.1. The solar resource 57 4.2. Ground measurements of the solar resource 60 4.3. Satellite images for SSI estimation 64 4.4. Two different approaches for satellite-based SSI estimation 68 4.5. Accuracy of satellite-based SSI estimations 74 4.6. Use of satellite observations for high-resolution solar radiation estimation78 4.7. Bibliography 92 Chapter 5. Worldwide Aspects of Solar Radiation Impact 99 Benoit BECKERS 5.1. Global energy budget at the Earth level 99 5.2. The distribution of solar radiation on the Earth’s surface 102 5.3. The Sun at different latitudes 107 5.4. The solar diagrams 108 5.5. Climate and housing 111 5.6. Solar energy at urban scale 113 5.7. Conclusions and perspectives 115 5.8. Bibliography 117 Chapter 6. Local Energy Balance 119 Pierre KASTENDEUCH 6.1. Introduction 119 6.2. Soil–vegetation–atmosphere transfer model 120 6.3. Physiographic data and boundary conditions 121 6.4. Solar radiation transfers 123 6.5. Infrared radiation transfers 129 6.6. Other heat fluxes 131 6.7. Conclusions 134 6.8. Bibliography 135 Chapter 7. Evapotranspiration 139 Marjorie MUSY 7.1. Physical bases 140 7.2. Related interest of different types of evapotranspirating surfaces 142 7.3. From microscale to city scale: the modeling approaches 149 7.4. Conclusions154 7.5. Bibliography 154 Chapter 8. Multiscale Daylight Modeling for Urban Environments 159 John MARDALJEVIC and George M. JANES 8.1. Introduction 159 8.2. Background160 8.3. Visualizing the urban solar microclimate 167 8.4. The ASL building: a solar access study 173 8.5. Daylighting the New York Times building 180 8.6. Summary 187 8.7. Acknowledgments 187 8.8. Bibliography 187 Chapter 9. Geometrical Models of the City 191 Daniel G. ALIAGA 9.1. Introduction 191 9.2. Forward procedural modeling 194 9.3. Inverse procedural modeling 196 9.4. Simulation-based modeling 199 9.5. Example systems 200 9.6. Bibliography 200 Chapter 10. Radiative Simulation Methods 205 Pierre BECKERS and Benoit BECKERS 10.1. Introduction 205 10.2. Geometry 206 10.3. Loading 218 10.4. Computation model 223 10.5. Transient thermal coupled problem 232 10.6. Conclusion 234 10.7. Bibliography 234 Chapter 11. Radiation Modeling Using the Finite Element Method 237 Tom van EEKELEN 11.1. Basic assumptions 237 11.2. Visibility and view factors 239 11.3. Thermal balance equations 245 11.4. Finite element formulation 250 11.5. Example problems 254 11.6. Bibliography 257 Chapter 12. Dense Cities in the Tropical Zone 259 Edward NG 12.1. Introduction 259 12.2. Access to the sky 261 12.3. Designing for daylight 266 12.4. Designing for solar access 272 12.5. Designing with solar renewable energy 281 12.6. Conclusion 287 12.7. Bibliography 288 Chapter 13. Dense Cities in Temperate Climates: Solar and Daylight Rights 291 Guedi CAPELUTO 13.1. Introduction 291 13.2. Solar rights in urban design 292 13.3. Solar envelopes as a design tool 293 13.4. Solar envelopes as a tool for urban development 295 13.5. Regulations and applications 297 13.6. Methods of application 299 13.7. A simple design tool 300 13.8. Modeling the building shape for self-shading using the solar collection envelope 302 13.9. Daylight rights 306 13.10. Daylight access 306 13.11. Conclusions 308 13.12. Bibliography 309 Chapter 14. Solar Potential and Solar Impact 311 Frédéric MONETTE and Benoit BECKERS 14.1. Methodological considerations 312 14.2. Definition of the residential area 312 14.3. Estimation of irradiance and solar gains 319 14.4. Estimation of energy needs for heating 321 14.5. Results analysis 322 14.6. Perspectives and conclusions 331 14.7. Acknowledgments 332 14.8. Bibliography 332 Conclusion 335 Benoit BECKERS APPENDICES 339 Appendix 1. Table of Europe’s Platforms (Micro- and Minisatellites) for Earth Observations 341 Théo PIRARD Appendix 2. Commercial Operators of Earth Observation (EO) Satellites (as of January 1, 2012) 347 Théo PIRARD Appendix 3. Earth’s Annual Global Mean Energy Budget 355 Benoit BECKERS List of Authors 357 Index 361

    10 in stock

    £150.05

  • Command-control for Real-time Systems

    ISTE Ltd and John Wiley & Sons Inc Command-control for Real-time Systems

    10 in stock

    Book SynopsisA real-time system is a complex system which is an integral part of an industrial or experimental system, a vehicle or a construction machine. The peculiarity of these systems is that they are driven by real-time targets in distributed environments. Command-control for Real-time Systems presents the calculation of correction for industrial systems of different physical natures, their implementation on real-time target industrial systems (PLC-SCADA, embedded systems with distributed networks, Networked Control Systems) and their validation by simulation. It optimizes industrial processes by the use of automatic tools, industrial computing and communications networks and aims to successively integrate new control laws (linear, nonlinear and fuzzy controllers) so that users can leverage the power of engineering science as an automatic service process optimization while maintaining their high maintainability facilities. Contents 1. Introduction. 2. Modeling Tools, Sébastien Cabaret and Mohammed Chadli. 3. Control Tools, Mohammed Chadli and Hervé Coppier. 4. Application to Cryogenic Systems, Marco Pezzetti, Hervé Coppier and Mohammed Chadli. 5. Applications to a Thermal System and to Gas Systems, Sébastien Cabaret and Hervé Coppier. 6. Application to Vehicles, Elie Kafrouni and Mohammed Chadli. 7. Real-time Implementation, Marco Pezzetti and Hervé Coppier. About the Authors Mohamed Chadli is a senior lecturer and research supervisor at the University of Picardie Jules Verne (UPJV) in France. His main research interests lie in robust control, the diagnosis and fault tolerant control of polytopic systems and applications for automobiles. He is a senior member of the IEEE, and Vice President of the AAI Club as part of SEE-France. He is the author/co-author of 3 books, book chapters and more than 100 articles published in international journals and conferences. Hervé Coppier is a lecturing researcher at ESIEE-Amiens in France. He has collaborated with industrialists in the field of automation and industrial computing, particularly with CERN, and has spearheaded various international European projects.Table of ContentsChapter 1. Introduction 1 Chapter 2. Modeling Tools 7 Sébastien CABARET and Mohammed CHADLI 2.1. Introduction 7 2.2. Models 9 2.2.1. Knowledge models 9 2.2.2. Behavioral models 11 2.3. The classic parametric identification methods 14 2.3.1. Graphic methods 14 2.3.2. Algorithmic methods 15 2.3.3. Validation and estimation of the model identified 19 2.4. Multi-model approach 23 2.4.1. Introduction 23 2.4.2. Techniques for obtaining multi-models 23 2.5. Bibliography 40 Chapter 3. Control Tools 43 Mohammed CHADLI and Hervé COPPIER 3.1. Linear controls 43 3.1.1. The PID corrector 43 3.1.2. The Smith predictor 44 3.1.3. Predictive functional control 49 3.1.4. Generalized predictive control 55 3.1.5. The RST controller 60 3.1.6. Implementation of the advance algorithms on a programmable logic controller: results 63 3.2. Multi-model control 82 3.2.1. Introduction 82 3.2.2. Stability analysis 83 3.2.3. State feedback control 86 3.2.4. Reconstructed state feedback control 90 3.2.5. Static output feedback control 93 3.2.6. Conclusion 97 3.3. Bibliography 98 Chapter 4. Application to Cryogenic Systems 103 Marco PEZZETTI, Hervé COPPIER and Mohammed CHADLI 4.1. Introduction 103 4.1.1. Cryogenics and its applications at CERN 103 4.1.2. Some basics about cryogenics 109 4.2. Modeling and control of a cryogenic exchanger for the NA48 calorimeter at CERN 112 4.2.1. Description of the cryogenic installations in the NA48 calorimeter 115 4.2.2. Thermal model 118 4.2.3. The TDC (Time Delay Control) corrector: application to a liquid-krypton cryogenic exchanger 120 4.3. Modeling and control of the cryogenics of the ATLAS experiment at CERN 128 4.3.1. Context and objectives of the study 128 4.3.2. Process of identification of cryogenic systems 130 4.3.3. Experimental protocol of parametric identification 136 4.3.4. Mono-variable system 142 4.3.5. Compensation for the delay with a Smith controller based on the PI corrector UNICOS 149 4.3.6. Multi-variable system 151 4.4. Conclusion 158 4.4.1. Motivations 159 4.4.2. Main contributions 160 4.5. Appendices 160 4.5.1. Appendix A 160 4.6. Bibliography 164 Chapter 5. Applications to a Thermal System and to Gas Systems 165 Sébastien CABARET and Hervé COPPIER 5.1. Advanced control of the steam temperature on exiting a superheater at a coal-burning power plant 165 5.1.1. The issue 165 5.1.2. The internal model corrector (IMC) 166 5.1.3. Multi-order regulator: 4th-order IMC 169 5.1.4. Results 171 5.2. Application to gas systems 174 5.2.1. The gas systems 174 5.2.2. The major regulations 180 5.2.3. The control system and acquisition of measurements 183 5.2.4. Modeling, identification and experimental results 184 5.3. Conclusion 202 5.4. Bibliography 202 Chapter 6. Application to Vehicles 203 Elie KAFROUNI and Mohammed CHADLI 6.1. Introduction 203 6.2. Hydraulic excavator-loader 204 6.2.1. Conventional manual piloting 205 6.3. Principle of movement of a part of the arm 206 6.3.1. Role of the drivers 206 6.3.2. Objectives 207 6.3.3. Functional specification of the interface 211 6.3.4. Limit of articular position and velocities 238 6.3.5. Articular limits 248 6.3.6. Limits of the articular velocities 259 6.3.7. 3D simulation 267 6.3.8. Onboard computer architecture 271 6.3.9. Conclusion 275 6.4. Automobiles 275 6.4.1. Models of automobiles 275 6.4.2. Validation of vehicle models 286 6.4.3. Robust control of the vehicle’s dynamics 298 6.4.4. Conclusion 318 6.5. Bibliography 319 Chapter 7. Real-time Implementation 323 Marco PEZZETTI and Hervé COPPIER 7.1. Implementation of algorithms on real-time targets around distributed architectures 323 7.1.1. Introduction 323 7.1.2. Object-oriented programming in the case of a framework 324 7.1.3. MultiController 333 7.2. A distributed architecture for control (rapidity/reliability): excavator-loader testing array 347 7.2.1. Objectives of the testing array 347 7.2.2. Presentation of the onboard computer platform 348 7.2.3. Examination of the rapidity of the onboard computer structure 350 7.2.4. Results 358 7.3. Conclusion 361 7.4. Bibliography 362 General Conclusion 363 List of Authors 367 Index 369

    10 in stock

    £132.00

  • Laser in Manufacturing

    ISTE Ltd and John Wiley & Sons Inc Laser in Manufacturing

    1 in stock

    Book SynopsisGenerally a laser (light amplification by stimulated emission of radiation) is defined as “a device which uses a quantum mechanical effect, stimulated emission, to generate a coherent beam of light from a lasing medium of controlled purity, size, and shape”. Laser material processing represents a great number of methods, which are rapidly growing in current and different industrial applications as new alternatives to traditional manufacturing processes. Nowadays, the use of lasers in manufacturing is an emerging area with a wide variety of applications, for example, in electronics, molds and dies, and biomedical applications. The purpose of this book is to present a collection of examples illustrating the state of the art and research developments to lasers in manufacturing, covering laser rapid manufacturing, lasers in metal forming applications, laser forming of metal foams, mathematical modeling of laser drilling, thermal stress analysis, modeling and simulation of laser welding, and the use of lasers in surface engineering. This book can be used as a research book for a final undergraduate engineering course or as a subject on lasers in manufacturing at the postgraduate level. Also, this book can serve as a useful reference for academics, laser researchers, mechanical, manufacturing, materials or physics engineers, or professionals in any related modern manufacturing technology. Contents 1. Laser Rapid Manufacturing: Technology, Applications, Modeling and Future Prospects, Christ P. Paul, Pankaj Bhargava, Atul Kumar, Ayukt K. Pathak and Lalit M. Kukreja. 2. Lasers in Metal Forming Applications, Stephen A. Akinlabi, Mukul Shukla, Esther T. Akinlabi and Tshilidzi Marwala. 3. Laser Forming of Metal Foams, Fabrizio Quadrini, Denise Bellisario, Erica A. Squeo and Loredana Santo. 4. Mathematical Modeling of Laser Drilling, Maturose Suchatawat and Mohammad Sheikh. 5. Laser Cutting a Small Diameter Hole: Thermal Stress Analysis, Bekir S. Yilbas, Syed S. Akhtar and Omer Keles. 6. Modeling and Simulation of Laser Welding, Karuppudaiyar R. Balasabramanian, Krishnasamy Sankaranarayanasamy and Gangusami N. Buvanashekaran. 7. Lasers in Surface Engineering, Alberto H. Garrido, Rubén González, Modesto Cadenas, Chin-Pei Wang and Farshid Sadeghi.Table of ContentsPreface xi J. Paolo DAVIM Chapter 1. Laser Rapid Manufacturing: Technology, Applications, Modeling and Future Prospects 1 Christ P. PAUL, Pankaj BHARGAVA, Atul KUMAR, Ayukt K. PATHAK and Lalit M. KUKREJA 1.1. Introduction 1 1.2. Laser rapid manufacturing 2 1.3. Laser rapid manufacturing system 4 1.4. Various laser rapid manufacturing systems 13 1.5. Relevant processing parameters 16 1.6. Typical applications of LRM 24 1.7. LRM process modeling 41 1.8. LRM process control 51 1.9. Future prospects 57 1.10. Conclusion 59 1.11. Acknowledgments 60 1.12. Bibliography 60 Chapter 2. Lasers in Metal Forming Applications 69 Stephen A. AKINLABI, Mukul SHUKLA, Esther T. AKINLABI and Tshilidzi MARWALA 2.1. Introduction 69 2.2. Laser 70 2.3. Metal forming – introduction 72 2.4. Laser beam forming 73 2.5. LBF mechanisms 84 2.6. Advantages and disadvantages of LBF 91 2.7. LBF of a steel plate 92 2.8. Design of experiments 95 2.9. Sample characterization 100 2.10. Conclusion 104 2.11. Bibliography 104 Chapter 3. Laser Forming of Metal Foams 109 Fabrizio QUADRINI, Denise BELLISARIO, Erica A. SQUEO and Loredana SANTO 3.1. Introduction 109 3.2. Scientific background 110 3.3. Materials and experimental methods 113 3.4. Experimental results and discussion 117 3.5. Numerical modeling 127 3.6. Conclusions 134 3.7. Bibliography 135 Chapter 4. Mathematical Modeling of Laser Drilling 139 Maturose SUCHATAWAT and Mohammad SHEIKH 4.1. Introduction 139 4.2. Solid heating 141 4.3. Melting 145 4.4. Vaporization 151 4.5. Mathematical model of laser percussion drilling incorporating the effects of the exothermic reaction 156 4.6. Experimental procedures for model verification 167 4.7. Results and discussion 168 4.8. Conclusion 173 4.9. Bibliography 173 Chapter 5. Laser Cutting a Small Diameter Hole: Thermal Stress Analysis 179 Bekir S. YILBAS, Syed S. AKHTAR and Omer KELES 5.1. Introduction 179 5.2. Modeling heating and thermal stress 181 5.3. Numerical simulation 184 5.4. Experimental 185 5.5. Results and discussion 186 5.6. Conclusion 201 5.7. Acknowledgements 201 5.8. Bibliography 201 Chapter 6. Modeling and Simulation of Laser Welding 203 Karuppudaiyar R. BALASABRAMANIAN, Krishnasamy SANKARANARAYANASAMY and Gangusami N. BUVANASHEKARAN 6.1. Introduction 204 6.2. Process mechanisms 204 6.3. Operating parameter characteristics 206 6.4. Types 207 6.5. Material considerations 209 6.6. Applications of laser welding 211 6.7. Strengths and limitations of laser welding 212 6.8. Developments and advances in laser welding processes 213 6.9. Modeling and analysis of the laser welding process 214 6.10. A case study 220 6.11. Comparison of statistical analysis, the finite element method and an ANN 241 6.12. Conclusion 243 6.13. Acknowledgment 244 6.14. Bibliography 244 Chapter 7. Lasers in Surface Engineering 247 Alberto H. GARRIDO, Rubén GONZÁLEZ, Modesto CADENAS, Chin-Pei WANG and Farshid SADEGHI 7.1. Introduction 248 7.2. Characteristics of laser radiation 248 7.3. Advantages of laser devices 249 7.4. Laser surface cladding 250 7.5. Laser surface cladding by powder injection 253 7.6. Energetic study of the cladding process 257 7.7. Control parameters of laser surface cladding 264 7.8. Widely used materials and alloys 266 7.9. Laser surface treatments 266 7.10. Laser surface texturing techniques 272 7.11. Characterization of laser surface texturing 285 7.12. Bibliography 286 List of Authors 293 Index 297

    1 in stock

    £128.66

  • Signal and Image Processing for Biometrics

    ISTE Ltd and John Wiley & Sons Inc Signal and Image Processing for Biometrics

    10 in stock

    Book SynopsisThe aim of this book is to deal with biometrics in terms of signal and image processing methods and algorithms. This will help engineers and students working in digital signal and image processing deal with the implementation of such specific algorithms. It discusses numerous signal and image processing techniques that are very often used in biometric applications. In particular, algorithms related to hand feature extraction, speech recognition, 2D/3D face biometrics, video surveillance and other interesting approaches are presented. Moreover, in some chapters, Matlab codes are provided so that readers can easily reproduce some basic simulation results. This book is suitable for final-year undergraduate students, postgraduate students, engineers and researchers in the field of computer engineering and applied digital signal and image processing. 1. Introduction to Biometrics, Bernadette Dorizzi.2. Introduction to 2D Face Recognition, Amine Nait-Ali and Dalila Cherifi.3. Facial Soft Biometrics for Person Recognition, Antitza Dantcheva, Christelle Yemdji, Petros Elia and Jean-Luc Dugelay.4. Modeling, Reconstruction and Tracking 
for Face Recognition, Catherine Herold, Vincent Despiegel, Stéphane Gentric,
Séverine Dubuisson and Isabelle Bloch.5. 3D Face Recognition, Mohsen Ardabilian, Przemyslaw Szeptycki, Di Huang and Liming Chen.6. Introduction to Iris Biometrics, Kamel Aloui, Amine Nait-Ali, Régis Fournier and Saber Naceur.7. Voice Biometrics: Speaker Verification and Identification, Foezur Chowdhury, Sid-Ahmed Selouani
and Douglas O’Shaughnessy.8. Introduction to Hand Biometrics, Régis Fournier and Amine Nait-Ali.9. Multibiometrics, Romain Giot, Baptiste Hemery, Estelle Cherrier and
Christophe Rosenberger.10. Hidden Biometrics, Amine Nait-Ali, Régis Fournier, Kamel Aloui and
Noureddine Belgacem.11. Performance Evaluation of Biometric Systems, Mohamad El-Abed, Romain Giot, Baptiste Hemery, Julien Mahier
and Christophe Rosenberger.12. Classification Techniques for Biometrics, Amel Bouchemha, Chérif Nait-Hamoud, Amine Nait-Ali and
Régis Fournier.13. Data Cryptography, Islam Naveed and William Puech.14. Visual Data Protection, Islam Naveed and William Puech.15. Biometrics in Forensics, Guillaume Galou and Christophe Lambert.Table of ContentsPreface xiii Amine NAÏT-ALI and Régis FOURNIER Chapter 1. Introduction to Biometrics 1 Bernadette DORIZZI 1.1. Background: from anthropometry to biometrics 1 1.2. Biometrics today 2 1.3. Different modes of use of a biometric system and associated uses 3 1.4. Biometrics as a pattern recognition problem 4 1.5. Evaluation of different modalities 8 1.6. Quality 9 1.7. Multimodality 10 1.8. Biometrics and preservation of privacy 11 1.9. Conclusion 12 1.10. Bibliography 12 Chapter 2. Introduction to 2D Face Recognition 15 Amine NAÏT-ALI and Dalila CHERIFI 2.1. Introduction 15 2.2. Global face recognition techniques 16 2.3. Local face recognition techniques 25 2.4. Hybrid face recognition techniques 28 2.5. Some guidances 32 2.6. Some databases 35 2.7. Conclusion 35 2.8. Bibliography 36 Chapter 3. Facial Soft Biometrics for Person Recognition 39 Antitza DANTCHEVA, Christelle YEMDJI, Petros ELIA and Jean-Luc DUGELAY 3.1. Introduction to soft biometrics 39 3.2. Soft biometric systems for human identification 42 3.3. Overall error probability of a soft biometrics system 48 3.4. Conclusions and future directions 53 3.5. Bibliography 53 Chapter 4. Modeling, Reconstruction and Tracking for Face Recognition 57 Catherine HEROLD, Vincent DESPIEGEL, Stéphane GENTRIC, Séverine DUBUISSON and Isabelle BLOCH 4.1. Background 57 4.2. Types of available information 61 4.3. Geometric approaches for the reconstruction 63 4.4. Model-based approaches for reconstruction 67 4.5. Hybrid approaches 76 4.6. Integration of the time aspect 77 4.7. Conclusion 82 4.8. Bibliography 83 Chapter 5. 3D Face Recognition 89 Mohsen ARDABILIAN, Przemyslaw SZEPTYCKI, Di HUANG and Liming CHEN 5.1. Introduction 89 5.2. 3D face databases 90 5.3. 3D acquisition 92 5.4. Preprocessing and normalization 94 5.5. 3D face recognition 101 5.6. Asymmetric face recognition 109 5.7. Conclusion 110 5.8. Bibliography 111 Chapter 6. Introduction to Iris Biometrics 117 Kamel ALOUI, Amine NAÏT-ALI, Régis FOURNIER and Saber NACEUR 6.1. Introduction 117 6.2. Iris biometric systems 118 6.3. Iris recognition methods: state-of-the-art 119 6.4. Preprocessing of iris images 122 6.5. Features extraction and encoding 125 6.6. Similarity measure between two IrisCodes 126 6.7. Iris biometrics: emerging methods 127 6.8. Conclusion 128 6.9. Bibliography 128 Chapter 7. Voice Biometrics: Speaker Verification and Identification 131 Foezur CHOWDHURY, Sid-Ahmed SELOUANI and Douglas O’SHAUGHNESSY 7.1. Introduction 131 7.2. Acoustic analysis for robust speaker recognition 134 7.3. Distributed speaker recognition through UBM–GMM models 138 7.4. Performance evaluation of DSIDV 142 7.5. Conclusion 145 7.6. Bibliography 146 Chapter 8. Introduction to Hand Biometrics 149 Régis FOURNIER and Amine NAÏT-ALI 8.1. Introduction 149 8.2. Characterization by minutiae extraction 151 8.3. A few databases 160 8.4. Conclusion 165 8.5. Bibliography 165 Chapter 9. Multibiometrics 167 Romain GIOT, Baptiste HEMERY, Estelle CHERRIER and Christophe ROSENBERGER 9.1. Introduction 167 9.2. Different principles of multibiometrics 169 9.3. Fusion levels 171 9.4. Applications and illustrations 189 9.5. Conclusion 191 9.6. Bibliography 192 Chapter 10. Hidden Biometrics 195 Amine NAÏT-ALI, Régis FOURNIER, Kamel ALOUI and Noureddine BELGACEM 10.1. Introduction 195 10.2. Biometrics using ECG 196 10.3. Biometrics using EMG: preliminary experiments 198 10.4. Biometrics using medical imaging 200 10.5. Conclusion 205 10.6. Bibliography 205 Chapter 11. Performance Evaluation of Biometric Systems 207 Mohamad EL ABED, Romain GIOT, Baptiste HEMERY, Julien MAHIER and Christophe ROSENBERGER 11.1. Introduction 207 11.2. Reminders on biometric systems 208 11.3. Results analysis tools 212 11.4. Illustration of the GREYC-Keystroke system 223 11.5. Conclusion 228 11.6. Bibliography 229 Chapter 12. Classification Techniques for Biometrics 231 Amel BOUCHEMHA, Chérif NAIT-HAMOUD, Amine NAÏT-ALI and Régis FOURNIER 12.1. Introduction 231 12.2. Generalization aptitude and performance measures 232 12.3. Parametric approaches 234 12.4. Non-parametric approaches 241 12.5. Conclusion 260 12.6. Bibliography 261 Chapter 13. Data Cryptography 263 Islam NAVEED and William PUECH 13.1. Introduction 263 13.2. Cryptography 263 13.3. Conclusion 276 13.4. Bibliography 276 Chapter 14. Visual Data Protection 279 Islam NAVEED and William PUECH 14.1. Introduction 279 14.2. Visual data hiding 279 14.3. A proposed homomorphism-based visual secret sharing scheme 284 14.4. Conclusion 294 14.5. Bibliography 294 Chapter 15. Biometrics in Forensics 297 Guillaume GALOU and Christophe LAMBERT 15.1. Introduction 297 15.2. Facial comparison 298 15.3. Voice comparison in forensics 301 15.4. Bibliography 311 List of Authors 313 Index 317

    10 in stock

    £132.00

  • Integrated Design by Optimization of Electrical

    ISTE Ltd and John Wiley & Sons Inc Integrated Design by Optimization of Electrical

    10 in stock

    Book SynopsisThis book proposes systemic design methodologies applied to electrical energy systems, in particular integrated optimal design with modeling and optimization methods and tools. It is made up of six chapters dedicated to integrated optimal design. First, the signal processing of mission profiles and system environment variables are discussed. Then, optimization-oriented analytical models, methods and tools (design frameworks) are proposed. A “multi-level optimization” smartly coupling several optimization processes is the subject of one chapter. Finally, a technico-economic optimization especially dedicated to electrical grids completes the book. The aim of this book is to summarize design methodologies based in particular on a systemic viewpoint, by considering the system as a whole. These methods and tools are proposed by the most important French research laboratories, which have many scientific partnerships with other European and international research institutions. Scientists and engineers in the field of electrical engineering, especially teachers/researchers because of the focus on methodological issues, will find this book extremely useful, as will PhD and Masters students in this field.Table of ContentsPreface xi Chapter 1. Mission and Environmental Data Processing 1 Amine JAAFAR, Bruno SARENI and Xavier ROBOAM 1.1. Introduction 1 1.2. Considerations of the mission and environmental variables 3 1.3. New approach for the characterization of a “representative mission” 6 1.4. Classification of missions and environmental variables 16 1.5. Synthesis of mission and environmental variable profiles 21 1.6. From classification to simultaneous design by optimization of a hybrid traction chain 25 1.7. Conclusion 39 1.8. Bibliography 41 Chapter 2. Analytical Sizing Models for Electrical Energy Systems Optimization 45 Christophe ESPANET, Daniel DEPERNET, Anne-Claire SAUTTER and Zhenwei WU 2.1. Introduction 45 2.2. The problem of modeling for synthesis 46 2.3. System decomposition and model structure 55 2.4. General information about the modeling of the various possible components in an electrical energy system 60 2.5. Development of an electrical machine analytical model 61 2.6. Development of an analytical static converter model 73 2.7. Development of a mechanical transmission analytical model 82 2.8. Development of an analytical energy storage device model 91 2.9. Use of models for the optimum sizing of a system 91 2.10. Conclusions 102 2.11. Bibliography 103 Chapter 3. Simultaneous Design by Means of Evolutionary Computation 107 Bruno SARENI and Xavier ROBOAM 3.1. Simultaneous design of energy systems 107 3.2. Evolutionary algorithms and artificial evolution 113 3.3. Consideration of multiple objectives 119 3.4. Consideration of design constraints 123 3.5. Integration of robustness into the simultaneous design process 126 3.6. Example applications 130 3.7. Conclusions 150 3.8. Bibliography 151 Chapter 4. Multi-Level Design Approaches for Electro-Mechanical Systems Optimization 155 Stéphane BRISSET, Frédéric GILLON and Pascal BROCHET 4.1. Introduction 155 4.2. Multi-level approaches 156 4.3. Optimization using models with different granularities 160 4.4. Hierarchical decomposition of an optimization problem 178 4.5. Conclusion 187 4.6. Bibliography 188 Chapter 5. Multi-criteria Design and Optimization Tools 193 Benoit DELINCHANT, Laurence ESTRABAUD, Laurent GERBAUD and Frédéric WURTZ 5.1. The CADES framework: example of a new tools approach 194 5.2. The system approach: a break from standard tools 195 5.3. Components ensuring interoperability around a framework 203 5.4. Some calculation modeling formalisms for optimization 210 5.5. The principles of automatic Jacobian generation 218 5.6. Services using models and their Jacobian 223 5.7. Applications of CADES in system optimization 227 5.8. Perspectives 231 5.9. Conclusions 238 5.10. Bibliography 239 Chapter 6. Technico-economic Optimization of Energy Networks 247 Guillaume SANDOU, Philippe DESSANTE, Marc PETIT and Henri BORSENBERGER 6.1. Introduction 247 6.2. Energy network modeling 249 6.3. Resolution of the energy network optimization problem for a deterministic case 255 6.4. Introduction to uncertainty consideration 266 6.5. Consideration of uncertainties on consumer demand 269 6.6. Consideration of uncertainties over production costs 273 6.7. From optimization to control 279 6.8. Conclusions 280 6.9. Bibliography 281 List of Authors 287 Index 291

    10 in stock

    £132.00

  • Numerical Analysis in Electromagnetics: The TLM

    ISTE Ltd and John Wiley & Sons Inc Numerical Analysis in Electromagnetics: The TLM

    10 in stock

    Book SynopsisThe aim of this book is to give a broad overview of the TLM (Transmission Line Matrix) method, which is one of the “time-domain numerical methods”. These methods are reputed for their significant reliance on computer resources. However, they have the advantage of being highly general. The TLM method has acquired a reputation for being a powerful and effective tool by numerous teams and still benefits today from significant theoretical developments. In particular, in recent years, its ability to simulate various situations with excellent precision, including complex materials, has been demonstrated. Application examples are included in the last two chapters of the book, enabling the reader to draw conclusions regarding the performance of the implemented techniques and, at the same time, to validate them. Contents 1. Basis of the TLM Method: the 2D TLM Method. 2. 3D Nodes. 3. Introduction of Discrete Elements and Thin Wires in the TLM Method. 4. The TLM Method in Matrix Form and the Z Transform. Appendix A. Development of Maxwell’s Equations using the Z Transform with a Variable Mesh. Appendix B. Treatment of Plasma using the Z Transform for the TLM Method.Table of ContentsIntroduction ix Chapter 1. Basis of the TLM Method: the 2D TLM Method 1 1.1. Historical introduction 1 1.2. 2D simulation 5 1.2.1. Parallel node 5 1.2.2. Series node 8 1.2.3. Simulation of inhomogeneous media with losses 9 1.2.4. Scattering matrices 11 1.2.5. Boundary conditions 14 1.2.6. Dielectric interface passage conditions 15 1.2.7. Dispersion of 2D nodes. 17 1.3. The TLM process 22 1.3.1. Basic algorithm 22 1.3.2. Excitation 23 1.3.3. Output signal processing 24 Chapter 2. 3D Nodes 29 2.1. Historical development 29 2.1.1. Distributed nodes 29 2.1.2. Asymmetrical condensed node (ACN) 30 2.1.3. The symmetrical condensed node (SCN) 31 2.1.4. Other types of nodes 33 2.2. The generalized condensed node 37 2.2.1. General description 37 2.2.2. Derivation of 3D TLM nodes 41 2.2.3. Scattering matrices 46 2.3. Time step. 54 2.4. Dispersion of 3D nodes. 55 2.4.1. Theoretical study in simple cases 56 2.4.2. Case of inhomogeneous media. 60 2.5. Absorbing walls 60 2.5.1. Matched impedance 61 2.5.2. Segmentation techniques 62 2.5.3. Perfectly matched layers 62 2.5.4. Optimization of the PML layer profile 65 2.5.5. Anisotropic and dispersive layers 67 2.5.6. Conclusion 70 2.6. Orthogonal curvilinear mesh 70 2.6.1. 3D TLM curvilinear cell. 70 2.6.2. The TLM algorithm 73 2.6.3. Scattering matrices for curvilinear nodes 75 2.6.4. Stability conditions and the time step 78 2.6.5. Validation of the algorithm 79 2.7. Non-Cartesian nodes 81 Chapter 3. Introduction of Discrete Elements and Thin Wires in the TLM Method 85 3.1. Introduction of discrete elements 85 3.1.1. History of 2D TLM 85 3.1.2. 3D TLM 89 3.1.3. Application example: modeling of a p-n diode 100 3.2. Introduction of thin wires 105 3.2.1. Arbitrarily oriented thin wire model 106 3.2.2. Validation of the arbitrarily oriented thin wire model 119 Chapter 4. The TLM Method in Matrix Form and the Z Transform 123 4.1. Introduction 123 4.2. Matrix form of Maxwell’s equations 124 4.3. Cubic mesh normalized Maxwell’s equations 125 4.4. The propagation process 127 4.5. Wave-matter interaction 130 4.6. The normalized parallelepipedic mesh Maxwell's equations 133 4.7. Application example: plasma modeling 136 4.7.1. Theoretical model 136 4.7.2. Validation of the TLM simulation 139 4.8. Conclusion 144 APPENDICES 145 Appendix A. Development of Maxwell’s Equations using the Z Transform with a Variable Mesh 147 Appendix B. Treatment of Plasma using the Z Transform for the TLM Method 155 Bibliography 161 Index 171

    10 in stock

    £132.00

  • Man-Machine Dialogue: Design and Challenges

    ISTE Ltd and John Wiley & Sons Inc Man-Machine Dialogue: Design and Challenges

    10 in stock

    Book SynopsisThis book summarizes the main problems posed by the design of a man–machine dialogue system and offers ideas on how to continue along the path towards efficient, realistic and fluid communication between humans and machines. A culmination of ten years of research, it is based on the author's development, investigation and experimentation covering a multitude of fields, including artificial intelligence, automated language processing, man–machine interfaces and notably multimodal or multimedia interfaces.Table of ContentsPreface xi Introduction xv PART 1 HISTORICAL AND METHODOLOGICAL LANDMARKS 1 Chapter 1 An Assessment of the Evolution of Research and Systems 3 1.1 A few essential historical landmarks 5 1.2 A list of possible abilities for a current system 16 1.3 The current challenges 23 1.4 Conclusion 27 Chapter 2 Man–Machine Dialogue Fields 29 2.1 Cognitive aspects 30 2.2 Linguistic aspects 40 2.3 Computer aspects 45 2.4 Conclusion 46 Chapter 3 The Development Stages of a Dialogue System 47 3.1 Comparing a few development progresses 48 3.2 Description of the main stages of development 52 3.3 Conclusion 62 Chapter 4 Reusable System Architectures 63 4.1 Run-time architectures 64 4.2 Design-time architectures 69 4.3 Conclusion 73 PART 2 INPUTS PROCESSING 75 Chapter 5 Semantic Analyses and Representations 77 5.1 Language in dialogue and in man–machine dialogue 78 5.2 Computational processes: from the signal to the meaning 85 5.3 Enriching meaning representation 91 5.4 Conclusion 94 Chapter 6 Reference Resolution 95 6.1 Object reference resolution 96 6.2 Action reference resolution 105 6.3 Anaphora and coreference processing 109 6.4 Conclusion 112 Chapter 7 Dialogue Acts Recognition 113 7.1 Nature of dialogue acts 114 7.2 Identification and processing of dialogue acts 119 7.3 Multimodal dialogue act processing 122 7.4 Conclusion 124 PART 3 SYSTEM BEHAVIOR AND EVALUATION 125 Chapter 8 A Few Dialogue Strategies 127 8.1 Natural and cooperative aspects of dialogue management 128 8.2 Technical aspects of dialogue management 136 8.3 Conclusion 147 Chapter 9 Multimodal Output Management 149 9.1 Output management methodology 151 9.2 Multimedia presentation pragmatics 156 9.3 Processes 159 9.4 Conclusion 165 Chapter 10 Multimodal Dialogue System Assessment 167 10.1 Dialogue system assessment feasibility 168 10.2 Multimodal system assessment challenges 176 10.3 Methodological elements 180 10.4 Conclusion 190 Conclusion 191 Bibliography 193 Index 203

    10 in stock

    £132.00

  • Model Based Systems Engineering: Fundamentals and

    ISTE Ltd and John Wiley & Sons Inc Model Based Systems Engineering: Fundamentals and

    15 in stock

    Book SynopsisThis book is a contribution to the definition of a model based system engineering (MBSE) approach, designed to meet the objectives laid out by the INCOSE. After pointing out the complexity that jeopardizes a lot of system developments, the book examines fundamental aspects of systems under consideration. It goes on to address methodological issues and proposes a methodic approach of MBSE that provides, unlike current practices, systematic and integrated model-based engineering processes. An annex describes relevant features of the VHDL-AMS language supporting the methodological issues described in the book.Table of ContentsLIST OF FIGURES AND TABLE xi ACKNOWLEDGEMENTS xvii FOREWORD xxi Dominique LUZEAUX INTRODUCTION. GOALS OF PROPERTY MODEL METHODOLOGY xxv PART 1. FUNDAMENTALS 1 Chapter 1. General Systems Theory 3 1.1. Introduction 3 1.2. What is a system? 4 1.3. Systems, subsystems and levels 9 1.4. Concrete and abstract objects 11 1.5. Properties 12 1.5.1. Material and formal properties 12 1.5.2. Accidental and essential properties, laws and types 13 1.5.3. Dispositions, structural and behavioral properties 17 1.5.4. Resulting and emerging properties 18 1.6. States, event, process, behavior and fact 20 1.7. Systems of interest 23 CHAPTER 2. TECHNOLOGICAL SYSTEMS 25 2.1. Introduction 25 2.2. Definition of technological systems 25 2.2.1. Artificial autotelic and heterotelic systems 27 2.2.2. Technical-empirical and technological systems 27 2.2.3. Purpose of a technological system 28 2.3. Function, behavior and structure of a technological system 30 2.4. Intended and concomitant effects of a technological system 34 2.5. Modes, mode switching and states 36 2.5.1. Modes of operation 36 2.5.2. Mode switching 36 2.5.3. Operating states 37 2.6. Errors, faults and failures 37 2.7. “The human factor” 39 CHAPTER 3. KNOWLEDGE SYSTEMS 41 3.1. Introduction 41 3.2. Knowledge and its bearers 42 3.3. Intersubjective knowledge 44 3.4. Concepts, propositions and conceptual knowledge 45 3.5. Objective and true knowledge 47 3.6. Scientific and technological knowledge 50 3.6.1. Fundamental sciences 51 3.6.2. Applied sciences and technology 53 3.6.3. Operative technological rules 53 3.6.4. Substantive technological rules 55 3.7. Knowledge and belief 56 CHAPTER 4. SEMIOTIC SYSTEMS AND MODELS 59 4.1. Introduction 59 4.2. Signs and systems of signs 60 4.3. Nomological propositions and law statements 65 4.4. Models, object models, theoretical models and simulation 66 4.5. Representativeness of models and the expressiveness of languages 71 4.5.1. Representativeness of models 71 4.5.2. Expressiveness of a language 73 PART 2. METHODS 77 CHAPTER 5. ENGINEERING PROCESSES 79 5.1. Introduction 79 5.2. Systems engineering process 81 5.2.1. General framework 81 5.2.2. Design process 83 5.2.3. Safety assessment process 88 5.2.4. Requirement and assumption validation 90 5.2.5. Verification of the implementation regarding requirements 91 5.2.6. Managing configurations 92 5.2.7. Process (quality) assurance, certification and coordination with authorities 93 CHAPTER 6. DETERMINING REQUIREMENTS AND SPECIFICATION MODELS 95 6.1. Introduction 95 6.2. Specifications and requirements 98 6.3. Text-based requirements and subjectivity 100 6.4. Objectifying requirements and assumptions through property-based requirements 102 6.4.1. Definition 102 6.4.2. Examples 104 6.4.3. Typology and sources of PBR 106 6.5. Conjunction and comparison of property-based requirements 110 6.5.1. Comparison of two PBRs 111 6.5.2. Conjunction of two PBRs 112 6.6. Interpreting text-based requirements 114 6.6.1. Example 1: FAR29.1303(b) flight and navigation instruments 115 6.6.2. Example 2: FAR29.951(a) Fuel systems – General 119 6.7. Conclusion: specification models and concurrent assertions 121 CHAPTER 7. DESIGNING SOLUTIONS AND DESIGN MODELS 127 7.1. Introduction 127 7.2. Deriving requirements 128 7.3. Basic system model of a type of systems 131 7.4. Dynamic design models of a type of systems 133 7.4.1. Behavioral design model (BDM) 133 7.4.2. Equation-based design models (EDMs) 139 7.5. Derivation and allocation of the system’s behavioral requirements 141 7.6. Static design models 142 7.6.1. Composite system model 142 7.6.2. Structural design model 145 7.6.3. Allocation of BDM components to SDM components 146 7.7. Derivation and allocation of system requirements 146 7.8. The end of the design process and the realization 148 CHAPTER 8. VALIDATING REQUIREMENTS AND ASSUMPTIONS 151 8.1. Introduction 151 8.2. The validation process according to the ARP4754A 152 8.2.1. Goal of the validation 152 8.2.2. Means of validation 154 8.3. The validation process according to the property model methodology 156 8.3.1. Goal of the validation 157 8.3.2. Means of validation 158 8.3.3. Exactness of a system specification model 160 8.3.4. Validating the derivation of system requirements 161 8.3.5. Scenarios and validation cases, efforts and rigor in validation 162 8.4. Conclusion 167 CHAPTER 9. VERIFYING THE IMPLEMENTATION STEP BY STEP 169 9.1. Introduction 169 9.2. The verification process according to the ARP4754A 170 9.2.1. Goal of the verification 170 9.2.2. Verification methods 170 9.3. The verification process according to the property model methodology 173 9.3.1. Objects to be verified 173 9.3.2. Goal of the verification 174 9.3.3. Verifying the design 175 9.3.4. Verifying the other products of implementation 179 9.3.5. The contract theorem 181 9.4. Conclusion 181 CHAPTER 10. SAFETY ENGINEERING 183 10.1. Introduction 183 10.2. The safety assessment process according to the ARP4754A 184 10.2.1. Goal of safety assessment process 184 10.2.2. Means to assess safety 185 10.3. The safety assessment process according to the property model methodology (PMM) 191 10.3.1. Errors, faults and failures 191 10.3.2. FHA and interpretation of the 1309(b)(2)(i) requirements as PBRs 193 10.3.3. PASA/PSSA and deriving safety requirements 200 10.3.4. Simulation and validation of the derived safety requirements 204 10.3.5. Simulation and verification of the failure prevention mechanisms 206 10.3.6. Reliability design models 207 10.3.7. Safety theorem: validating additional requirements 208 10.4. Conclusion 211 CHAPTER 11. PROPERTY MODEL METHODOLOGY DEVELOPMENT PROCESS 213 11.1. Introduction 213 11.2. Early phase of a system development, preliminary studies 213 11.3. Steps of the industrial development of a type of systems 215 11.4. Initial step: highest level system specification 216 11.4.1. Initial step general approach 217 11.4.2. Establishing a specification model of the type of systems 218 11.5. Design steps: descending and iterative design of the building blocks down to the lowest level blocks 226 11.5.1. Design step of a non-terminal block 227 11.5.2. Behavioral design step of a terminal block 229 11.5.3. End of the design step 231 11.6. Realization step of the lowest level building blocks 231 11.7. Integration and installation steps 232 11.8. Conclusion 233 APPENDIX 235 BIBLIOGRAPHY 253 INDEX 261

    15 in stock

    £125.06

  • Embedded Systems: Analysis and Modeling with

    ISTE Ltd and John Wiley & Sons Inc Embedded Systems: Analysis and Modeling with

    10 in stock

    Book SynopsisSince the construction of the first embedded system in the 1960s, embedded systems have continued to spread. They provide a continually increasing number of services and are part of our daily life. The development of these systems is a difficult problem which does not yet have a global solution. Another difficulty is that systems are plunged into the real world, which is not discrete (as is generally understood in computing), but has a richness of behaviors which sometimes hinders the formulation of simplifying assumptions due to their generally autonomous nature and they must face possibly unforeseen situations (incidents, for example), or even situations that lie outside the initial design assumptions. Embedded Systems presents the state of the art of the development of embedded systems and, in particular, concentrates on the modeling and analysis of these systems by looking at “model-driven engineering”, (MDE2): SysML, UML/MARTE and AADL. A case study (based on a pacemaker) is presented which enables the reader to observe how the different aspects of a system are addressed using the different approaches. All three systems are important in that they provide the reader with a global view of their possibilities and demonstrate the contributions of each approach in the different stages of the software lifecycle. Chapters dedicated to analyzing the specification and code generation are also presented. Contents Foreword, Brian R. Larson.Foreword, Dominique Potier.Introduction, Fabrice Kordon, Jérôme Hugues, Agusti Canals and Alain Dohet.Part 1. General Concepts1. Elements for the Design of Embedded Computer Systems, Fabrice Kordon, Jérôme Hugues, Agusti Canals and Alain Dohet.2. Case Study: Pacemaker, Fabrice Kordon, Jérôme Hugues, Agusti Canals and Alain Dohet.Part 2. SysML3. Presentation of SysML Concepts, Jean-Michel Bruel and Pascal Roques.4. Modeling of the Case Study Using SysML, Loïc Fejoz, Philippe Leblanc and Agusti Canals.5. Requirements Analysis, Ludovic Apvrille and Pierre De Saqui-Sannes.Part 3. MARTE6. An Introduction to MARTE Concepts, Sébastien Gérard and François Terrier.7. Case Study Modeling Using MARTE, Jérôme Delatour and Joël Champeau.8. Model-Based Analysis, Frederic Boniol, Philippe Dhaussy, Luka Le Roux and Jean-Charles Roger.9. Model-Based Deployment and Code Generation, Chokri Mraidha, Ansgar Radermacher and Sébastien Gérard.Part 4. AADL10. Presentation of the AADL Concepts, Jérôme Hugues and Xavier Renault.11. Case Study Modeling Using AADL, Etienne Borde.12. Model-Based Analysis, Thomas Robert and Jérôme Hugues.13. Model-Based Code Generation, Laurent Pautet and Béchir Zalila.Table of ContentsForeword xiii Brian R. LARSON Foreword xv Dominique POTIER Introduction xix Fabrice KORDON, Jérôme HUGUES, Agusti CANALS and Alain DOHET PART 1. General Concepts 1 Chapter 1. Elements for the Design of Embedded Computer Systems 3 Fabrice KORDON, Jérôme HUGUES, Agusti CANALS and Alain DOHET 1.1. Introduction 3 1.2. System modeling 5 1.3. A brief presentation of UML 6 1.3.1. The UML static diagrams 7 1.3.2. The UML dynamic diagrams 9 1.4. Model-driven development approaches 10 1.4.1. The concepts 10 1.4.2. The technologies 11 1.4.3. The context of the wider field 12 1.5. System analysis 14 1.5.1. Formal verification via proving 15 1.5.2. Formal verification by model-checking 15 1.5.3. The languages to express specifications 16 1.5.4. The actual limits of formal approaches 19 1.6. Methodological aspects of the development of embedded computer systems 20 1.6.1. The main technical processes 22 1.6.2. The importance of the models 23 1.7. Conclusion 24 1.8. Bibliography 25 Chapter 2. Case Study: Pacemaker 29 Fabrice KORDON, Jérôme HUGUES, Agusti CANALS and Alain DOHET 2.1. Introduction 29 2.2. The heart and the pacemaker 30 2.2.1. The heart 30 2.2.2. Presentation of a pacemaker 32 2.3. Case study specification 33 2.3.1. System definition 34 2.3.2. System lifecycle 35 2.3.3. System requirements 36 2.3.4. Pacemaker behavior 39 2.4. Conclusion 42 2.5. Bibliography 43 PART 2. SysML 45 Chapter 3. Presentation of SysML Concepts 47 Jean-Michel BRUEL and Pascal ROQUES 3.1. Introduction 47 3.2. The origins of SysML 48 3.3. General overview: the nine types of diagrams 49 3.4. Modeling the requirements 50 3.4.1. Use case diagram 50 3.4.2. Requirement diagram 51 3.5. Structural modeling 53 3.5.1. Block definition diagram 54 3.5.2. Internal block diagram 56 3.5.3. Package diagram 58 3.6. Dynamic modeling 59 3.6.1. Sequence diagram 59 3.6.2. State machine diagram 61 3.6.3. Activity diagram 63 3.7. Transverse modeling 65 3.7.1. Parametric diagram 65 3.7.2. Allocation and traceability 67 3.8. Environment and tools 68 3.9. Conclusion 68 3.10. Bibliography 68 Chapter 4. Modeling of the Case Study Using SysML 71 Loïc FEJOZ, Philippe LEBLANC and Agusti CANALS 4.1. Introduction 71 4.2. System specification 73 4.2.1. Context 73 4.2.2. Requirements model and operational scenarios 75 4.2.3. Requirements model 78 4.3. System design 80 4.3.1. Functional model 81 4.3.2. Domain-specific data 83 4.3.3. Logical architectural model 86 4.3.4. Physical architectural model 90 4.4. Traceability and allocations 90 4.4.1. “Technical needs: divers” traceability diagram 90 4.4.2. Traceability diagram “technical needs: behavior of the pacemaker” 91 4.4.3. Allocation diagram 92 4.5. Test model 93 4.5.1. Traceability diagram “system test: requirements verification” 93 4.5.2. Sequence diagram for the test game TC-PM-07 94 4.5.3. Diagrams presenting a general view of the requirements 94 4.6. Conclusion 95 4.7. Bibliography 97 Chapter 5. Requirements Analysis 99 Ludovic APVRILLE and Pierre DE SAQUI-SANNES 5.1. Introduction 99 5.2. The AVATAR language and the TTool tool 100 5.2.1. Method 101 5.2.2. AVATAR language and SysML standard 101 5.2.3. The TEPE language for expressing properties 102 5.2.4. TTool 103 5.3. An AVATAR expression of the SysML model of the enhanced pacemaker 103 5.3.1. Functioning of the pacemaker and modeling hypotheses 103 5.3.2. Requirements diagram 104 5.4. Architecture 105 5.5. Behavior 106 5.6. Formal verification of the VVI mode 107 5.6.1. General properties 108 5.6.2. Expressing properties using TEPE 108 5.6.3. The use of temporal logic 109 5.6.4. Observer-guided verification 111 5.6.5. Coming back to the model 112 5.7. Related work 113 5.7.1. Languages 113 5.7.2. Tools 114 5.8. Conclusion 115 5.9. Appendix: TTool 116 5.10. Bibliography 116 PART 3. MARTE 119 Chapter 6. An Introduction to MARTE Concepts 121 Sébastien GÉRARD and François TERRIER 6.1. Introduction 121 6.2. General remarks 121 6.2.1. Possible uses of MARTE 122 6.2.2. How should we read the norm? 123 6.2.3. The MARTE architecture 124 6.2.4. MARTE and SysML 127 6.2.5. An open source support 128 6.3. Several MARTE details 128 6.3.1. Modeling non-functional properties 128 6.3.2. A components model for the real-time embedded system 133 6.4. Conclusion 137 6.5. Bibliography 137 Chapter 7. Case Study Modeling Using MARTE 139 Jérôme DELATOUR and Joël CHAMPEAU 7.1. Introduction 139 7.1.1. Hypotheses used in modeling 139 7.1.2. The modeling methodology used 140 7.1.3. Chapter layout 141 7.2. Software analysis 141 7.2.1. Use case and interface characterization 141 7.2.2. The sphere of application 144 7.3. Preliminary software design – the architectural component 145 7.3.1. The candidate architecture 146 7.3.2. Identifying the components 146 7.3.3. Presentation of the candidate architecture 148 7.3.4. A presentation of the detailed interfaces 150 7.4. Software preliminary design – behavioral component 151 7.4.1. The controller 151 7.4.2. The cardiologist 153 7.4.3. The operating modes of the cardiologist 153 7.5. Conclusion 155 7.6. Bibliography 156 Chapter 8. Model-Based Analysis 157 Frederic BONIOL, Philippe DHAUSSY, Luka LE ROUX and Jean-Charles ROGER 8.1. Introduction 157 8.2. Model and requirements to be verified 161 8.2.1. The UML-MARTE model that needs to be translated in Fiacre 161 8.2.2. Fiacre language 162 8.2.3. The translation principles of the UML model in Fiacre 163 8.2.4. Requirements 165 8.3. Model-checking of the requirements 166 8.3.1. Use case 166 8.3.2. Properties 167 8.3.3. Property check 170 8.3.4. First assessment 172 8.4. Context exploitation 172 8.4.1. Identifying the context scenarios 173 8.4.2. Automatic partitioning of the context graphs 174 8.4.3. CDL language 175 8.4.4. CDL model exploitation in a model-checker 177 8.4.5. Description of a CDL context 178 8.4.6. Results 179 8.5. Assessment 180 8.6. Conclusion 181 8.7. Bibliography 182 Chapter 9. Model-Based Deployment and Code Generation 185 Chokri MRAIDHA, Ansgar RADERMACHER and Sébastien GÉRARD 9.1. Introduction 185 9.2. Input models 187 9.2.1. Description of the executable component-based model 187 9.2.2. Description of the platform model 188 9.2.3. Description of the deployment model 189 9.3. Generation of the implementation model 190 9.3.1. Main concepts 191 9.3.2. Connector pattern 191 9.3.3. Container pattern 193 9.3.4. Implementation of the components 195 9.3.5. Resulting implementation components 197 9.4. Code generation 197 9.4.1. Deployment of the components 198 9.4.2. Transformation into an object-oriented model 199 9.4.3. Generating code 200 9.5. Support tools 201 9.6. Conclusion 202 9.7. Bibliography 202 PART 4. AADL 205 Chapter 10. Presentation of the AADL Concepts 207 Jérôme HUGUES and Xavier RENAULT 10.1. Introduction 207 10.2. General ADL concepts 207 10.3. AADLv2, an ADL for design and analysis 208 10.3.1. A history of the AADL 208 10.3.2. A brief introduction to AADL 209 10.3.3. Tools 211 10.4. Taxonomy of the AADL entities 211 10.4.1. Language elements: the components 212 10.4.2. Connections between the components 214 10.4.3. Language elements: attributes 215 10.4.4. Language elements: extensions and refinements 219 10.5. AADL annexes 220 10.5.1. Data modeling annex 220 10.6. Analysis of AADL models 221 10.6.1. Structural properties 222 10.6.2. Qualitative properties 222 10.6.3. Quantitative properties 223 10.7. Conclusion 224 10.8. Bibliography 225 Chapter 11. Case Study Modeling Using AADL 227 Etienne BORDE 11.1. Introduction 227 11.2. Review of the structure of a pacemaker 229 11.3. AADL modeling of the structure of the pacemaker 230 11.3.1. Decomposition of the system into several subsystems 230 11.3.2. Execution and communication infrastructure 233 11.4. Overview of the functioning of the pacemaker 235 11.4.1. The operational modes of the pacemaker 235 11.4.2. The operational sub-modes of the pacemaker 235 11.4.3. Some functionalities of the pacemaker 237 11.5. AADL modeling of the software architecture of the pulse generator 240 11.5.1. AADL modeling of the operational modes of the pulse generator 240 11.5.2. AADL modeling of the features of the pulse generator in the permanent mode 242 11.6. Modeling of the deployment of the pacemaker 247 11.7. Conclusion 249 11.8. Bibliography 250 Chapter 12. Model-Based Analysis 251 Thomas ROBERT and Jérôme HUGUES 12.1. Introduction 251 12.2. Behavioral validation, per mode and global 252 12.2.1. Validation context and fine tuning of the requirements 253 12.2.2. Translation of the behavioral automata into UPPAAL 253 12.2.3. Refining requirements 22-23/P 258 12.2.4. Study of the permanent/VVT mode 260 12.2.5. Study of the changing of the permanent/VVT→Magnet/VOO mode 261 12.3. Conclusion 262 12.4. Bibliography 263 Chapter 13. Model-Based Code Generation 265 Laurent PAUTET and Béchir ZALILA 13.1. Introduction 265 13.2. Software component generation 268 13.2.1. Data conversion 269 13.2.2. Conversion of subprograms 272 13.2.3. Conversion of execution threads 275 13.2.4. Conversion of the instances of shared data 283 13.3. Middleware components generation 283 13.4. Configuration and deployment of middleware components 284 13.4.1. Deployment 284 13.5. Integration of the compilation chain 285 13.6. Conclusion 287 13.7. Bibliography 287 List of Authors 289 Index 291

    10 in stock

    £132.00

  • Smart SOA Platforms in Cloud Computing

    ISTE Ltd and John Wiley & Sons Inc Smart SOA Platforms in Cloud Computing

    2 in stock

    Book SynopsisThis book is intended to introduce the principles of the Event-Driven and Service-Oriented Architecture (SOA 2.0) and its role in the new interconnected world based on the cloud computing architecture paradigm. In this new context, the concept of “service” is widely applied to the hardware and software resources available in the new generation of the Internet. The authors focus on how current and future SOA technologies provide the basis for the smart management of the service model provided by the Platform as a Service (PaaS) layer.Table of Contents1. ESBay Case Study. 2. Service-Oriented and Cloud Computing Architectures. 3. SPaaS 1.0 Cookbook. 4. SSOAPaaS 1.0 Cookbook. 5. SSOAPaaS 2.0 Cookbook. 6. SSOAPaaS 3.0 Cookbook.

    2 in stock

    £125.06

  • Visual Inspection Technology in the Hard Disk

    ISTE Ltd and John Wiley & Sons Inc Visual Inspection Technology in the Hard Disk

    10 in stock

    Book SynopsisA presentation of the use of computer vision systems to control manufacturing processes and product quality in the hard disk drive industry. Visual Inspection Technology in the Hard Disk Drive Industry is an application-oriented book borne out of collaborative research with the world’s leading hard disk drive companies. It covers the latest developments and important topics in computer vision technology in hard disk drive manufacturing, as well as offering a glimpse of future technologies.Table of ContentsPREFACE xi CHAPTER 1. FEATURE FUSION METHOD FOR RAPID CORROSION DETECTION ON POLE TIPS 1Suchart YAMMEN and Paisarn MUNEESAWANG 1.1. Introduction 2 1.2. Algorithm for corrosion detection 6 1.2.1. Extraction of top-shield region 6 1.2.2. Area-based feature 9 1.2.3. Contour-based feature 13 1.3. Experimental result 19 1.3.1. Distribution of corrosion 20 1.3.2. Performance metric 20 1.3.3. Robustness 24 1.4. Conclusion 27 1.5. Bibliography 28 CHAPTER 2. NONLINEAR FILTERING METHOD FOR CORROSION DETECTION ON POLE TIPS 33Paisarn MUNEESAWANG and Suchart YAMMEN 2.1. Introduction 33 2.2. Perpendicular magnetic recording 35 2.3. Perpendicular magnetic recorder and corrosion 37 2.3.1. Lubricant layer 38 2.3.2. Thermal effect results in corrosion 41 2.3.3. Recording head/slider manufacturing and corrosion 42 2.4. Length estimator for pole tip 44 2.5. Nonlinear filtering as a corrosion detector 48 2.5.1. Median filter techniques 48 2.5.2. Median „¸-Filter 50 2.5.3. Corrosion detection procedure 51 2.6. Application 54 2.7. Conclusion 62 2.8. Bibliography 63 CHAPTER 3. MICRO DEFECT DETECTION ON AIR-BEARING SURFACE 71Pichate KUNAKORNVONG and Pitikhate SOORAKSA 3.1. Introduction 71 3.2. Air-bearing surface 74 3.3. Imaging system 75 3.4. Contamination detection 79 3.4.1. Texture unit texture spectrum 80 3.4.2. Graylevel co-occurrence matrix 82 3.4.3. Principle component analysis 85 3.4.4. Identification defect 88 3.5. Conclusion 92 3.6. Acknowledgment 93 3.7. Bibliography 93 CHAPTER 4. AUTOMATED OPTICAL INSPECTION FOR SOLDER JET BALL JOINT DEFECTS IN THE HEADGIMBAL ASSEMBLY PROCESS 99Jirarat IEAMSAARD and Thanapoom FUANGPIAN 4.1. Introduction 99 4.2. Head gimbal assembly 101 4.3. Vertical edge method for inspection of pad burning defect 102 4.3.1. Inspection procedure 103 4.3.2. Experimental result 107 4.4. Detection of solder ball bridging on HGA 108 4.4.1. Solder ball bridging defect 108 4.4.2. Chain code descriptor-based method 109 4.4.3. Morphological template-based method 112 4.4.4. Experimental result 114 4.5. Detection of missing solders on HGA 121 4.5.1. Image acquisition and enhancement 121 4.5.2. Clustering of image pixels 122 4.5.3. Decision making 123 4.5.4. Inspection result 124 4.6. Conclusion 126 4.7. Bibliography 127 CHAPTER 5. ANALYSIS METHODS FOR FAULT DEFORMATION OF SOLDER BUMP ON THE ACTUATOR ARM 131Somporn RUANGSINCHAIWANICH 5.1. Introduction 132 5.2. Surface tension analysis 133 5.2.1. Model analysis 135 5.2.2. Simulation 138 5.3. Analysis of stress performance at different configurations of solder bump positions 140 5.3.1. Analysis model 144 5.3.2. Design and analysis using FEM 145 5.4. Experimental result 149 5.5. Conclusion 151 5.6. Bibliography 152 CHAPTER 6. ARTIFICIAL INTELLIGENCE TECHNIQUES FOR QUALITY CONTROL OF HARD DISK DRIVE COMPONENTS 155Wimalin LAOSIRITAWORN 6.1. Introduction 155 6.2. Artificial intelligence tasks in quality control 157 6.2.1. Classification and prediction 157 6.2.2. Cluster analysis 159 6.2.3. Time series analysis 160 6.3. AI applications in HDD component quality control 161 6.3.1. Multipanel lamination process modeling using ANN 161 6.3.2. Control chart pattern recognition with AI in actuator production 168 6.3.3. Machine clustering using AI technique 174 6.4. Conclusion 179 6.5. Bibliography 180 CHAPTER 7. BOREHOLE DIAMETER INSPECTION FOR HARD DISK DRIVE PIVOT ARMS USING HOUGH TRANSFORM IN PANORAMA IMAGES 183Sansanee AUEPHANWIRIYAKUL, Patison PALEE, Orathai SUTTIJAK and Nipon THEERA-UMPON 7.1. Introduction 183 7.2. Panorama image construction 185 7.3. Dimension estimation 189 7.4. Experiment result 190 7.5. Conclusion 195 7.6. Acknowledgment 195 7.7. Bibliography 195 CHAPTER 8. ELECTROSTATIC DISCHARGE INSPECTION TECHNOLOGIES 199Nattha JINDAPETCH, Kittikhun THONGPULL, Sayan PLONG-NGOOLUAM and Pornchai RAKPONGSIRI 8.1. Introduction 199 8.2. ESD sensitivity test technologies 200 8.2.1. Human body model testing 201 8.2.2. Charged device model testing 202 8.2.3. Machine model testing 203 8.3. Monitoring of ESD prevention equipment 204 8.3.1. Grounding and equipotential bonding systems 205 8.3.2. Ionization 206 8.3.3. Packaging 209 8.4. ESD event localization technologies 211 8.4.1. EMI locators 212 8.4.2. High-speed oscilloscope-based ESD event localization systems 214 8.4.3. RFID localization systems 215 8.4.4. WSN-based localization systems 218 8.4.5. Hybrid localization systems 220 8.5. Conclusion 221 8.6. Bibliography 221 CHAPTER 9. INSPECTION OF STYROFOAM BEADS ON ADAPTER OF HARD DISK DRIVES 225Suchart YAMMEN 9.1. Introduction 225 9.2. Morphological template-based method 227 9.2.1. Image subtraction 230 9.2.2. Otsu method 231 9.2.3. Morphological operation 232 9.2.4. Logical operation 233 9.3. Decision model 233 9.4. Application 234 9.5. Conclusion 234 9.6. Bibliography 235 CHAPTER 10. INSPECTION OF DEFECT ON MAGNETIC DISK SURFACE AND QUALITY OF THE GLUE DISPENSER ROUTE 237Anan KRUESUBTHAWORN 10.1. Introduction 238 10.2. Computer vision technologies for scratch detection on media surfaces 239 10.3. Inspection of glue dispenser route 255 10.4. Conclusion 260 10.5. Bibliography 260 CHAPTER 11. INSPECTION OF GRANULAR MICROSTRUCTURE OF FEPT FILM IN HEAT-ASSISTED MAGNETIC RECORDING MEDIA 265Paisarn MUNEESAWANG 11.1. Introduction 265 11.2. Heat-assisted media recording technology 268 11.2.1. HAMR 268 11.2.2. L10-ordered FePt as HAMR media candidate 268 11.2.3. Magnetic nanoparticle 270 11.3. Inspection procedure 272 11.3.1. Image segmentation 272 11.3.2. Separation of overlapping particles 273 11.4. Measurement of the size distribution 275 11.5. Measurement of dispersion 278 11.5.1. Lennard–Jones potential index 278 11.5.2. Experimental result 281 11.6. Conclusion 285 11.7. Bibliography 286 LIST OF AUTHORS 291 INDEX 295

    10 in stock

    £125.06

  • Time-Predictable Architectures

    ISTE Ltd and John Wiley & Sons Inc Time-Predictable Architectures

    10 in stock

    Book SynopsisBuilding computers that can be used to design embedded real-time systems is the subject of this title. Real-time embedded software requires increasingly higher performances. The authors therefore consider processors that implement advanced mechanisms such as pipelining, out-of-order execution, branch prediction, cache memories, multi-threading, multicorearchitectures, etc. The authors of this book investigate the timepredictability of such schemes.Table of ContentsPREFACE ix CHAPTER 1. REAL-TIME SYSTEMS AND TIME PREDICTABILITY 1 1.1. Real-time systems 1 1.1.1. Introduction 1 1.1.2. Soft, firm and hard real-time systems 4 1.1.3. Safety standards 6 1.1.4. Examples 7 1.2. Time predictability 15 1.3. Book outline 16 CHAPTER 2. TIMING ANALYSIS OF REAL-TIME SYSTEMS 19 2.1. Real-time task scheduling 19 2.1.1. Task model 19 2.1.2. Objectives of task scheduling algorithms 20 2.1.3. Mono-processor scheduling for periodic tasks 21 2.1.4. Scheduling sporadic and aperiodic tasks 23 2.1.5. Multiprocessor scheduling for periodic tasks 23 2.2. Task-level analysis 24 2.2.1. Flow analysis: identifying possible paths 25 2.2.2. Low-level analysis: determining partial execution times 27 2.2.3. WCET computation 29 2.2.4. WCET analysis tools 32 2.2.5. Alternative approaches to WCET analysis 32 2.2.6. Time composability 35 CHAPTER 3. CURRENT PROCESSOR ARCHITECTURES 37 3.1. Pipelining 37 3.1.1. Pipeline effects 38 3.1.2. Modeling for timing analysis 41 3.1.3. Recommendations for predictability 49 3.2. Superscalar architectures 49 3.2.1. In-order execution 50 3.2.2. Out-of-order execution 52 3.2.3. Modeling for timing analysis 55 3.2.4. Recommendations for predictability 56 3.3. Multithreading 57 3.3.1. Time-predictability issues raised by multithreading 58 3.3.2. Time-predictable example architectures 60 3.4. Branch prediction 62 3.4.1. State-of-the-art branch prediction 62 3.4.2. Branch prediction in real-time systems 64 3.4.3. Approaches to branch prediction modeling 65 CHAPTER 4. MEMORY HIERARCHY 69 4.1. Caches 71 4.1.1. Organization of cache memories 71 4.1.2. Static analysis of the behavior of caches 74 4.1.3. Recommendations for timing predictability 81 4.2. Scratchpad memories 87 4.2.1. Scratchpad RAM 87 4.2.2. Data scratchpad 87 4.2.3. Instruction scratchpad 88 4.3. External memories 93 4.3.1. Static RAM 93 4.3.2. Dynamic RAM 97 4.3.3. Flash memory 103 CHAPTER 5. MULTICORES 105 5.1. Impact of resource sharing on time predictability 105 5.2. Timing analysis for multicores 106 5.2.1. Analysis of temporal/bandwidth sharing 107 5.2.2. Analysis of spatial sharing 110 5.3. Local caches 111 5.3.1. Coherence techniques 112 5.3.2. Discussion on timing analyzability 115 5.4. Conclusion 121 5.5. Time-predictable architectures 121 5.5.1. Uncached accesses to shared data 121 5.5.2. On-demand coherent cache 123 CHAPTER 6. EXAMPLE ARCHITECTURES 127 6.1. The multithreaded processor Komodo 127 6.1.1. The Komodo architecture 128 6.1.2. Integrated thread scheduling 130 6.1.3. Guaranteed percentage scheduling 131 6.1.4. The jamuth IP core 132 6.1.5. Conclusion 134 6.2. The JOP architecture 134 6.2.1. Conclusion 136 6.3. The PRET architecture 136 6.3.1. PRET pipeline architecture 136 6.3.2. Instruction set extension 137 6.3.3. DDR2 memory controller 137 6.3.4. Conclusion 138 6.4. The multi-issue CarCore processor 138 6.4.1. The CarCore architecture 139 6.4.2. Layered thread scheduling 140 6.4.3. CarCore thread scheduling algorithms 142 6.4.4. Conclusion 146 6.5. The MERASA multicore processor 146 6.5.1. The MERASA architecture 147 6.5.2. The MERASA processor core 148 6.5.3. Interconnection bus 149 6.5.4. Memory hierarchy 149 6.5.5. Conclusion 150 6.6. The T-CREST multicore processor 151 6.6.1. The Patmos processor core 151 6.6.2. The T-CREST interconnect 152 6.6.3. Conclusion 153 6.7. The parMERASA manycore processor 154 6.7.1. System overview 154 6.7.2. Memory hierarchy 155 6.7.3. Communication infrastructure 157 6.7.4. Peripheral devices and interrupt system 159 6.7.5. Conclusion 161 BIBLIOGRAPHY 163 INDEX 179

    10 in stock

    £132.00

  • Resource Optimization and Security for Cloud

    ISTE Ltd and John Wiley & Sons Inc Resource Optimization and Security for Cloud

    10 in stock

    Book SynopsisThis book includes a study of trustworthiness, percentile response time, service availability, and authentication in the networks between users and cloud service providers, and at service stations or sites that may be owned by different service providers. The first part of the book contains an analysis of percentile response time, which is one of the most important SLA (service level agreements) metrics. Effective and accurate numerical solutions for the calculation of the percentile response time in single-class and multi-class queueing networks are obtained. Then, the numerical solution is incorporated in a resource allocation problem. Specifically, the authors present an approach for the resource optimization that minimizes the total cost of computer resources required while preserving a given percentile of the response time. In the second part, the approach is extended to consider trustworthiness, service availability, and the percentile of response time in Web services. These QoS metrics are clearly defined and their quantitative analysis provided. The authors then take into account these QoS metrics in a trust-based resource allocation problem in which a set of cloud computing resources is used by a service provider to host a typical Web services application for single-class customer services and multipleclass customer services respectively. Finally, in the third part of the book a thorough performance evaluation of two notable public key cryptography-based authentication techniques; Public-Key Cross Realm Authentication in Kerberos (PKCROSS) and Public Key Utilizing Tickets for Application Servers (PKTAPP, a.k.a. KX.509/KCA); is given, in terms of computational and communication times. The authors then demonstrate their performance difference using queuing networks. PKTAPP has been proposed to address the scalability issue of PKCROSS. However, their in-depth analysis of these two techniques shows that PKTAPP does not perform better than PKCROSS in a large-scale system. Thus, they propose a new public key cryptography-based group authentication technique. The performance analysis demonstrates that the new technique can scale better than PKCORSS and PKTAPP.Table of ContentsPreface ix Chapter 1. Introduction 1 Chapter 2. Current Approaches for Resource Optimization and Security 13 Chapter 3. Single Class Customers 27 Chapter 4. Multiple-Class Customers 69 Chapter 5. A Trustworthy Service Model 95 Chapter 6. Performance Analysis of Public-Key Cryptography-Based Group Authentication 141 Chapter 7. Summary and Future Work 173 Bibliography 181 Index 193

    10 in stock

    £132.00

  • Control of Switching Systems by Invariance

    ISTE Ltd and John Wiley & Sons Inc Control of Switching Systems by Invariance

    10 in stock

    Book SynopsisThis book presents correct-by-design control techniques for switching systems, using different methods of stability analysis. Switching systems are increasingly used in the electronics and mechanical industries; in power electronics and the automotive industry, for example. This is due to their flexibility and simplicity in accurately controlling industrial mechanisms. By adopting appropriate control rules, we can steer a switching system to a region centered at a desired equilibrium point, while avoiding “unsafe” regions of parameter saturation. The authors explain various correct-by-design methods for control synthesis, using different methods of stability and invariance analysis. They also provide several applications of these methods to industrial examples of power electronics. Contents 1. Control Theory: Basic Concepts. 2. Sampled Switched Systems. 3. Safety Controllers. 4. Stability Controllers. 5. Application to Multilevel Converters. 6. Other Issues: Reachability, Sensitivity, Robustness and Nonlinearity. About the Authors Laurent Fribourg is head of the LSV (Laboratoire Spécification et Vérification) and Scientific Coordinator of the Institut Farman, Institut Fédératif de Recherche CNRS, which brings together the expertise of five laboratories from ENS Cachan, in France, in the fields of modeling, simulation and validation of complex systems. He has published over 70 articles in international journals and reviewed proceedings of international conferences, in the domain of the theory of formal methods and their industrial applications. Romain Soulat is in the third year of his doctorate at the LSV at ENS Cachan in France, under the supervision of Laurent Fribourg. He is working on the modeling and verification of hybrid systems. In particular, his interests concern robustness in scheduling problems – especially as part of a collaborative project with EADS Astrium on the verification of a component in the launcher for the future Ariane 6 rocket. He has published 5 articles in reviewed proceedings of international conferences.Table of ContentsPREFACE ix ACKNOWLEDGMENTS xi INTRODUCTION xiii CHAPTER 1. CONTROL THEORY: BASIC CONCEPTS 1 1.1. Model of control systems 1 1.2. Digital control systems 3 1.2.1. Digitization 3 1.2.2. Quantization 6 1.2.3. Switching 6 1.3. Control of switched systems using invariant sets 8 1.3.1. Controlled invariants 9 1.3.2. Safety control problem 9 1.3.3. Stability control problem 10 1.3.4. Other controllers 11 1.4. Notes 11 CHAPTER 2. SAMPLED SWITCHED SYSTEMS 13 2.1. Model 13 2.2. Illustrative examples 18 2.3. Zonotopes 21 2.4. Notes 23 CHAPTER 3. SAFETY CONTROLLERS 25 3.1. Backward fixed point computation (direct approach) 26 3.2. Approximate bisimulation (indirect approach) 29 3.3. Application to a three-cell Boost DC–DC converter 35 3.3.1. Model 35 3.3.2. Direct method 37 3.3.3. Indirect method 37 3.4. Notes 40 CHAPTER 4. STABILITY CONTROLLERS 41 4.1. Motivation 42 4.2. Preliminaries 42 4.2.1. Control induced by the decomposition 45 4.3. Decomposition function 46 4.3.1. Basic procedure 46 4.3.2. Enhancement for safety 48 4.4. Limit cycles 52 4.4.1. Discussion of the assumptions H1 and H2 53 4.4.2. Illustrative examples 54 4.5. Implementation 58 4.6. Notes 59 CHAPTER 5. APPLICATION TO MULTILEVEL CONVERTERS 61 5.1. Multilevel converters 62 5.2. Application of the decomposition procedure 62 5.2.1. Five-level converter 63 5.2.2. Seven-level converter 67 5.3. Physical experimentations 70 5.4. Notes 73 CHAPTER 6. OTHER ISSUES: REACHABILITY, SENSITIVITY, ROBUSTNESS AND NONLINEARITY 75 6.1. Reachability control 75 6.2. Sensitivity 78 6.3. Robust safety control 79 6.4. Nonlinearity 82 6.5. Notes 87 CONCLUSIONS AND PERSPECTIVES 89 APPENDIX 1. SUFFICIENT CONDITION OF DECOMPOSITION 93 APPENDIX 2. APPLICATIONS OF THE ENHANCED DECOMPOSITION PROCEDURE 97 APPENDIX 3. PROOF OF THEOREM 4.3 103 APPENDIX 4. EXAMPLE WITH |R∗Δ| = ∞ 107 APPENDIX 5. CODE 109 BIBLIOGRAPHY 121 INDEX 127

    10 in stock

    £132.00

  • Advanced Smartgrids for Distribution System

    ISTE Ltd and John Wiley & Sons Inc Advanced Smartgrids for Distribution System

    15 in stock

    Book SynopsisThe dynamic of the Energy Transition is engaged in many region of the World. This is a real challenge for electric systems and a paradigm shift for existing distribution networks. With the help of "advanced" smart technologies, the Distribution System Operators will have a central role to integrate massively renewable generation, electric vehicle and demand response programs. Many projects are on-going to develop and assess advanced smart grids solutions, with already some lessons learnt. In the end, the Smart Grid is a mean for Distribution System Operators to ensure the quality and the security of power supply. Several books have been written to provide a definition of Smart grids, explore the different technical evolution needed and explain / analyse what would be the benefits. All those books are conducted on theoretical basis by academics and strategy consultants. This new book will propose a complementary and singular approach based on a practical experience from DSO's.Table of ContentsFOREWORD xiii PREFACE xvii ACKNOWLEDGMENTS xix LIST OF FIGURES xxi LIST OF ACRONYMS xxv WELCOME TO “ADVANCED SMART GRIDS” xxxi CHAPTER 1. DISTRIBUTION SYSTEM OPERATORS IN A CHANGING ENVIRONMENT 1 1.1. Energy policies promoting the energy transition 1 1.2. A new era of technological revolution 9 CHAPTER 2. THE EXISTING DISTRIBUTION NETWORKS: DESIGN AND OPERATION 13 2.1. Above all, smart grids remain grids! 14 2.2. The DSO, a player at the heart of the power system 15 2.3. A necessary mastery of technical and regulatory constraints 18 2.4. Generalities of network design 22 2.4.1. Energy transformers 24 2.4.2. Wiring and architectures 25 2.4.3. Safeguard devices 28 2.4.4. Sensors, digital equipment and software 29 2.4.5. The importance of telecommunication for operating the distribution networks 31 2.5. The factors that differentiate network architecture 33 2.5.1. Voltage levels 34 2.5.2. The neutral point treatment in MV networks 36 2.5.3. The balance between automation, redundancy and reliability 39 2.5.4. The density and layout of the serviced area 40 2.5.5. The variation in building design 41 2.6. Network safety and planning 41 2.6.1. Development of distribution networks 43 2.6.2. Operating distribution networks 43 2.6.3. Studies in operational safety 44 2.6.4. Monte Carlo method 44 2.6.5. Some results from applying the Monte Carlo method 45 2.7. Progressive modernization of a distribution network – the French example 46 2.7.1. Standardization (1950–1965) and expansion of the network (1965–1985) 47 2.7.2. Achieving a minimal quality level for every customer 48 2.7.3. Targeted improvement of quality according to needs 50 2.7.4. Progressive desensitization of networks toward climate hazards 51 CHAPTER 3. MAIN DRIVERS AND FUNCTIONS OF ADVANCED SMART GRIDS 53 3.1. Drivers of the evolution of distribution grids 53 3.1.1. Massive integration of renewable energy sources 53 3.1.2. Contribution to the development of electric vehicle and the charging infrastructures 55 3.1.3. Implementation of new market mechanisms (peak shaving, capacity market, etc.) 57 3.1.4. Participation in the development of new uses contributing to energy efficiency 60 3.1.5. Urban renewal and the rise of the smart city in favor of resource optimization 61 3.1.6. Integration of energy storage solutions 62 3.2. Main functions of the advanced smart grid 68 3.2.1. Toward dynamic network management by the distribution system operators 68 3.2.2. Structuring the target model based on key functions 69 3.2.3. Enhancing efficiency in day-to-day grid operation 72 3.2.4. Ensuring network security, system control and quality of supply 75 3.2.5. Improving market functioning and customer service 77 3.2.6. European network codes 79 CHAPTER 4. METERING: A CORE ACTIVITY OF THE DSOS 81 4.1. Smart meters are key tools for the deployment of smart grids 81 4.2. A continuous improvement and innovation approach 82 4.2.1. From manual to remote reading for mass market customers 82 4.2.2. 20 years of smart metering and remote reading for industrial clients 83 4.3. AMI metering systems 84 4.4. Focus on Linky smart metering system 90 4.4.1. Scope of the project 90 4.4.2. Architecture and technical choices 92 4.4.3. A point on system operation 94 4.4.4. Scalability and security of the Linky system 99 4.4.5. Techno-economic analysis 100 4.5. Focus on G3-PLC technology 101 4.5.1. Communication principles of the power line carrier 101 4.5.2. Different types of physical level PLC modulation technique 101 4.5.3. The characteristics of G3-PLC technology 105 4.5.4. G3-PLC is a mature standard 109 4.6. The contribution of smart meters for the development of advanced smart grids 111 4.6.1. France: Linky at the service of the distribution network 111 CHAPTER 5. FOCUS ON FLEXIBILITY OPTIONS 119 5.1. Flexibility, a complementary tool for DSOs 119 5.1.1. Introduction 119 5.1.2. DSO needs in terms of flexibility 120 5.1.3. The value of flexibility 123 5.1.4. Alliander Smart Grids Cost Benefits Analysis (source: Alliander) 124 5.1.5. Two major categories of levers can be activated 126 5.1.6. Analysis of the Merit Order 127 5.1.7. Information exchange mechanism between DSO and TSO 128 5.1.8. Lessons learned from several international business cases 128 5.2. Participation of end users to flexibility services 130 5.2.1. Introduction 130 5.2.2. Focus on different tools and services downstream of the smart meter 132 5.2.3. The necessary engagement of end-customers 137 5.2.4. International benchmark and lessons learnt 138 5.3. Data management as key success factor 139 5.3.1. DSOs have a long experience in data management 139 5.3.2. DSO, the market facilitator 142 CHAPTER 6. PILOT PROJECTS AND USE CASES 145 6.1. A global dynamic with regional specificities 145 6.2. North America 147 6.2.1. Drivers of smart grids development 147 6.2.2. Primary experimental approaches 148 6.3. Asia 150 6.3.1. Drivers of smart grids development 150 6.3.2. A proactive experimental approach 151 6.4. Europe 154 6.4.1. Drivers of smart grids development 154 6.4.2. Primary experimental approaches 157 6.5. The European project Grid4EU, fosters and accelerates experience sharing 158 6.5.1. A large-scale demonstration project bringing together six European DSOs 158 6.5.2. DEMO 1 (Germany – RWE) MV network operation automation and determining the ratio of decentralized intelligence in secondary substations 160 6.5.3. DEMO 2 (Sweden – Vattenfal): a tool for LV operation and in particular identifying LV failures 161 6.5.4. DEMO 3 (Spain – Iberdrola) MV and LV failure detection, reconfiguration of the MV network during an incident 162 6.5.5. DEMO 4 (Italy – ENEL) economic model and technical operation of storage, MV voltage regulation, anti-islanding of decentralized generation 164 6.5.6. DEMO 5 (Czech Republic – CEZ) operating islanding with co-generation, MV and LV failure detection and reconfiguration of the MV network following an incident 165 6.5.7. DEMO6 (France – ERDF): project NiceGrid 167 6.6. An approach based on use cases 168 6.6.1. Definition 168 6.6.2. Advantages 169 6.6.3. The development of use cases 169 6.7. Focus on some advanced projects of the ISGAN case book about Demand Side Management 171 6.7.1. Denmark – EcoGrid EU 173 6.7.2. Japan – Kitakyushu Smart Community Creation Project 174 6.7.3. The Netherlands – PowerMatchingCity 175 6.7.4. Canada – a virtual power plant to balance wind energy 177 CHAPTER 7. SMART GRIDS ARE THE FUTURE FOR DSO 181 7.1. Advanced smart grids for DSOs worldwide 181 7.1.1. The evolution towards smart grids is ineluctable 181 7.1.2. The development of smart grids is a necessity for the DSOs 183 7.1.3. But also an opportunity 185 7.2. A necessary evolution of skills and jobs of the DSOs 186 7.2.1. Competences are necessary to conduct experimentations successfully and to get the most feedback from them 186 7.2.2. Once the experiments are finished, the resources and competences need to be reinforced in preparation for large-scale industrialization and deployment 187 7.3. The French electrical sector mobilizes: the “Smart Grids” plan 189 CHAPTER 8. KEY FINDINGS 193 8.1. Smart grids or the real network revolution 193 8.1.1. Smart grids 194 8.2. More RES means more network 195 8.3. The DSO is a facilitator 196 8.4. Consumer or “consum’player”? 197 8.5. Smart meter at the service of smart grids 199 8.6. A smart bubble? 199 8.7. Invest to save? 201 8.8. Smart grids: a genuine industrial opportunity 201 BIBLIOGRAPHY 203 INDEX 211

    15 in stock

    £125.06

  • Digital Signal and Image Processing using MATLAB,

    ISTE Ltd and John Wiley & Sons Inc Digital Signal and Image Processing using MATLAB,

    15 in stock

    Book SynopsisVolume 3 of the second edition of the fully revised and updated Digital Signal and Image Processing using MATLAB, after first two volumes on the "Fundamentals" and "Advances and Applications: The Deterministic Case", focuses on the stochastic case. It will be of particular benefit to readers who already possess a good knowledge of MATLAB, a command of the fundamental elements of digital signal processing and who are familiar with both the fundamentals of continuous-spectrum spectral analysis and who have a certain mathematical knowledge concerning Hilbert spaces. This volume is focused on applications, but it also provides a good presentation of the principles. A number of elements closer in nature to statistics than to signal processing itself are widely discussed. This choice comes from a current tendency of signal processing to use techniques from this field. More than 200 programs and functions are provided in the MATLAB language, with useful comments and guidance, to enable numerical experiments to be carried out, thus allowing readers to develop a deeper understanding of both the theoretical and practical aspects of this subject.Table of ContentsForeword ix Notations and Abbreviations xiii 1 Mathematical Concepts 1 1.1 Basic concepts on probability 1 1.2 Conditional expectation 9 1.3 Projection theorem 10 1.4 Gaussianity 13 1.5 Random variable transformation 18 1.6 Fundamental statistical theorems 21 1.7 Other important probability distributions 23 2 Statistical Inferences 25 2.1 Statistical model 25 2.2 Hypothesis tests 27 2.3 Statistical estimation 41 3 Monte-Carlo Simulation 85 3.1 Fundamental theorems 85 3.2 Stating the problem 86 3.3 Generating random variables 88 3.4 Variance reduction 99 4 Second Order Stationary Process 107 4.1 Statistics for empirical correlation 107 4.2 Linear prediction of WSS processes 111 4.3 Non-parametric spectral estimation of WSS processes 124 5 Inferences on HMM 139 5.1 Hidden Markov Models (HMM) 130 5.2 Inferences on HMM 142 5.3 Gaussian linear case: the Kalman filter 143 5.4 Discrete finite Markov case 152 6 Selected Topics 163 6.1 High resolution methods 163 6.2 Digital Communications 186 6.3 Linear equalization and the Viterbi algorithm 211 6.4 Compression 220 7 Hints and Solutions 235 H1 Mathematical concepts 235 H2 Statistical inferences 237 H3 Monte-Carlo simulation 269 H4 Second order stationary process 283 H5 Inferences on HMM 283 H6 Selected Topics 300 8 Appendices 317 A1 Miscellaneous functions 317 A2 Statistical functions 318 Bibliography 329 Index 333

    15 in stock

    £125.06

  • Enterprise Interoperability: Interoperability for

    ISTE Ltd and John Wiley & Sons Inc Enterprise Interoperability: Interoperability for

    4 in stock

    Book SynopsisEnterprises and organizations of any kind embedded in today's economic environment are deeply dependent on their ability to take part in collaborations. Consequently, it is strongly required for them to get actively involved for their own benefit in emerging, potentially opportunistic collaborative enterprise networks. The concept of “interoperability” has been defined by INTEROP-VLab as “The ability of an enterprise system or application to interact with others at a low cost in a flexible approach”. Consequently, interoperability of organizations appears as a major issue to succeed in building on the fly emerging enterprise networks. The International Conference on Interoperability for Enterprise Systems and Applications (I-ESA 2014) was held under the motto “interoperability for agility, resilience and plasticity of collaborations” on March 26-28, 2014 and organized by the Ecole des Mines d’Albi-Carmaux, France on behalf of the European Laboratory for Enterprise Interoperability (INTEROP-VLab). On March 24-25, co-located with the conference eight workshops and one doctoral symposium were held in four tracks complementing the program of the I-ESA’14 conference. The workshops and the doctoral symposium address areas of greatest current activity focusing on active discussions among the leading researchers in the area of Enterprise Interoperability. This part of the conference helps the community to operate effectively, building co-operative and supportive international links as well as providing new knowledge of on-going research to practitioners. The workshops and doctoral symposium aimed at exploiting new issues, challenges and solutions for Enterprise Interoperability (EI) and associated domains of innovation such as Smart Industry, Internet-Of-Things, Factories of the Future, EI Applications and Standardisation. These proceedings include the short papers from the I-ESA’14 workshops and the doctoral symposium. The book is split up into 9 sections, one for each workshop and one for the doctoral symposium. All sections were organized following four tracks: (1) EI and Future Internet / Factory of the Future; (2) EI Application Domains and IT; (3) EI Standards; (4) EI Doctoral Symposium. For each section, a workshop report is provided summarizing the content and the issues discussed during the sessions. The goal of the first track was to offer a discussion opportunity on interoperability issues regarding the use of Internet of Things on manufacturing environment (Workshops 1 and 3) on one hand, and regarding the potential of innovation derived from the use of digital methods, architectures and services such as Smart Networks (Workshops 2 and 4) on the other hand. The second track focused on particular application domains that are looking for innovative solutions to support their strong collaborative needs. Thus, the track developed one workshop on the use of EI solution for Future City-Logistics (Workshop 5) and one on the use of EI solutions for Crisis / Disaster Management (Workshop 6). The third track studied the recent developments in EI standardization. Two workshops were dedicated to this issue. The first one has proposed to focus on the management of standardization (Workshop 8) and the second one has chosen to work on the new knowledge on standardization developments in the manufacturing service domain (Workshop 9). The last track, the doctoral symposium presented research results from selected dissertations. The session discussed EI knowledge issues, notably in terms of gathering through social networks or Internet of Things and of exploitation through innovative decision support systems.Table of ContentsPreface xiM. LAURAS, M. ZELM, B. ARCHIMÈDE, F. BÉNABEN, G. DOUMEINGTS Workshop 1. IoT Interoperability for Manufacturing: Challenges and Experiences 1 ReportD. ROTONDI 2 Smart Industry Services in Times of Internet of Things and Cloud Computing 5M. SERRANO, P. DIMITROPOULOS Designing and Executing Interoperable IoT Manufacturing Systems 15U. KANNENGIESSER, G. WEICHHART Internet of Things Research on Semantic Interoperability to Address Manufacturing Challenges 21P. COUSIN, M. SERRANO, J. SOLDATOS Manufacturing Integration Challenges: Top-Down Interoperability and Bottom-Up Comprehensiveness Towards a Global Information Backbone for Smart Factory 31V.K. NGUYEN An Improved Decision Support System in Factory Shop-Floor through an IoT Approach 37P. PETRALI Leveraging IoT Interoperability for Enhanced Business Process in Smart, Digital and Virtual Factories 43J. SOLA, A. GONZALEZ, O. LAZARO Workshop 2. Future Internet Methods, Architectures and Services for Digital Business Innovation in Manufacturing, Health and Logistics Enterprises 49 Report 50S. GUSMEROLI, G. DOUMEINGTS Future Internet Technologies and Platforms to Support Smart, Digital and Virtual and Business Processes for Manufacturing 53J. SOLA, A. GONZALEZ, O. LAZARO Delivering Care in a Future Internet59 C. THUEMMLER, T. JELL FITMAN Verification and Validation Method: Business Performance Indicators and Technical Indicators 64G. DOUMEINGTS, B. CARSALADE, M. RAVELOMANANTSOA, F. LAMPATHAKI, P. KOKKINAKOS, D. PANOPOULOS Validation and Quality in FI-PPP e-Health Use Case, FI-STAR Project 71P. COUSIN, S. FRICKER, D. FEHLMY, F. LE GALL, M. FIEDLER Workshop 3. ICT Services and Interoperability for Manufacturing 81 Report82K. POPPLEWELL Intelligent Systems Configuration Services for Flexible Dynamic Global Production Networks 85R.I.M. YOUNG, K. POPPLEWELL, F.-W. JAEKEL, B. OTTO, G. BHULLAR Binding Together Heterogeneous Future Internet Services in Manufacturing Workplaces 91M. SESANA, S. GUSMEROLI, R. SANGUINI Holistic, Scalable and Semantic Approach at Interoperable Virtual Factories 95G. PAVLOV, V. MANAFOV, I. PAVLOVA, A. MANAFOV Predictive Industrial Maintenance: A Collaborative Approach 101F. FERREIRA, A. SHAMSUZZOHA, A. AZEVEDO, P. HELO On Optimizing Collaborative Manufacturing Processes in Virtual Factories 108D. SCHULLER, R. HANS, S. ZÖLLER, R. STEINMETZ Modelling Interoperability-Related, Economic and Efficiency Benefits in Dynamic Manufacturing Networks through Cognitive Mapping 115O.I. MARKAKI, S. KOUSSOURIS, P. KOKKINAKOS, D. PANOPOULOS, D. ASKOUNIS Cloud-Based Interoperability for Dynamic Manufacturing Networks 122D. STOCK, A. BILDSTEIN A smart Mediator to Integrate Dynamic Networked Enterprises 128C. DIOP, A. KAMOUN, E. MEZGHANI, M. ZOUARI, E. EXPOSITO Workshop 4. SmartNets – Collaborative Development and Production of Knowledge-Intensive Products and Services 135 Report 136A. LAU The Industrial Model of Smart Networks for SME Collaboration: Implementation and Success Stories 139A. LAU, M. TILEBEIN, T. FISCHER Towards a Conceptual Model of the Resource Base for Hyperlinking in Innovation Networks 146S.-V. REHM, S. GROSS Enhanced Incubators: Fostering Collaboration, Growth and Innovation 152T.J. MARLOWE, V. KIROVA, M. MOHTASHAMI Application of the SmartNets Methodology in Manufacturing Service Ecosystems 158M. HIRSCH, D. OPRESNIK, H. MATHEIS Application of a Domain-Specific Language to Support the User-Oriented Definition of Visualizations in the Context of Collaborative Product Development 164T. RESCHENHOFER, I. MONAHOV, F. MATTHES Workshop 5. Collaboration Issues for City-Logistics 171 Report – G. MACE-RAMETE, J. GONZALEZ-FELIU 172 Simulation-Based Analysis of Urban Freight Transport with Stochastic Features 175N. HERAZO-PADILLA, J.R. MONTOYA-TORRES, S. NIETO-ISAZA, L. RAMIREZ POLO, L. CASTRO, D. RAMÍREZ, C.L. QUINTERO-ARAÚJO Impacts of Urban Logistics on Traffic Flow Dynamics 181N. CHIABAUT, J.-M. SIGAUD, G. MARQUES, J. GONZALEZ-FELIU A Basic Collaborative City Logistics’ Solution: The Urban Consolidation Centre 188L. FAURE, B. MONTREUIL, G. MARQUÈS, P. BURLAT VRP Algorithms for Decision Support Systems to Evaluate Collaborative Urban Freight Transport Systems 196J. GONZALEZ-FELIU, J.-M. SALANOVA GRAU The Last Food Mile Concept as a City Logistics Solution for Perishable Products: The Case of Parma's Food Urban Distribution Center 202E. MORGANTI, J. GONZALEZ-FELIU Supporting Decision for Road Crisis Management through an Agile and Collaborative Information System 208G. MACÉ-RAMÈTE, F. BÉNABEN, M. LAURAS, J. LAMOTHE Workshop 6. Applications of Advanced Technologies in the Context of Disaster Relief and Crisis Management 213 Report – A. CHARLES214 Enhancing the Emergency Response Using an Event-Driven System 216A.-M. BARTHE-DELANOË, F. BÉNABEN, M. LAURAS, S. TRUPTIL Designing Decision Support Systems for Humanitarian Organisations: Requirements and Issues 222K. SAKSRISATHAPORN, A. CHARLES, A. BOURAS From Global to Local Disaster Resilience: The Case of Typhoon Haiyan 228T. COMES, B. VAN DE WALLE Workshop 8. Corporate Standardisation Management 235 Report – K. JAKOBS 236 Lack of Openness as a Potential Failure in Standardisation Management: Lessons Learnt from Setbacks in European Learning Technology Standardisation 238T. HOEL The Individual in Standard Setting: Selection, Training, Motivation in the Public Sector 244G. CANARSLAN A Framework for the Management of Intra-Organizational Security Process Standardization 250C. SILLABER, M. BRUNNER, R. BREU Standards Roles in Hacklin's Strategic Model: Cases in the Space Sector 256K. BENMEZIANE, A. MIONE Standardization Management and Decision-Making: The Case of a Large Swedish Automotive Manufacturer 261A. FOUKAKI Some Factors Influencing Corporate ICT Standardisation Management 267K. JAKOBS Workshop 9. Standardisation Developments for Enterprise Interoperability and the Manufacturing Service Domain 273 Report – M. ZELM, D. CHEN 274 Towards Standardisation in Manufacturing Service Engineering of Ecosystem 277M. ZELM, G. DOUMEINGTS Framework for Manufacturing Servitization: Potentials for standardization 283D. CHEN, S. GUSMEROLI How Can Existing Standards Support Service Life Cycle Management 290M. FREITAG, M. HIRSCH, J. NEUHÜTTLER An Approach to Interoperability Testing to Speed up the Adoption of Standards 295A. BRUTTI, P. DE SABBATA, N. GESSA A Common Vocabulary to Express Standardization Features: Towards the Interoperability of Industrial Data Standards 301A.-F. CUTTING-DECELLE, G.-I. MAGNAN, C. MOUTON, R.I.M. YOUNG An Info*Engine-Based Architecture to Support Interoperability with Windchill System 308M. ANIS DHUIEB, F. BELKADI, F. LAROCHE, A. BERNARD Doctoral Symposium 315 Report – B. ARCHIMÈDE, J. LAMOTHE 316 Build Enterprise Relationship Network to Support Collaborative Business 318L. WANG, S. LIU, L. WU, L. PAN, X. MENG Analysing Internet of Things to Feed Internet of Knowledge: Support Decision-Making in Crisis Context 325A. SIRKO, S. TRUPTIL, A.-M. BARTHE- DELANOË, F. BÉNABEN On the Interoperability in Marine Pollution Disaster Management 331V. NICOLESCU, M. CARAIVAN, G. SOLOMON, V. CIUPINA A Framework for Characterizing Collaborative Networks of Organizations 337A. MONTARNAL, X. FERNANDEZ, J. LAMOTHE, F. GALASSO, C. THIERRY, F. BÉNABEN, M. LAURAS Index of Authors 343

    4 in stock

    £125.96

  • Fab Labs: Innovative User

    ISTE Ltd and John Wiley & Sons Inc Fab Labs: Innovative User

    15 in stock

    Book SynopsisThe digital economy is now expanding rapidly, and is starting to overturn the past achievements of the Industrial Revolution. Initially engaging in the world of services, it is now turning to the manufacture of objects. Just as microcomputing evolved from large scale computing to more personal use, and as the Internet left behind the world of armies and universities to become universal, industrial production is gradually becoming directly controlled by individuals. This appropriation is being done either on a personal level, or, more significantly, within local or planetary communities: Fab Labs. These digital fabrication laboratories offer workshops to members of the public where all sorts of tools are available (including 3D printers, laser cutters and sanders) for the design and creation of personalized objects. The bringing together of various users (amateurs, designers, artists, “dabblers”, etc.) and possibilities for collaboration lies at the heart of these open-access productive spaces. This book covers a range of advances in this new personal fabrication and various issues that it has raised, especially in terms of the alternatives to salaried work, intellectual property, ecological openings and the hitherto unseen structuring of societies.Table of ContentsPreface vii Introduction xi Chapter 1. Fab Labs: Observations on a Topical Phenomenon 1 1.1. Origins and an attempt at a definition 1 1.1.1. The origins: a concept from MIT 1 1.1.2. Definition of a Fab Lab 4 1.2. Current state of distribution 12 1.2.1. Deployment in industrialized countries 13 1.2.2. Deployment in developing countries 18 1.3. Constitution and operation of a Fab Lab 19 1.3.1. Varied user profiles 20 1.3.2. The main equipment in a Fab Lab 23 1.3.3. From the creative idea to prototyping: a collaborative process 26 1.4. Factors of success and sustainability of a Fab Lab 30 1.4.1. Members’ motivation 32 1.4.2. The relationship to innovation 33 1.4.3. Constitution of self-learning communities 41 1.5. A moving community: the makers 49 Chapter 2. The Emergence of the New Production System of Personal Fabrication 51 2.1. A new time for digital revolution 52 2.1.1. From the 19th Century revolution of the invention 54 2.1.2. to the 21st Century inventor-entrepreneur 56 2.1.3. The revolution in personal production 58 2.2. The rise of a new economic model 64 2.2.1. Links with the previous model, the centralized industrial economy 66 2.2.2. Breaking with the old model of centralized industrial economy 72 2.3. Innovation by the user 79 2.3.1. The distinctive identity of the user 80 2.3.2. The principled substrate of the new innovation model 85 2.4. The challenged economic system 92 2.4.1. Are owners still needed? 92 2.4.2. How can polluting emissions be reduced effectively? 93 2.4.3. Employment is dead, long live work! 95 2.4.4. From the vertical public to horizontal community 97 2.5. Conclusion: everything needs to be reinvented 101 2.5.1. The issue of ownership 101 2.5.2. The issue of subordination 103 2.5.3. The issue of measurement 103 Conclusion 107 Bibliography 109 Index 121

    15 in stock

    £125.06

  • Innovation Capabilities and Economic Development

    ISTE Ltd and John Wiley & Sons Inc Innovation Capabilities and Economic Development

    15 in stock

    Book SynopsisThe innovation capacity-building can contribute to improve the integration of developing countries in the world economy. The economic development has been a much discussed subject of the period after the Second World War until the 1990s. After the implementation of a global regulation system for trade and capital flows in the 1990s, the development economics has almost disappeared in favor of different theories on globalization, on finance and on international trade. The purpose of this book is to show that the innovation capacity building in developing countries is necessary to improve their weight in the world economy and to facilitate their economic ties with northern countries. However, there are important difficulties due to the lack of proactive economic policies. Our aim is to contribute to the revival of the development economics. The issue of improving the well-being of the world population as a whole is highly topical. However, studies neglect the need to give economic, financial, technological and political resources to developing countries to promote their own development. One of the most important means is to strengthen their innovation capabilities that allow them to better integrate into the world economy.Table of ContentsPreface vii Introduction ix Chapter 1. Theories and Policies of Economic Development 1 1.1. The era of economic interventionism 3 1.1.1. Impasses of economic take-off theories 4 1.1.2. The crisis of the interventionist State 9 1.2. The era of liberalism 11 1.2.1. Structural adjustment programs 12 1.2.2. Failure of the “minimum State” 17 1.3. The era of “good governance” 21 1.3.1. Institutions, “good governance” and development 22 1.3.2. “Development” in global governance 26 1.4. The system of “global governance” under scrutiny 30 1.4.1. Global governance as a substitute for economic voluntarism 31 1.4.2. Toward an alternative model of economic growth? 38 Chapter 2. Innovative Capacities and Systems of the South in Globalization 47 2.1. Innovation for economic development 48 2.1.1. Understanding globalization through technology transfer 50 2.1.2. Innovation for development 55 2.2. Innovation systems and integration into the world economy 60 2.2.1. Innovation capacity and learning process 61 2.2.2. About national innovation systems 64 2.2.3. Measuring the performance of innovation systems in developing countries 70 2.2.4. Location strategies of multinational firms and the role of NIS 76 2.3. The difficulties of implementing innovation policies in developing countries 80 2.3.1. Asymmetries and endemic blockages 81 2.3.2. The North/South and South/South technology gap 86 2.3.3. The structural problems of innovation policies 97 Conclusion 105 Bibliography 111 Index 125

    15 in stock

    £125.06

  • Big Data, Open Data and Data Development

    ISTE Ltd and John Wiley & Sons Inc Big Data, Open Data and Data Development

    15 in stock

    Book SynopsisThe world has become digital and technological advances have multiplied circuits with access to data, their processing and their diffusion. New technologies have now reached a certain maturity. Data are available to everyone, anywhere on the planet. The number of Internet users in 2014 was 2.9 billion or 41% of the world population. The need for knowledge is becoming apparent in order to understand this multitude of data. We must educate, inform and train the masses. The development of related technologies, such as the advent of the Internet, social networks, "cloud-computing" (digital factories), has increased the available volumes of data. Currently, each individual creates, consumes, uses digital information: more than 3.4 million e-mails are sent worldwide every second, or 107,000 billion annually with 14,600 e-mails per year per person, but more than 70% are spam. Billions of pieces of content are shared on social networks such as Facebook, more than 2.46 million every minute. We spend more than 4.8 hours a day on the Internet using a computer, and 2.1 hours using a mobile. Data, this new ethereal manna from heaven, is produced in real time. It comes in a continuous stream from a multitude of sources which are generally heterogeneous. This accumulation of data of all types (audio, video, files, photos, etc.) generates new activities, the aim of which is to analyze this enormous mass of information. It is then necessary to adapt and try new approaches, new methods, new knowledge and new ways of working, resulting in new properties and new challenges since SEO logic must be created and implemented. At company level, this mass of data is difficult to manage. Its interpretation is primarily a challenge. This impacts those who are there to "manipulate" the mass and requires a specific infrastructure for creation, storage, processing, analysis and recovery. The biggest challenge lies in "the valuing of data" available in quantity, diversity and access speed.Table of ContentsAcknowledgements vii Foreword ix Key Concepts xi Introduction xix Chapter 1 The Big Data Revolution 1 1.1 Understanding the Big Data universe 2 1.2 What changes have occurred in data analysis? 8 1.3 From Big Data to Smart Data: making data warehouses intelligent 12 1.4 High-quality information extraction and the emergence of a new profession: data scientists 16 1.5 Conclusion 21 Chapter 2 Open Data: A New Challenge 23 2.1 Why Open Data? 23 2.2 A universe of open and reusable data 28 2.3 Open Data and the Big Data universe 33 2.4 Data development and reuse 38 2.5 Conclusion 41 Chapter 3 Data Development Mechanisms 43 3.1 How do we develop data? 44 3.2 Data governance: a key factor for data valorization 54 3.3 CI: protection and valuation of digital assets 60 3.4 Techniques of data analysis: data mining/text mining 65 3.5 Conclusion 72 Chapter 4 Creating Value from Data Processing 73 4.1 Transforming the mass of data into innovation opportunities 74 4.2 Creation of value and analysis of open databases 82 4.3 Value creation of business assets in web data 87 4.4 Transformation of data into information or “DataViz” 94 4.5 Conclusion 100 Conclusion 101 Bibliography 109 Index 121

    15 in stock

    £125.06

  • Enablers for Smart Cities

    ISTE Ltd and John Wiley & Sons Inc Enablers for Smart Cities

    15 in stock

    Book SynopsisSmart cities are a new vision for urban development. They integrate information and communication technology infrastructures – in the domains of artificial intelligence, distributed and cloud computing, and sensor networks – into a city, to facilitate quality of life for its citizens and sustainable growth. This book explores various concepts for the development of these new technologies (including agent-oriented programming, broadband infrastructures, wireless sensor networks, Internet-based networked applications, open data and open platforms), and how they can provide smart services and enablers in a range of public domains. The most significant research, both established and emerging, is brought together to enable academics and practitioners to investigate the possibilities of smart cities, and to generate the knowledge and solutions required to develop and maintain them.Table of ContentsPreface xiAmal EL FALLAH SEGHROUCHNI, Fuyuki ISHIKAWA and Kenji TEI Introduction xviiAmal EL FALLAH SEGHROUCHNI, Fuyuki ISHIKAWA and Kenji TEI Chapter 1. Shared Wireless Sensor Networks as Enablers for a Context Management System in Smart Cities 1Kenji TEI 1.1. Introduction 1 1.2. Background 3 1.3. XAC middleware 5 1.3.1. Architecture of XAC middleware 6 1.4. Task-description language 7 1.4.1. Existing solutions 8 1.4.2. XAC middleware solutions 10 1.5. Runtime task management 12 1.5.1. Existing solutions 12 1.5.2. XAC middleware solutions 14 1.6. Self-adaptation 16 1.6.1. Existing solutions 17 1.6.2. XAC middleware solutions 17 1.7. Discussion 18 1.8. Conclusion 19 1.9 Bibliography 19 Chapter 2. Sensorizer: An Architecture for Regenerating Cyber-physical Data Streams from the Web 23Jin NAKAZAWA 2.1. Introduction 23 2.2. Sensorizer architecture 25 2.2.1. Sensing process of EWC 25 2.2.2. Sensorizer architecture 25 2.3. Implementation 27 2.3.1. Sensorizer browser extension 27 2.3.2. Probe 28 2.3.3. Sensorizer/SoX API 29 2.4. Case of sensorized smart cities 29 2.5. Conclusion 32 2.6. Bibliography 32 Chapter 3. Smart Agent Foundations: From Planning to Spatio-temporal Guidance 33Ahmed-Chawki CHAOUCHE, Amal EL FALLAH SEGHROUCHNI, Jean-Michel ILIÉ and Djamel Eddine SAÏDOUNI 3.1. Introduction 33 3.2. Smart-campus: use case and scenario 35 3.2.1. Smart-campus architecture 36 3.2.2. Scenario 37 3.3. Description of the software architecture for a smart ambient agent 37 3.4. Higher order agent model 38 3.4.1. Application to the scenario 39 3.5. Description of the concurrent planner based on AgLOTOS language 40 3.5.1. Agent plan structure 40 3.5.2. Syntax of AgLOTOS plans 42 3.5.3. Building of the agent plan from the intentions 44 3.5.4. Planning state of the agent 45 3.6. Contextual planning guidance 45 3.6.1. Semantics of AgLOTOS plans 46 3.6.2. Contextual planning system 48 3.6.3. Application to the scenario 50 3.7. Spatio-temporal guidance from past experiences 52 3.7.1. Contextual planning architecture 52 3.7.2. Learning actions from past experiences 53 3.7.3. Spatio-temporal guidance 58 3.8. Conclusion 61 3.9. Bibliography 62 Chapter 4. A Multi-Agent Middleware for Deployment of Ambient Applications 65Ferdinand PIETTE, Amal EL FALLAH SEGHROUCHNI, Patrick TAILLIBERT, Costin CAVAL and CÉDRIC DINONT 4.1. Introduction 65 4.2. Challenges for ambient intelligence and Internet of Things 67 4.2.1. Toward the heterogeneity of hardware and protocols 67 4.2.2. Data transport and processing 69 4.2.3. Management of data privacy 71 4.3. Deployment of applications for ambient systems 73 4.3.1. Reasoning about heterogeneity 73 4.3.2. Graph modeling 74 4.3.3. Mathematical formalization of the deployment process 76 4.3.4. Modified graph-matching algorithm 81 4.3.5. Conclusion 85 4.4. Multi-agent middleware for ambient systems 86 4.4.1. Scenario 87 4.4.2. Multi-agent modeling 88 4.4.3. Distributed reasoning 92 4.4.4. Design and implementation 96 4.5. Conclusion 102 4.6. Bibliography 103 Chapter 5. ClouT: Cloud of Things for Empowering Citizen’s Clout in Smart Cities 107Kenji TEI, Levent GÜREEN and TAKURO YONEZAWA 5.1. Objective of the ClouT project 107 5.2. Goal of the ClouT project 109 5.3. ClouT concept 110 5.3.1. CIaaS concept 112 5.3.2. CPaaS concept 115 5.3.3. CSaaS concept 117 5.4. ClouT reference architecture 118 5.4.1. CIaaS components 118 5.4.2. CPaaS components 120 5.4.3. Security and Dependability components 121 5.5. Mapping the architecture 122 5.6. Conclusion 125 5.7. Bibliography 126 Chapter 6. sensiNact IoT Platform as a Service 127Levent GÜRGEN, Christophe MUNILLA, Rémi DRUILHE, Etienne GANDRILLE and Jander BOTELHO DO NASCIMENTO 6.1. Introduction 128 6.2. State of the art 130 6.2.1. IoT solutions architectures 130 6.2.2. Existing IoT platforms 131 6.3. Architecture and data model 133 6.4. Platform security management 138 6.5. The sensiNact studio 140 6.5.1. Graphical user interface 141 6.5.2. Creating applications 143 6.5.3. Application deployment 144 6.6. Conclusion 146 6.7. Bibliography 146 Chapter 7. Verification and Configuration of Smart Space Applications 149Fuyuki ISHIKAWA and Shinichi HONIDEN 7.1. Introduction 149 7.2. Conflicts in smart space applications 150 7.2.1. Event-driven control of smart spaces 150 7.2.2. Description of event-driven behavior 151 7.2.3. Conflicts in event-driven control 151 7.2.4. Application of model checking techniques 153 7.3. Framework for verifying and configuring smart space applications 154 7.3.1. Overview 154 7.3.2. Semantic model 155 7.3.3. Definition of state transition model 158 7.3.4. Properties to verify 159 7.3.5. Implementation 160 7.3.6. Model checker implementation 161 7.4. Case study 161 7.4.1. Scenario and initial specification 161 7.4.2. Analyzing sound conflicts 162 7.4.3. Further scenarios 164 7.5. Related work 164 7.6. Concluding remarks 165 7.7. Acknowledgments 166 7.8. Bibliography 166 Chapter 8. SmartSantander: A Massive Self-Managed, Scalable and Interconnected IoT Deployment 169José Antonio GALACHE, Juan Ramón SANTANA and Luis MUÑOZ 8.1. Introduction 169 8.2. SmartSantander: novel architecture for service provision and experimentation 170 8.3. SmartSantander deployment: use cases 173 8.4. SmartSantander interacting with ClouT 175 8.4.1. IoT device naming 176 8.4.2. IoT device description 177 8.4.3. IoT resource manager 181 8.4.4. Virtualization module 182 8.5. Conclusions 184 8.6. Bibliography 185 Chapter 9. Using Context-aware Multi-agent Systems for Robust Smart City Infrastructure 187Andrei OLARU, Adina Magda FLOREA and Amal EL FALLAH SEGHROUCHNI 9.1. Introduction 187 9.1.1. Smart cities and ambient intelligence 188 9.2. Requirements 189 9.2.1. Information at the right time 191 9.2.2. Robustness, reliability, dependability and trust 192 9.2.3. Privacy and personal information 192 9.3. Solutions for managing context information 193 9.3.1. Related work and projects 193 9.3.2. A local solution for a global result 195 9.4. MAS-based application-independent middleware 196 9.4.1. Architecture 198 9.4.2. Generality of the design 203 9.4.3. Resilience in case of failures 203 9.5. Conclusion 204 9.6. Bibliography 204 Chapter 10. City of Santander 207Sonia SOTERO MUÑIZ and José Antonio TEIXEIRA VITIENES 10.1. Introduction 207 10.2. ClouT project 210 10.2.1. Participatory sensing for city management 211 10.2.2. Traffic mobility management 215 10.2.3. Conclusions 219 10.3. Bibliography 220 Chapter 11. Fujisawa, Towards a Sustainable Smart City 221Takuro YONEZAWA 11.1. Introduction 221 11.1.1. Sensorized garbage trucks 222 11.1.2. Enoshima Info Surfboard 223 11.1.3. Smile Coupon 224 11.2. Architecture and application domains 225 11.2.1. Architecture with ClouT components 225 11.2.2. Components for implementation 226 11.2.3. Interaction among components 227 11.2.4. Development scenario 228 11.2.5. Design and implementation 229 11.3. Results 236 11.4. Conclusion 237 11.5. Bibliography 237 List of Authors 239 Index 241

    15 in stock

    £125.06

  • Eyestrain Reduction in Stereoscopy

    ISTE Ltd and John Wiley & Sons Inc Eyestrain Reduction in Stereoscopy

    15 in stock

    Book SynopsisStereoscopic processes are increasingly used in virtual reality and entertainment. This technology is interesting because it allows for a quick immersion of the user, especially in terms of depth perception and relief clues. However, these processes tend to cause stress on the visual system if used over a prolonged period of time, leading some to question the cause of side effects that these systems generate in their users, such as eye fatigue. This book explores the mechanisms of depth perception with and without stereoscopy and discusses the indices which are involved in the depth perception. The author describes the techniques used to capture and retransmit stereoscopic images. The causes of eyestrain related to these images are then presented along with their consequences in the long and short term. The study of the causes of eyestrain forms the basis for an improvement in these processes in the hopes of developing mechanisms for easier virtual viewing.Table of ContentsAcknowledgments ix Introduction xi Chapter 1. Principles of Depth and Shape Perception 1 1.1. Function of the eye 1 1.2. Depth perception without stereoscopy 2 1.2.1. Monocular cues 2 1.2.2. Proprioceptive cues 7 1.3. Depth perception through stereoscopic vision 9 1.4. Perception of inclinations and curves 10 1.4.1. Perception of inclination and obliqueness 10 1.4.2. Perception of curves 14 1.5. Artificial stereoscopic vision 22 Chapter 2. Technological Elements 25 2.1. Taking a picture 25 2.2. Reproduction 26 2.2.1. Colorimetric differentiation 27 2.2.2. Differentiation by polarization 28 2.2.3. Active glasses 30 2.2.4. Auto-stereoscopic screens 31 2.2.5. Virtual reality headsets 33 2.3. Motion parallax restitution 34 2.3.1. Pseudoscopic movement 34 2.3.2. Correcting pseudoscopic movements 35 2.3.3. Monoscopic motion parallax 40 Chapter 3. Causes of Visual Fatigue in Stereoscopic Vision 41 3.1. Conflict between accommodation and convergence 41 3.2. Too much depth 44 3.3. High spatial frequencies 46 3.3.1. Limits of fusion 49 3.3.2. Comfort and high frequencies. 50 3.4. High temporal frequency 52 3.5. Conflicts with monoscopic cues 52 3.6. Vertical disparities 53 3.7. Improper device settings 55 3.7.1. Quality of image and display 55 3.7.2. Differences between left and right images 56 3.7.3. Speed of correction of pseudoscopic movements 57 Chapter 4. Short- and Long-term Consequences 59 4.1. Short-term effects 59 4.1.1. Decreasing ease of accommodation 59 4.1.2. Decrease in stereoscopic acuity 59 4.1.3. Effects on the punctum proximum 61 4.1.4. More subjective effects 61 4.2. Long-term consequences 62 4.2.1. Long-term effects on children 62 Chapter 5. Measuring Visual Fatigue 63 5.1. Visual acuity 63 5.1.1. Different possible measurements 64 5.1.2. Optotypes 64 5.2. Proximum accommodation function 65 5.3. Ease of accommodation 66 5.4. Stereoscopic acuity 67 5.4.1. Tests of distance vision 67 5.4.2. Tests of near vision 68 5.5. Disassociated heterophorias 71 5.6. Fusional reserves 72 5.7. Subjective tests 74 Chapter 6. Reducing Spatial Frequencies 75 6.1. Principle 75 6.2. Technical solution 75 6.2.1. Wavelets 76 6.2.2. BOX FILTER 92 6.2.3. Using a rolling average and other “blurs” 98 6.2.4. Comparison of algorithms 103 6.2.5. Chosen solution 114 6.3. Experiment 116 6.3.1. The task 116 6.4. Measurements of fatigue taken 118 6.4.1. Objective measurements 118 6.4.2. Procedure 119 6.4.3. The subjects 120 6.5. Result 120 6.5.1. Proximum accommodation function 120 6.5.2. Ease of accommodation 121 6.5.3. Stereoscopic acuity 122 6.5.4. Effectiveness in execution of the task 122 6.5.5. Subjective measurements 123 6.5.6. Conclusions 124 6.5.7. Discussion 124 Chapter 7. Reducing the Distance Between the Virtual Cameras 131 7.1. Principle 131 7.1.1. Usefulness of stereoscopy in depth perception 132 7.1.2. The objects 133 7.1.3. Hypothesis 142 7.2. Experiment 142 7.2.1. Tasks 142 7.2.2. Experimental conditions 143 7.2.3. Subjects 144 7.2.4. Measurements 144 7.3. Results 145 7.3.1. Results for fatigue 145 7.3.2. Perception results 147 7.4. Discussion 152 7.4.1. Influence on visual fatigue 152 7.4.2. Influence on visual perception 153 Conclusion 155 Bibliography 157 Index 167

    15 in stock

    £125.06

  • Edward Elgar Publishing Ltd Technology and Innovation in the International

    15 in stock

    Book SynopsisNew technologies will have an increasing effect on prospects for development and growth in the world economy. Technology and Innovation in the International Economy contains extensive and detailed assessments of two key areas of technological innovation which present both a threat and an opportunity for developing countries: microelectronics and biotechnology.The two major review essays - Jeffrey James on microelectronic technology and Martin Fransman on biotechnology - assess the impact of these new technologies on production, trade, employment and welfare in developing countries. The introduction by Charles Cooper deals with recent advances in the economics of innovation and diffusion of new technologies, and attempts to build a bridge between the study of technology in the industrial sectors of developed countries and the type of technology policy needed in the developing countries.Policymakers, researchers and students will welcome the clarity and breadth of this important volume which contains much original analysis and detailed information on a major issue confronting developing and developed nations alike.Trade Review’This book provides a valuable discussion of the existing literature on technology and innovation, both theoretical and empirical, drawing lines for its relevance to the Third World and about future research agenda in these areas.’Table of ContentsForeward - Charles Cooper. 1. Relevance of innovation studies to developing countries - Charles Cooper. 1. I Introduction. 1.2 Innovation and technological change. 1.3 Implications for developing countries. 1.4 Concluding remarks. Acknowledgements. Notes. References. 2. Biotechnology: Generation, diffusion, and policy - Martin Fransman. 2.1 Introduction. 2.2 The generation of biotechnology: invention and innovation. 2.3 Economic effects of biotechnology 2.4 Implications for the third world. 2.5 Recent additions to the literature. 2.6 Towards a general research agenda. Acknowledgements. Notes. References. Annotated bibliography. For further reading. 3. Microelectronics and the Third World - Jeffrey James. 3. 1 Introduction. 3.2 Patterns of adoption and diffusion in the Third World 3.3 Impacts of microelectronics. 3.4 Policy implications and future research directions. Acknowledgements. Notes. References. For further reading.

    15 in stock

    £100.00

  • Control of Continuous Linear Systems

    ISTE Ltd and John Wiley & Sons Inc Control of Continuous Linear Systems

    10 in stock

    Book SynopsisThis book contains more than 150 problems and solutions on the control of linear continuous systems. The main definitions and theoretical tools are summarized at the beginning of each chapter, after which the reader is guided through the problems and how to solve them. The author provides coverage of the ideas behind the developments of the main PID tuning techniques, as well as presenting the proof of the Routh–Hurwitz stability criterion and giving some new results dealing with the design of root locus.Table of ContentsIntroduction xiii Chapter 1. Introduction to Signals and Systems 1 Yannick BERTHOUMIEU, Eric GRIVEL and Mohamed NAJIM 1.1. Introduction 1 1.2. Signals: categories, representations and characterizations 1 1.2.1. Definition of continuous-time and discrete-time signals 1 1.2.2. Deterministic and random signals 6 1.2.3. Periodic signals 8 1.2.4. Mean, energy and power 9 1.2.5. Autocorrelation function 12 1.3. Systems 15 1.4. Properties of discrete-time systems 16 1.4.1. Invariant linear systems 16 1.4.2. Impulse responses and convolution products 16 1.4.3. Causality 17 1.4.4. Interconnections of discrete-time systems 18 1.5. Bibliography 19 Chapter 2. Discrete System Analysis 21 Mohamed NAJIM and Eric GRIVEL 2.1. Introduction 21 2.2. The z-transform 21 2.2.1. Representations and summaries 21 2.2.2. Properties of the z-transform 28 2.2.2.1. Linearity 28 2.2.2.2. Advanced and delayed operators 29 2.2.2.3. Convolution 30 2.2.2.4. Changing the z-scale 31 2.2.2.5. Contrasted signal development 31 2.2.2.6. Derivation of the z-transform 31 2.2.2.7. The sum theorem 32 2.2.2.8. The final-value theorem 32 2.2.2.9. Complex conjugation 32 2.2.2.10. Parseval’s theorem 33 2.2.3. Table of standard transform 33 2.3. The inverse z-transform 34 2.3.1. Introduction 34 2.3.2. Methods of determining inverse z-transforms 35 2.3.2.1. Cauchy’s theorem: a case of complex variables 35 2.3.2.2. Development in rational fractions 37 2.3.2.3. Development by algebraic division of polynomials 38 2.4. Transfer functions and difference equations 39 2.4.1. The transfer function of a continuous system 39 2.4.2. Transfer functions of discrete systems 41 2.5. Z-transforms of the autocorrelation and intercorrelation functions 44 2.6. Stability 45 2.6.1. Bounded input, bounded output (BIBO) stability 46 2.6.2. Regions of convergence 46 2.6.2.1. Routh’s criterion 48 2.6.2.2. Jury’s criterion 49 Chapter 3. Frequential Characterization of Signals and Filters 51 Eric GRIVEL and Yannick BERTHOUMIEU 3.1. Introduction 51 3.2. The Fourier transform of continuous signals 51 3.2.1. Summary of the Fourier series decomposition of continuous signals 51 3.2.1.1. Decomposition of finite energy signals using an orthonormal base 51 3.2.1.2. Fourier series development of periodic signals 52 3.2.2. Fourier transforms and continuous signals 57 3.2.2.1. Representations 57 3.2.2.2. Properties 58 3.2.2.3. The duality theorem 59 3.2.2.4. The quick method of calculating the Fourier transform 59 3.2.2.5. The Wiener-Khintchine theorem 63 3.2.2.6. The Fourier transform of a Dirac comb 63 3.2.2.7. Another method of calculating the Fourier series development of a periodic signal 66 3.2.2.8. The Fourier series development and the Fourier transform 68 3.2.2.9. Applying the Fourier transform: Shannon’s sampling theorem 75 3.3. The discrete Fourier transform (DFT) 78 3.3.1. Expressing the Fourier transform of a discrete sequence 78 3.3.2. Relations between the Laplace and Fourier z-transforms 80 3.3.3. The inverse Fourier transform 81 3.3.4. The discrete Fourier transform 82 3.4. The fast Fourier transform (FFT) 86 3.5. The fast Fourier transform for a time/frequency/energy representation of a non-stationary signal 90 3.6. Frequential characterization of a continuous-time system 91 3.6.1. First and second order filters 91 3.6.1.1. 1st order system 91 3.6.1.2. 2nd order system 93 3.7. Frequential characterization of discrete-time system 95 3.7.1. Amplitude and phase frequential diagrams 95 3.7.2. Application 96 Chapter 4. Continuous-Time and Analog Filters 99 Daniel BASTARD and Eric GRIVEL 4.1. Introduction 99 4.2. Different types of filters and filter specifications 99 4.3. Butterworth filters and the maximally flat approximation 104 4.3.1. Maximally flat functions (MFM) 104 4.3.2. A specific example of MFM functions: Butterworth polynomial filters 106 4.3.2.1. Amplitude-squared expression 106 4.3.2.2. Localization of poles 107 4.3.2.3. Determining the cut-off frequency at –3 dB and filter orders 110 4.3.2.4. Application 111 4.3.2.5. Realization of a Butterworth filter 112 4.4. Equiripple filters and the Chebyshev approximation 113 4.4.1. Characteristics of the Chebyshev approximation 113 4.4.2. Type I Chebyshev filters 114 4.4.2.1. The Chebyshev polynomial 114 4.4.2.2. Type I Chebyshev filters 115 4.4.2.3. Pole determination 116 4.4.2.4. Determining the cut-off frequency at –3 dB and the filter order 118 4.4.2.5. Application 121 4.4.2.6. Realization of a Chebyshev filter 121 4.4.2.7. Asymptotic behavior 122 4.4.3. Type II Chebyshev filter 123 4.4.3.1. Determining the filter order and the cut-off frequency 123 4.4.3.2. Application 124 4.5. Elliptic filters: the Cauer approximation 125 4.6. Summary of four types of low-pass filter: Butterworth, Chebyshev type I, Chebyshev type II and Cauer 125 4.7. Linear phase filters (maximally flat delay or MFD): Bessel and Thomson filters 126 4.7.1. Reminders on continuous linear phase filters 126 4.7.2. Properties of Bessel-Thomson filters 128 4.7.3. Bessel and Bessel-Thomson filters 130 4.8. Papoulis filters (optimum (On)) 132 4.8.1. General characteristics 132 4.8.2. Determining the poles of the transfer function 135 4.9. Bibliography 135 Chapter 5. Finite Impulse Response Filters 137 Yannick BERTHOUMIEU, Eric GRIVEL and Mohamed NAJIM 5.1. Introduction to finite impulse response filters 137 5.1.1. Difference equations and FIR filters 137 5.1.2. Linear phase FIR filters 142 5.1.2.1. Representation 142 5.1.2.2. Different forms of FIR linear phase filters 147 5.1.2.3. Position of zeros in FIR filters 150 5.1.3. Summary of the properties of FIR filters 152 5.2. Synthesizing FIR filters using frequential specifications 152 5.2.1. Windows 152 5.2.2. Synthesizing FIR filters using the windowing method 159 5.2.2.1. Low-pass filters 159 5.2.2.2. High-pass filters 164 5.3. Optimal approach of equal ripple in the stop-band and passband 165 5.4. Bibliography 172 Chapter 6. Infinite Impulse Response Filters 173 Eric GRIVEL and Mohamed NAJIM 6.1. Introduction to infinite impulse response filters 173 6.1.1. Examples of IIR filters 174 6.1.2. Zero-loss and all-pass filters 178 6.1.3. Minimum-phase filters180 6.1.3.1. Problem 180 6.1.3.2. Stabilizing inverse filters 181 6.2. Synthesizing IIR filters 183 6.2.1. Impulse invariance method for analog to digital filter conversion 183 6.2.2. The invariance method of the indicial response 185 6.2.3. Bilinear transformations 185 6.2.4. Frequency transformations for filter synthesis using low-pass filters 188 6.3. Bibliography 189 Chapter 7. Structures of FIR and IIR Filters 191 Mohamed NAJIM and Eric GRIVEL 7.1. Introduction 191 7.2. Structure of FIR filters 192 7.3. Structure of IIR filters 192 7.3.1. Direct structures 192 7.32. The cascade structure 209 7.3.3. Parallel structures 211 7.4. Realizing finite precision filters 211 7.4.1. Introduction 211 7.4.2. Examples of FIR filters 212 7.4.3. IIR filters 213 7.4.3.1. Introduction 213 7.4.3.2. The influence of quantification on filter stability 221 7.4.3.3. Introduction to scale factors 224 7.4.3.4. Decomposing the transfer function into first- and second-order cells 226 7.5. Bibliography 231 Chapter 8. Two-Dimensional Linear Filtering 233 Philippe BOLON 8.1. Introduction 233 8.2. Continuous models 233 8.2.1. Representation of 2-D signals 233 8.2.2. Analog filtering 235 8.3. Discrete models 236 8.3.1. 2-D sampling 236 8.3.2. The aliasing phenomenon and Shannon’s theorem 240 8.3.2.1. Reconstruction by linear filtering (Shannon’s theorem) 240 8.3.2.2. Aliasing effect 240 8.4. Filtering in the spatial domain 242 8.4.1. 2-D discrete convolution 242 8.4.2. Separable filters 244 8.4.3. Separable recursive filtering 246 8.4.4. Processing of side effects 249 8.4.4.1. Prolonging the image by pixels of null intensity 250 8.4.4.2. Prolonging by duplicating the border pixels 251 8.4.4.3. Other approaches 252 8.5. Filtering in the frequency domain 253 8.5.1. 2-D discrete Fourier transform (DFT) 253 8.5.2. The circular convolution effect 255 8.6. Bibliography 259 Chapter 9. Two-Dimensional Finite Impulse Response Filter Design 261 Yannick BERTHOUMIEU 9.1. Introduction 261 9.2. Introduction to 2-D FIR filters 262 9.3. Synthesizing with the two-dimensional windowing method 263 9.3.1. Principles of method 263 9.3.2. Theoretical 2-D frequency shape 264 9.3.2.1. Rectangular frequency shape 264 9.3.2.2. Circular shape 266 9.3.3. Digital 2-D filter design by windowing 271 9.3.4. Applying filters based on rectangular and circular shapes 271 9.3.5. 2-D Gaussian filters 274 9.3.6. 1-D and 2-D representations in a continuous space 274 9.3.6.1. 2-D specifications 276 9.3.7. Approximation for FIR filters 277 9.3.7.1. Truncation of the Gaussian profile 277 9.3.7.2. Rectangular windows and convolution 279 9.3.8. An example based on exploiting a modulated Gaussian filter 280 9.4. Appendix: spatial window functions and their implementation 286 9.5. Bibliography 291 Chapter 10. Filter Stability 293 Michel BARRET 10.1. Introduction 293 10.2. The Schur-Cohn criterion 298 10.3. Appendix: resultant of two polynomials 314 10.4. Bibliography 319 Chapter 11. The Two-Dimensional Domain 321 Michel BARRET 11.1. Recursive filters 321 11.1.1. Transfer functions 321 11.1.2. The 2-D z-transform 322 11.1.3. Stability, causality and semi-causality 324 11.2. Stability criteria 328 11.2.1. Causal filters 329 11.2.2. Semi-causal filters 332 11.3. Algorithms used in stability tests 334 11.3.1. The jury Table 334 11.3.2. Algorithms based on calculating the Bezout resultant 339 11.3.2.1. First algorithm 340 11.3.2.2. Second algorithm 343 11.3.3. Algorithms and rounding-off errors 347 11.4. Linear predictive coding 351 11.5. Appendix A: demonstration of the Schur-Cohn criterion 355 11.6. Appendix B: optimum 2-D stability criteria 358 11.7. Bibliography 362 List of Authors 365 Index 367

    10 in stock

    £145.30

  • The Official Raspberry Pi Beginner's Guide: How

    Raspberry Pi Press The Official Raspberry Pi Beginner's Guide: How

    15 in stock

    Book SynopsisRaspberry Pi is a small, clever, British-built computer that's packed with potential. Made using a desktop-class, energy-efficient processor, Raspberry Pi is designed to help you learn coding, discover how computers work, and build your own amazing things. This book was written to show you just how easy it is to get started. Learn how to set up your Raspberry Pi, install its operating system, and start using this fully functional computer. Start coding projects, with step-by-step guides using the Scratch 3, Python, and MicroPython programming languages. Experiment with connecting electronic components, and have fun creating amazing projects. This revised edition is updated for the latest Raspberry Pi computers: Raspberry Pi 5 and Raspberry Pi Zero 2 W as well as the latest Raspberry Pi OS. It also includes a new chapter on the Raspberry Pi Pico!Table of ContentsChapter 1: Get to know your Raspberry Pi Chapter 2: Getting started with your Raspberry Pi Chapter 3: Using your Raspberry Pi Chapter 4: Programming with Scratch 3 Chapter 5: Programming with Python Chapter 6: Physical computing with Scratch and Python Chapter 7: Physical computing with the Sense HAT Chapter 8: Raspberry Pi Camera Modules Chapter 9: Raspberry Pi Pico and Pico W Appendix A: Install an operating system to a microSD card Appendix B: Installing and uninstalling software Appendix C: The command-line interface Appendix D: Further reading Appendix E: Raspberry Pi Configuration Tool Appendix F: Raspberry Pi specifications

    15 in stock

    £18.99

  • AutomationML: A Practical Guide

    De Gruyter AutomationML: A Practical Guide

    1 in stock

    Book SynopsisThis book is a beginner's guide to AutomationML Edition 2, written for students, engineers, lecturers, developers and those interested. In guides through the basics of AutomationML Edition 2, CAEX and the AutomationML Editor. AutomationML stands for digitisation of engineering data and engineering workflows. AutomationML achieves both human readability and machine-readability. It is a method for converting data into digital information, and it supports the special needs of iterative engineering data exchange. AutomationML is in the hot spot of the digitisation of automation engineering data. It enables the modelling and transport of engineering data in a vendor neutral and machine-readable models, a valuable source of digital innovation. Machine readable engineering data makes the data accessible and interpretable by software, enabling a plethora of opportunities. This book carefully introduces AutomationML, its goals, values and innovations. It teaches the architecture of AutomationML and explains the language elements with a multitude of examples and step-by-step instructions. Additional material to the book and more information about AutomationML on the website: https://www.automationml.org/about-automationml/publications/amlbook/

    1 in stock

    £32.00

  • Analog and Hybrid Computer Programming

    De Gruyter Analog and Hybrid Computer Programming

    1 in stock

    Book Synopsis As classic digital computers are about to reach their physical and architectural boundaries, interest in unconventional approaches to computing, such as quantum and analog computers, is rapidly increasing. For a wide variety of practical applications, analog computers can outperform classic digital computers in terms of both raw computational speed and energy efficiency. This makes them ideally suited a co-processors to digital computers, thus forming hybrid computers. This second edition of "Analog and Hybrid Computer Programming" provides a thorough introduction to the programming of analog and hybrid computers. It contains a wealth of practical examples, ranging from simple problems such as radioactive decay, harmonic oscillators, and chemical reaction kinetics to advanced topics which include the simulation of neurons, chaotic systems such as a double-pendulum simulation and many more. In addition to these examples, it contains a chapter on special functions which can be used as "subroutines" in an analog computer setup.

    1 in stock

    £43.20

  • Semiconductor Electrochemistry

    Wiley-VCH Verlag GmbH Semiconductor Electrochemistry

    2 in stock

    Book SynopsisProviding both an introduction and an up-to-date survey of the entire field, this text captivates the reader with its clear style and inspiring, yet solid presentation. The significantly expanded second edition of this milestone work is supplemented by a completely new chapter on the hot topic of nanoparticles and includes the latest insights into the deposition of dye layers on semiconductor electrodes. In his monograph, the acknowledged expert Professor Memming primarily addresses physical and electrochemists, but materials scientists, physicists, and engineers dealing with semiconductor technology and its applications will also benefit greatly from the contents.Table of ContentsPreface to the Second Edition XI Preface XIII 1 Principles of Semiconductor Physics 1 1.1 Crystal Structure 1 1.2 Energy Levels in Solids 3 1.3 Optical Properties 8 1.4 Density of States and Carrier Concentrations 11 1.4.1 Intrinsic Semiconductors 14 1.4.2 Doped Semiconductors 15 1.5 Carrier Transport Phenomena 17 1.6 Excitation and Recombination of Charge Carriers 19 1.7 Fermi Levels under Nonequilibrium Conditions 21 2 Semiconductor Surfaces and Solid–Solid Junctions 23 2.1 Metal and Semiconductor Surfaces in a Vacuum 23 2.2 Metal–Semiconductor Contacts (Schottky Junctions) 26 2.2.1 Barrier Heights 26 2.2.2 Majority Carrier Transfer Processes 31 2.2.3 Minority Carrier Transfer Processes 35 2.3 p–n Junctions 38 2.4 Ohmic Contacts 41 2.5 Photovoltages and Photocurrents 42 2.6 Surface Recombination 46 3 Electrochemical Systems 49 3.1 Electrolytes 49 3.1.1 Ion Transport in Solutions 49 3.1.2 Interaction between Ions and Solvent 52 3.2 Potentials and Thermodynamics of Electrochemical Cells 53 3.2.1 Chemical and Electrochemical Potentials 53 3.2.2 Cell Voltages 56 3.2.3 Reference Potentials 59 3.2.4 Standard Potential and Fermi Level of Redox Systems 60 4 Experimental Techniques 65 4.1 Electrode Preparation 65 4.2 Current–Voltage Measurements 65 4.2.1 Voltametry 65 4.2.2 PhotocurrentMeasurements 67 4.2.3 Rotating Ring Disk Electrodes 68 4.2.4 Scanning ElectrochemicalMicroscopy (SECM) 69 4.3 Measurements of Surface Recombination and Minority Carrier Injection 70 4.4 Impedance Measurements 72 4.4.1 Basic Rules and Techniques 72 4.4.2 Evaluation of Impedance Spectra 74 4.4.3 Intensity Modulated Photocurrent Spectroscopy (IMPS) 78 4.5 Surface Conductivity Measurement 80 4.6 Flash Photolysis Investigations 82 4.7 Surface Science Techniques 82 4.7.1 Spectroscopic Methods 83 4.7.2 In situ SurfaceMicroscopy (STMand AFM) 85 5 Solid–Liquid Interface 89 5.1 Structure of the Interface and Adsorption 89 5.2 Charge and Potential Distribution at the Interface 91 5.2.1 The Helmholtz Double Layer 92 5.2.2 Gouy Layer in the Electrolyte 93 5.2.3 Space Charge Layer in the Semiconductor 94 5.2.4 Charge Distribution in Surface States 101 5.3 Analysis of the Potential Distribution 102 5.3.1 Germanium Electrodes 102 5.3.2 Silicon Electrodes 109 5.3.3 Compound Semiconductor Electrodes 111 5.3.4 Flatband Potential and Position of Energy Bands at the Interface 114 5.3.5 Unpinning of Energy Bands during Illumination 118 5.4 Modification of Semiconductor Surfaces 123 6 Electron Transfer Theories 127 6.1 The Theory of Marcus 127 6.1.1 Electron Transfer in Homogeneous Solutions 127 6.1.2 The Reorganization Energy 132 6.1.3 Adiabatic and Nonadiabatic Reactions 134 6.1.4 Electron Transfer Processes at Electrodes 134 6.2 The Gerischer Model 138 6.2.1 Energy States in Solution 138 6.2.2 Electron Transfer 143 6.3 Quantum Mechanical Treatments of Electron Transfer Processes 145 6.3.1 Introductory Comments 146 6.3.2 Nonadiabatic Reactions 149 6.3.3 Adiabatic Reactions 156 6.4 The Problemof Deriving Rate Constants 165 6.5 Comparison of Theories 167 7 Charge Transfer Processes at the Semiconductor–Liquid Interface 169 7.1 Charge Transfer Processes at Metal Electrodes 169 7.1.1 Kinetics of Electron Transfer at the Metal–Liquid Interface 169 7.1.2 Diffusion-controlled Processes 178 7.1.3 Investigations of Redox Reactions by Linear Sweep Voltametry 182 7.1.4 Criteria for Reversible and Irreversible Reactions 183 7.2 Qualitative Description of Current–Potential Curves at Semiconductor Electrodes 185 7.3 One-step Redox Reactions 186 7.3.1 The Energetics of Charge Transfer Processes 186 7.3.2 Quantitative Derivation of Current–Potential Curves 189 7.3.3 Light-Induced Processes 194 7.3.4 Majority Carrier Reactions 198 7.3.5 Minority Carrier Reactions 211 7.3.6 Electron Transfer in the “Inverted Region” 222 7.4 The Quasi-Fermi-Level Concept 225 7.4.1 Basic Model 225 7.4.2 Application of the Concept to Photocurrents 229 7.4.3 Consequences for the Relation between Impedance and IMPS Spectra 233 7.4.4 Quasi-Fermi-Level Positions under High-Level Injections 237 7.5 Determination of the Reorganization Energy 240 7.6 Two-step Redox Processes 244 7.7 Photoluminescence and Electroluminescence 249 7.7.1 Kinetic Studies by Photoluminescence Measurement 250 7.7.2 Electroluminescence Induced by Minority Carrier Injection 255 7.8 Hot Carrier Processes 258 7.9 Catalysis of Electrode Reactions 262 8 Electrochemical Decomposition of Semiconductors 267 8.1 Anodic Dissolution Reactions 267 8.1.1 Germanium 267 8.1.2 Silicon 271 8.1.3 Compound Semiconductors 279 8.2 Cathodic Decomposition 283 8.3 Dissolution under Open Circuit Conditions 283 8.4 Energetics and Thermodynamics of Corrosion 285 8.5 Competition between Redox Reaction and Anodic Dissolution 288 8.6 Formation of Porous Semiconductor Surfaces 293 9 Photoreactions at Semiconductor Particles 295 9.1 Quantum Size Effects 295 9.1.1 Quantum Dots 296 9.1.2 Single Crystalline Quantum Films and Superlattices 303 9.1.3 Size Quantized Nanocrystalline Films 305 9.2 Charge Transfer Processes at Semiconductor Particles 306 9.2.1 Reactions in Suspensions and Colloidal Solutions 306 9.2.2 Photoelectron Emission 313 9.2.3 Comparison between Reactions at Semiconductor Particles and at Compact Electrodes 316 9.2.4 The Role of Surface Chemistry 317 9.2.5 Enhanced Redox Chemistry in Quantized Colloids 318 9.2.6 Reaction Routes at Small and Big Particles 322 9.2.7 Sandwich Formation between Different Particles and between Particle and Electrode 324 9.3 Charge Transfer Processes at Quantum Well Electrodes (MQW,SQW) 327 9.4 Photoelectrochemical Reactions at Nanocrystalline Semiconductor Layers 331 9.4.1 Impact Ionization and Carrier Multiplication 333 9.4.2 Hot Carrier Cooling and ExcitonMultiplication in Quantum Dots 335 9.4.3 Multiple Exciton Collection in a Sensitized Photovoltaic System 340 10 Electron Transfer Processes between ExcitedMolecules and Semiconductor Electrodes 343 10.1 Energy Levels of Excited Molecules 343 10.2 Reactions at Semiconductor Electrodes 349 10.2.1 Spectra of Sensitized Photocurrents 349 10.2.2 Dye Molecules Adsorbed on the Electrode and in Solution 352 10.2.3 Potential Dependence of Sensitization Currents 356 10.2.4 Sensitization Processes at Semiconductor Surfaces Modified by Dye Monolayers 357 10.2.5 Quantum Efficiencies, Regeneration, and Supersensitization 364 10.2.6 Kinetics of Electron Transfer between Dye and Semiconductor Electrode 366 10.2.7 Sensitization Processes at Nanocrystalline Semiconductor Electrodes 370 10.3 Comparison with Reactions at Metal Electrodes 375 10.4 Production of Excited Molecules by Electron Transfer 376 11 Applications 379 11.1 Photoelectrochemical Solar Energy Conversion 379 11.1.1 Electrochemical Photovoltaic Cells 379 11.1.2 Photoelectrolysis 402 11.1.3 Photoreduction of CO2 424 11.2 Photocatalytic Processes 426 11.2.1 Photodegradation of Pollutants 427 11.2.2 Photocatalytic Reactions 429 11.2.3 Light-Induced Chemical Reactions 430 11.3 Etching of Semiconductors 431 11.4 Light-Induced Metal Deposition 433 Appendices 437 A.1 List ofMajor Symbols 437 A.2 Physical Constants 440 A.3 Lattice Parameters of Semiconductors 440 A.4 Properties of Important Semiconductors 441 A.5 Effective Density of States and Intrinsic Carrier Densities 441 A.6 Major Redox Systems and Corresponding Standard Potentials 442 A.6.1 Aqueous Solutions 442 A.6.2 In Acetonitrile (vs Ag/AgCl) 442 A.7 Potentials of Reference Electrodes 443 References 445 Index 465

    2 in stock

    £116.41

  • Elektrochemische Energiewandler und -speicher

    Wiley-VCH Verlag GmbH Elektrochemische Energiewandler und -speicher

    1 in stock

    Book SynopsisElektrochemische Energiewandler und -speicher Ein einführendes Lehrbuch zur elektrochemischen Energieumwandlung und-speicherung, das die aktuellen und zukünftigen Energieperspektiven berücksichtigt Elektrochemische Energiewandler und -speicher schlieβt eine Lücke in der Literatur, indem es eine umfassende Beschreibung der Grundlagen und einen detaillierten Überblick über die realen, praktischen Anwendungen der elektrochemischen Energiespeicherung und-umwandlung bietet. Das von zwei anerkannten Experten zu diesem Thema geschriebene Lehrbuch behandelt sowohl die Grundlagen der Energieumwandlung und -speicherung als auch die Arten der Umwandlung und Speicherung von elektrischer Energie unter besonderer Berücksichtigung der Nutzung erneuerbarer Energiequellen. Das Buch richtet sich sowohl an Studierende als auch an Fachleute und deckt ein breites Spektrum an Themen ab, das von thermodynamischen, kinetischen und elektrochemischen Grundlagen bis hin zu einer vollständigen Darstellung aller elektrochemischen Systeme für die Energieumwandlung und -speicherung reicht. Zahlreiche Abbildungen, Beispiele und Beschreibungen praktischer Anwendungen erleichtern das Verständnis des dargestellten Materials. Dieses wichtige Lehrbuch: Bietet eine dringend benötigte Einführung in die Grundlagen und jüngsten Entwicklungen der elektrochemischen Energietechnik Beleuchtet die Prozesse und Anwendungen der Energieumwandlung und -speicherung Liefert Informationen über experimentelle Methoden Elektrochemische Energiewandler und -speicher richtet sich an Studierende der Chemie, der Materialwissenschaften und der Ingenieurwissenschaften und beantwortet die Nachfrage nach einer aktuellen Einführung in dieses wichtige Thema.Table of ContentsGeleitwort xi Vorwort xiii Akronyme, Begriffe und Definitionen xv 1 Prozesse und Anwendungen der Energiewandlung und -speicherung 1 Weiterführende Literatur 22 2 Elektrochemische Prozesse und Systeme 23 2.1 Parasitäre Reaktionen 32 2.2 Selbstentladung 33 2.3 Systemverschlechterung 36 2.3.1 Alterung 40 Weiterführende Literatur 42 3 Thermodynamik elektrochemischer Systeme 45 Weiterführende Literatur 61 4 Kinetik elektrochemischer Energieumwandlungsprozesse 63 4.1 Schritte von Elektrodenreaktionen und Überpotentialen 64 4.2 Transport 64 4.3 Ladungsdurchtritt 66 4.4 Überpotentiale 68 Weiterführende Literatur 78 5 Elektroden und Elektrolyte 81 5.1 Recycling 95 Weiterführende Literatur 96 6 Experimentelle Methoden 99 6.1 Batterietester 99 6.2 Strom-Potential-Messungen 100 6.3 Lade-/Entlademessungen 104 6.4 Batterieladung 113 6.5 Einfache und zyklische Voltammetrie 120 6.6 Impedanzmessungen 124 6.7 Galvanostatische Titration 131 6.8 Potentiostatische Titration 132 6.9 Elektrochemische Potentialsprungspektroskopie 133 6.10 Elektrochemische Quarzmikrowaage 134 6.11 Nichtelektrochemische Methoden 134 6.11.1 Festkörper-Kernresonanzspektroskopie 135 6.11.2 Gasadsorptionsmessungen 135 6.11.3 Mikroskopien 135 6.11.4 Thermische Messungen 135 6.11.5 Modellierung 136 Weiterführende Literatur 140 7 Primärsysteme 141 7.1 Wäßrige Systeme 143 7.1.1 Zink-Kohle-Batterie 143 7.1.2 Alkalische Zn/MnO2-Batterie 145 7.1.3 Zn/HgO-Batterien 149 7.1.4 Zn/AgO-Batterie 150 7.1.5 Cd/AgO-Batterien 153 7.1.6 Mg/MnO2-Batterien 155 7.2 Nichtwäßrige Systeme 156 7.2.1 Lithiumprimärbatterien 157 7.2.2 Li/MnO2 159 7.2.3 Li/Bi2O3 160 7.2.4 Li/CuO 161 7.2.5 Li/V2O5,Li/Ag2V4O11 und Li/CSVO 162 7.2.6 Li/CuS 163 7.2.7 Li/FeS2 164 7.2.8 Li/Cfx-primärbatterien 165 7.2.9 Li/I2 167 7.2.10 Li/SO2 167 7.2.11 Li/SOCl2 169 7.2.12 Li/SO2Cl2 172 7.2.13 Li/Oxyhalid-Primärbatterien 172 7.3 Metall-Luft-Systeme 173 7.3.1 Wäßrige Metall-Luft-Primärbatterien 173 7.3.2 Nichtwäßrige Metall-Luft-Batterien 185 7.4 Füllzellen 187 7.4.1 Seewasseraktivierbare Batterien 187 7.4.2 Aktivierbare Hochleistungsbatterien 189 Weiterführende Literatur 190 8 Sekundärsysteme 191 8.1 Wäßrige Systeme 193 8.1.1 Blei-Säure-Akkumulator 193 8.1.2 Sekundärbatterien auf Nickelbasis 207 8.1.3 Wäßrige wiederaufladbare Lithiumbatterien 221 8.1.4 Wäßrige wiederaufladbare Natriumbatterien 227 8.2 Nichtwäßrige Systeme 228 8.2.1 Lithium-Ionen-Batterien 228 8.2.2 Wiederaufladbare Li/S-Batterien 252 8.2.3 Wiederaufladbare Na/S-Batterien 255 8.2.4 Wiederaufladbare Li/Se-Batterien 257 8.2.5 Wiederaufladbare Mg-Batterien 257 8.3 Sekundärbatterien auf Basis von Gelpolymerelektrolyten 259 8.3.1 Gel-Lithium-Ionen-Batterien 260 8.3.2 Gelelektrolyte für Natriumbatterien 261 8.4 Sekundärbatterien auf Festelektrolytbasis 262 8.4.1 Feste Lithium-Ionen-Batterien 263 8.4.2 Wiederaufladbare feste Lithiumbatterien 264 8.5 Wiederaufladbare Metall-Luft-Batterien 265 8.5.1 Wiederaufladbare Li/Luft-Batterien 265 8.5.2 Wiederaufladbare Na/Luft-Batterien 268 8.5.3 Wiederaufladbare Zn/Luft-Batterien 269 8.6 Hochtemperatursysteme 271 8.6.1 Natrium-Schwefel-Batterie 271 8.6.2 Natrium-Nickelchlorid-Batterie 274 8.6.3 Flüssigmetallakkumulatoren 279 Weiterführende Literatur 279 9 Brennstoffzellen 281 9.1 Die Sauerstoffelektrode 286 9.2 Die Wasserstoffelektrode 292 9.3 Gemeinsamkeiten von Brennstoffzellen 293 9.4 Klassifizierung von Brennstoffzellen 297 9.4.1 Brennstoffzellen bei Umgebungstemperatur 298 9.4.2 Alkalische Brennstoffzellen 298 9.4.3 Polymerelektrolytmembran-Brennstoffzellen (PEMFCs) 300 9.4.4 Direkte Alkoholbrennstoffzellen 307 9.4.5 Bioelektrochemische Brennstoffzellen 309 9.4.6 Mitteltemperaturbrennstoffzellen 310 9.4.7 Phosphorsäurebrennstoffzellen 310 9.4.8 Schmelzcarbonatbrennstoffzellen 311 9.4.9 Hochtemperaturbrennstoffzellen 313 9.5 Anwendungen von Brennstoffzellen 314 9.6 Brennstoffzellen in Energiespeichersystemen 315 Weiterführende Literatur 317 10 Redoxbatterien 319 10.1 Das Eisen-Chrom-System 324 10.2 Das Eisen-Vanadium-System 325 10.3 Das Eisen-Cadmium-System 326 10.4 Das Brom-Polysulfid-System 326 10.5 Das All-Vanadium-System 327 10.6 Das Vanadium-Brom-System 328 10.7 Actiniden-RFB 329 10.8 All-Organische RFBs 330 10.9 Nichtwäßrige RFBs 330 10.10 Hybride Systeme 330 10.11 Das Zink-Cer-System 330 10.12 Das Zink-Brom-System 331 10.13 Das Zink/Organisch-System 332 10.14 Das Cadmium/Organisch-System 332 10.15 Das Blei-Bleidioxid-System 333 10.16 Das Cadmium-Bleidioxid-System 334 10.17 Das All-Kupfer-System 334 10.18 Das Zink-Nickel-System 334 10.19 Das Lithium-LiFePO4-System 335 10.20 Vanadium-Festsalz-Batterie 335 10.21 Vanadium-Sauerstoff-System 336 10.22 Elektrochemischer Flußkondensator 337 10.23 Entwicklungsstand und Perspektiven 337 Weiterführende Literatur 339 11 Superkondensatoren 341 11.1 Klassifizierung von Superkondensatoren 342 11.2 Elektrochemische Doppelschichtkondensatoren 344 11.2.1 Elektrolyte für EDLCs 345 11.2.2 Elektrodenmaterialen für EDLCs 346 11.2.3 Elektrochemische Leistung von EDLCs 354 11.3 Pseudokondensatoren 356 11.3.1 RuO2 356 11.3.2 MnO2 359 11.3.3 Intrinsisch leitfähige Polymere 365 11.3.4 Redoxsysteme 373 11.3.5 Elektrochemische Leistung von Pseudokondensatoren 376 11.4 Hybridkondensatoren 380 11.4.1 Negative Elektrodenmaterialien 380 11.4.2 Positive Elektrodenmaterialen 389 11.4.3 Elektrochemische Leistung von Hybridkondensatoren 402 11.5 Testen von Superkondensatoren 408 11.6 Kommerziell erhältliche Superkondensatoren 408 11.7 Anwendung von Superkondensatoren 409 11.7.1 Unterbrechungsfreie Stromversorgung 410 11.7.2 Transport 411 11.7.3 Intelligente Netze 411 11.7.4 Militärische Ausrüstung 412 11.7.5 Andere zivile Anwendungen 413 Weiterführende Literatur 414 A Anhang 415 Stichwortverzeichnis 419

    1 in stock

    £47.50

  • Electrochemical Energy Conversion and Storage

    Wiley-VCH Verlag GmbH Electrochemical Energy Conversion and Storage

    1 in stock

    Book SynopsisThis pioneering textbook on the topic provides a clear and well-structured description of the fundamental chemistry involved in these systems, as well as an excellent overview of the real-life practical applications. Prof. Holze is a well-known researcher and an experienced author who guides the reader with his didactic style, and readers can test their understanding with questions and answers throughout the text. Written mainly for advanced students in chemistry, physics, materials science, electrical engineering and mechanical engineering, this text is equally a valuable resource for scientists and engineers working in the field, both in academia and industry.Table of ContentsForeword xi Preface xiii 1 Processes and Applications of Energy Conversion and Storage 1 2 Electrochemical Processes and Systems 21 2.1 Parasitic Reactions 30 2.2 Self-discharge 30 2.3 Device Deterioration 32 2.3.1 Aging 37 3 Thermodynamics of Electrochemical Systems 39 4 Kinetics of Electrochemical Energy Conversion Processes 55 4.1 Steps of Electrode Reactions and Overpotentials 56 4.2 Transport 56 4.3 Charge Transfer 59 4.4 Overpotentials 59 4.5 Diffusion 62 4.6 Further Overpotentials 63 5 Electrodes and Electrolytes 71 5.1 Recycling 84 6 Experimental Methods 87 6.1 Battery Tester 87 6.2 Current–Potential Measurements 88 6.3 Charge/Discharge Measurements 92 6.4 Battery Charging 100 6.5 Linear Scan and Cyclic Voltammetry 107 6.6 Impedance Measurements 111 6.7 Galvanostatic Intermittent Titration Technique (GITT) 117 6.8 Potentiostatic Intermittent Titration Technique (PITT) 119 6.9 Step Potential Electrochemical Spectroscopy (SPECS) 120 6.10 Electrochemical Quartz Crystal Microbalance (EQCM) 121 6.11 Non-electrochemical Methods 121 6.11.1 Solid-state Nuclear Magnetic Resonance 121 6.11.2 Gas Adsorption Measurements 121 6.11.3 Microscopies 122 6.11.4 Thermal Measurements 122 6.11.5 Modeling 123 7 Primary Systems 127 7.1 Aqueous Systems 129 7.1.1 Zinc–Carbon Battery 129 7.1.2 Alkaline Zn//MnO2 Battery 131 7.1.3 Zn//HgO Battery 134 7.1.4 Zn//AgO Battery 136 7.1.5 Cd//AgO Batteries 138 7.1.6 Mg//MnO2 Batteries 140 7.2 Nonaqueous Systems 141 7.2.1 Primary Lithium Batteries 141 7.2.2 Li//MnO2 144 7.2.3 Li//Bi2O3 145 7.2.4 Li//CuO 146 7.2.5 Li//V2O5, Li//Ag2V4O11, and Li//CSVO 147 7.2.6 Li//CuS 148 7.2.7 Li//FeS2 149 7.2.8 Li//CFx Primary Battery 150 7.2.9 Li//I2 151 7.2.10 Li//SO2 151 7.2.11 Li//SOCl2 153 7.2.12 Li//SO2Cl2 156 7.2.13 Li//Oxyhalide Primary Battery 156 7.3 Metal–Air Systems 157 7.3.1 Aqueous Metal–Air Primary Batteries 157 7.3.2 Nonaqueous Metal–Air Batteries 168 7.4 Reserve Batteries 170 7.4.1 Seawater-activated Batteries 171 7.4.2 High Power Activated Batteries 173 8 Secondary Systems 175 8.1 Aqueous Systems 176 8.1.1 Lead–Acid 176 8.1.2 Lead Grid 181 8.1.3 Ni-based Secondary Batteries 189 8.1.4 Aqueous Rechargeable Lithium Batteries 202 8.1.5 Aqueous Rechargeable Sodium Batteries 206 8.2 Nonaqueous Systems 208 8.2.1 Lithium-Ion Batteries 208 8.2.2 Rechargeable Li//S Batteries 230 8.2.3 Rechargeable Na//S Batteries 233 8.2.4 Rechargeable Li//Se Batteries 234 8.2.5 Rechargeable Mg Batteries 235 8.3 Gel Polymer Electrolyte-based Secondary Batteries 235 8.3.1 Gel Lithium-Ion Batteries 236 8.3.2 Gel-Type Electrolytes for Sodium Batteries 238 8.4 Solid Electrolyte-based Secondary Batteries 238 8.4.1 Solid Lithium-Ion Batteries 239 8.4.2 Rechargeable Solid Lithium Batteries 240 8.5 Rechargeable Metal–Air Batteries 240 8.5.1 Rechargeable Li//Air Batteries 242 8.5.2 Rechargeable Na//Air Batteries 243 8.5.3 Rechargeable Zn//Air Batteries 245 8.6 High-Temperature Systems 246 8.6.1 Sodium–Sulfur Battery 247 8.6.2 Sodium–Nickel Chloride Battery 250 8.6.3 All Liquid Metal Accumalator 254 9 Fuel Cells 257 9.1 The Oxygen Electrode 261 9.2 The Hydrogen Electrode 267 9.3 Common Features of Fuel Cells 268 9.4 Classification of Fuel Cells 272 9.4.1 Ambient Temperature Fuel Cells 272 9.4.2 Alkaline Fuel Cells 273 9.4.3 Polymer Electrolyte Membrane Fuel Cells (PEMFCs) 274 9.4.4 Direct Alcohol Fuel Cells 281 9.4.5 Bioelectrochemical Fuel Cells 283 9.4.6 Intermediate Temperature Fuel Cells 284 9.4.7 Phosphoric Acid Fuel Cell (PAFC) 284 9.4.8 Molten Carbonate Fuel Cells (MCFC) 285 9.4.9 High Temperature Solid Oxide Fuel Cells (SOFC) 286 9.5 Applications of Fuel Cells 288 9.6 Fuel Cells in Energy Storage Systems 289 10 Flow Batteries 293 10.1 The Iron/Chromium System 298 10.2 The Iron/Vanadium System 299 10.3 The Iron/Cadmium System 299 10.4 The Bromine/Polysulfide System 300 10.5 The All-Vanadium System 300 10.6 The Vanadium/Bromine System 302 10.7 Actinide RFBs 302 10.8 All-Organic RFBs 303 10.9 Nonaqueous RFBs 303 10.10 Hybrid Systems 303 10.11 The Zinc/Cerium System 304 10.12 The Zinc/Bromine System 304 10.13 The Zinc/Organic System 305 10.14 The Cadmium/Organic System 305 10.15 The Lead/Lead Dioxide System 306 10.16 The Cadmium/Lead Dioxide System 307 10.17 The All-Copper System 307 10.18 The Zinc/Nickel System 307 10.19 The Lithium/LiFePO4 System 308 10.20 Vanadium Solid-Salt Battery 308 10.21 Vanadium-Dioxygen System 308 10.22 Electrochemical Flow Capacitor 310 10.23 Current State and Perspectives 310 11 Supercapacitors 313 11.1 Classification of Supercapacitors 314 11.2 Electrical Double-Layer Capacitors 316 11.2.1 Electrolytes for EDLCs 317 11.2.2 Electrode Materials for EDLCs 318 11.2.3 Electrochemical Performance of EDLCs 325 11.3 Pseudocapacitors 326 11.3.1 RuO2 327 11.3.2 MnO2 330 11.3.3 Intrinsically Conducting Polymers 335 11.3.4 Redox Couples 343 11.3.5 Electrochemical Performance of Pseudocapacitors 346 11.4 Hybrid Capacitors 351 11.4.1 Negative Electrode Materials 351 11.4.2 Positive Electrode Materials 359 11.4.3 Electrochemical Performance of Hybrid Capacitors 370 11.5 Testing of Supercapacitors 376 11.6 Commercially Available Supercapacitors 377 11.7 Application of Supercapacitors 378 11.7.1 Uninterruptible Power Sources 379 11.7.2 Transportation 379 11.7.3 Smart Grids 380 11.7.4 Military Equipment 380 11.7.5 Other Civilian Applications 381 Appendix 383 Acronyms, Terms, and Definitions 387 Further Reading 401 Index 407

    1 in stock

    £65.41

  • Batterien: Grundlagen, Systeme, Anwendungen

    Wiley-VCH Verlag GmbH Batterien: Grundlagen, Systeme, Anwendungen

    2 in stock

    Book SynopsisBatterien Für die Mobilität und Energieversorgung der Zukunft: Kompakte und praxisnahe Wissensvermittlung aller wichtigen Batteriegrundlagen und -systeme Batterien sind in vielen Fällen die bevorzugte Lösung zur technischen und wirtschaftlichen Optimierung von Fahrzeugen und Energieversorgungsystemen und ermöglichen es, Emissionen zu verringern und die Abhängigkeit von Erdöl und Erdgas zu reduzieren. In der Summe aller Eigenschaften erfüllen Blei-Säure-Batterien und Lithium-Ionen-Batterien die Anforderungen der verschiedensten Anwendungen am besten und dominieren deshalb den Markt. Lithium-Ionen-Batterien dringen in immer weitere Anwendungsgebiete vor, bzgl. Wert und Produktionsmenge in MWh dominieren aber immer noch Blei-Säure-Batterien. Aus Sicht der Autoren sind Kenntnisse beider Batterietechnologien wichtig, um das Verständnis für Batteriesysteme zu vertiefen und sie in den seltenen Fällen, in denen diese beiden Batterietechnologien technische oder wirtschaftliche Alternativen sind, gegeneinander abzuwägen. Die Anforderungen an Batteriesysteme sind hoch. Sie müssen leicht und häufig ladbar sein und müssen thermisch, elektrisch und mechanisch stabil sein. In der Batterieforschung kommt materialwissenschaftliches, elektrochemisches und Ingenieurwissen zusammen. Die Autoren Alexander Börger und Heinz Wenzl geben mit diesem Buch einen umfassenden und kompakten Überblick zu den Grundlagen, Systemen und Anwendungen der Batterietechnik. Es werden Hintergründe zum Aufbau von Batterien und grundlegende Prozesse anschaulich erläutert. Anhand vieler Beispiele wird gezeigt, wie das Wissen in die Praxis umgesetzt wird. Klarer Fokus: Das Buch legt den Schwerpunkt auf Batteriesysteme, ihre Eigenschaften im Betrieb und Anwendungen. Das Buch ist als Begleitlektüre zum Studium verwendbar. Wachstumsmarkt: Das Interesse an Elektromobilität und Batteriespeichern in der Stromversorgung wächst und damit auch der Bedarf an Batteriesystemen. Anwendungsnah: Fallbeispiele aus der aktuellen Batterieentwicklung setzen die Theorie in die Praxis um. Expertenwissen: Die Autoren verfügen über langjährige Erfahrung auf dem Gebiet der Batterietechnik. Batterien: Grundlagen, Systeme, Anwendungen richtet sich an Ingenieurinnen und Ingenieure zur Einarbeitung in die Materie und als Nachschlagewerk sowie an Studierende als Begleitlektüre zu Vorlesungen.Table of Contentsvorwort v Symbolverzeichnis xxiii 1 Einführung 1 1.1 Energieversorgung allgemein 1 1.2 Elektrochemische und nicht-elektrochemische Energiespeichertechnologien 3 1.3 Grundlegende Eigenschaften von Batterien, Gemeinsamkeiten und Unterschiede 5 1.4 Überbrückungszeit 7 1.5 Vergleich von Batterietechnologien 9 1.6 Anwendungen und Einordnung von Batterien in Gesamtsysteme 10 Literatur 12 Aufgaben 12 2 Elektrochemische Grundlagen 15 2.1 Elektrochemische Grundbegriffe 16 2.1.1 Einige Definitionen 16 2.1.2 Spannung und Ladungsträgerverteilung 17 2.1.3 Die spannungsbildenden Reaktionen – Hauptreaktionen 18 2.1.4 Doppelschichtkondensator und Austauschstromdichte 20 2.1.5 Faradaysche Zahl 21 2.1.6 Theoretische spezifische Kapazität von Elektroden oder Zellen 21 2.2 Elektrochemische Thermodynamik 22 2.2.1 Energiebilanz und Gleichgewichtsspannung 22 2.2.2 Konzentrationsabhängigkeit der Gleichgewichtsspannung (Nernst-Spannung) 23 2.2.3 Temperaturabhängigkeit der Gleichgewichtsspannung 24 2.2.4 Entropieterm und Wärmetönung – reversible Wärme 24 2.2.5 Elektrochemische Spannungsreihe 24 2.2.6 Grenzen thermodynamischer Betrachtungen 25 2.2.7 Theoretische spezifische Energie 26 2.2.8 Referenzelektrode 26 2.3 Elektrochemische Kinetik 27 2.3.1 Überspannungsarten 27 2.3.2 Ladungsträgerdurchtrittsspannung 28 2.3.3 Butler-Volmer-Gleichung 28 2.3.4 Abhängigkeit der BV-Gleichung von wichtigen Systemparametern 33 2.3.5 Widerstandsverluste bei der Stromleitung – ohmsche Erwärmung 37 2.3.6 Auswirkungen der Temperatur 37 2.3.7 U-I-Kennlinie von elektrochemischen Systemen 40 2.4 Ersatzschaltbilder 41 2.4.1 Grundlagen elektrochemischer Ersatzschaltbilder 41 2.4.2 Grundlegende Ersatzschaltbilder einer Elektrode und einer Zelle 42 2.4.3 Ersatzschaltbild bei konstantem Strom 44 2.5 Nebenreaktionen 45 Literatur 47 Aufgaben 47 3 Laden und Entladen von Zellen und Batterien 51 3.1 Begriffsbestimmungen Kapazität und Innenwiderstand 52 3.1.1 Kapazität 52 3.1.2 Innenwiderstand 54 3.2 Begriffsbestimmung Laden und Entladen von Batterien 54 3.2.1 Entladen 55 3.2.2 Laden 55 3.2.3 Ladefaktor und Wirkungsgrad 58 3.3 Entladen und Laden von Elektroden einer Zelle 59 3.3.1 Bedeutung der BV-Gleichung für den Verlauf von Strom und Spannung 59 3.3.2 Entladen und Laden mit konstantem Strom 61 3.3.3 Laden mit konstantem Strom 62 3.3.4 Strom- und Spannungsverlauf von Batterien 64 3.4 Reihenschaltung von Elektrodenwechselwirkungen von Elektroden aufeinander 65 3.5 Entladen und Laden von Elektroden in einer Zelle 66 3.5.1 Bedeutung von Nebenreaktionen bei Reihenschaltung 67 3.5.2 Entladen von Zellen ohne Nebenreaktionen in Reihenschaltung 68 3.5.3 Entladen von Zellen mit Nebenreaktionen in Reihenschaltung 69 3.5.4 Laden von Zellen mit Nebenreaktionen in Reihenschaltung 72 3.5.5 Laden von Zellen ohne Nebenreaktionen in Reihe 75 3.6 Auswirkungen eines Kurzschlusses einer Zelle bei Reihenschaltung 76 3.7 Fehlerpropagation, parallele Batteriestränge und Weiteres 77 Literatur 77 Aufgaben 77 4 Aufbau von Elektroden, Zellen und kompletten Batteriesystemen 81 4.1 Elektrochemische Anforderungen an die Struktur von Aktivmassen 82 4.1.1 Allgemeine Anforderungen 82 4.1.2 Verfügbarkeit von Reaktanten 84 4.1.3 Ionische und elektronische Leitfähigkeit von Elektroden und Zellen 85 4.1.4 Mechanische Beanspruchung der Elektroden 86 4.2 Aufbau von Zellen 87 4.2.1 Allgemeine Hinweise 87 4.2.2 Bipolarplattenaufbau 88 4.2.3 Stapelzellen und gewickelte Zellen 88 4.3 Kombinierte Ionen- und Elektronenleitfähigkeit der Elektroden 94 4.4 Zellgehäuse und Batteriesysteme 95 4.4.1 Allgemeine Anforderungen 95 4.4.2 Spezifische Energie von Zellen, Modulen und Batteriesystemen 96 Literatur 97 Aufgaben 97 5 Thermische Eigenschaften von Zellen und Batterien 99 5.1 Inhomogene Wärmekapazität und anisotrope Wärmeleitung 100 5.2 Wärmequelldichte 101 5.2.1 Wärmequellen 101 5.2.2 Widerstandsverluste bei der Stromleitung – ohmsche Erwärmung 102 5.2.3 Ladungsträgerdurchtritt 103 5.2.4 Reversible Wärme der Reaktion 104 5.2.5 Chemische Reaktionen 105 5.2.6 Vergleich der Wärmeerzeugungsterme 105 5.3 Wärmeaustausch mit der Umgebung 106 5.3.1 Wärmeleitung 106 5.3.2 Konvektion 107 5.3.3 Strahlung 107 5.4 Wärmebilanz 107 5.5 Temperaturauswirkungen 108 5.6 Bestimmung thermischer Kenngrößen 110 Literatur 110 Aufgabe 110 6 Alterungseigenschaften von Batterien und Zellen 111 6.1 Klassifikation von Alterungsprozessen 112 6.2 Lebensdauer 113 6.2.1 Definition Lebensdauerende 113 6.2.2 Bestimmung des Lebensdauerendes 116 6.2.3 Veränderungen der Eigenschaften während der Nutzung 117 6.3 Grenzen der Lebensdauer 119 6.3.1 Grundsätzliche Begrenzung der Lebensdauer 119 6.3.2 Herstellerangaben über die zu erwartende Lebensdauer 119 6.4 Verfahren zur Lebensdauerprognose 120 6.4.1 Gewichtete Amperestundendurchsatzverfahren 120 6.4.2 Ereignisbasierte Lebensdauerprognoseverfahren 121 6.4.3 Prognose des Kapazitäts- und Innenwiderstandsverlaufs 122 Literatur 123 Aufgaben 124 7 Zustandsbestimmung von Zellen und Batterien 125 7.1 Motivation 126 7.2 Ladezustand und Entladetiefe 127 7.2.1 Strenge Definition des Ladezustands 127 7.2.2 Hauptreaktionsstrom 128 7.2.3 Messung des Batteriestroms 129 7.2.4 Yazami-Theorem 131 7.2.5 Experimentelle Bestimmung des Ladezustands 131 7.2.6 Entladetiefe 132 7.2.7 State of energy 132 7.3 State of health und state of function 133 7.3.1 Begriffe 133 7.3.2 Abgrenzung und Diskussion der Begriffe state of function und state of health 133 7.3.3 Messung von SoH und SoF 135 7.4 State of safety 136 Literatur 136 Aufgabe 137 8 Batteriemodelle 139 8.1 Klassifikation, Einsatz und Grenzen von Modellen 139 8.1.1 Zum Begriff des Batteriemodells 139 8.1.2 Nutzung von Modellen 140 8.1.3 Einsatzgrenzen 141 8.2 Ersatzschaltbildmodelle 141 8.2.1 Grundsätzliches 141 8.2.2 Aufbau von Ersatzschaltbildmodellen 142 8.2.3 Elektrolytkondensatoreigenschaften einer Batterie 144 8.2.4 Berücksichtigung von zeitlichen Prozessen, Massentransport und Temperatur 145 8.2.5 Örtlich aufgelöste Ersatzschaltbildmodelle 145 8.2.6 Relaxationsprozesse 146 8.3 Modelle mit ladezustandsunabhängigen Parametern: das Shepherd-Modell 147 8.4 Modelle mit ladezustandsabhängigen Parametern 149 8.4.1 Thévenet-Modell 149 8.4.2 Randles-Modell 149 8.5 Ablauf von Simulationen 150 8.6 Vergleich von Modellen 152 8.7 Modellbildung bei größeren Systemen 152 Literatur 154 Aufgaben 154 9 Parameterbestimmung 155 9.1 Begriffsbestimmung 155 9.2 Bestimmung durch physikochemische Methoden 156 9.2.1 Experimentelle Bestimmung 156 9.2.2 Kapazitätsbestimmung 158 9.2.3 Temperatur- und Stromabhängigkeit der Kapazität 158 9.2.4 Kältekapazität und Kälteprüfstrom 159 9.2.5 Überbrückungszeiten mit konstanter Leistung 159 9.3 Ruhespannungskurve 160 9.4 Innenwiderstandsbestimmung mit Strom- bzw. Spannungspulsen 160 9.5 Kurzschlussstrom 163 9.6 Parametrisierung für das Randles-Modell aus Pulsbelastungen (Messung im Zeitbereich) 164 9.7 Parameterbestimmung durch Messung des Impedanzspektrums (Messung im Frequenzbereich) 164 9.8 Messung des Wechselstrominnenwiderstands 166 9.9 Parametrisierung des Randles-Modells über alle Betriebszustände 167 Literatur 168 Aufgaben 169 10 Batterieanalytik 171 10.1 Methodenüberblick 171 10.2 Bewertung der Veränderungen elektrischer Kenngrößen 172 10.3 Elektrochemische Analyseverfahren 173 10.3.1 Stationäre elektrochemische Analyseverfahren 174 10.3.2 Quasistationäre elektrochemische Analyseverfahren 174 10.3.3 Nicht-stationäre Verfahren 176 10.4 Chemische und spektroskopische Verfahren – Post-mortem-Analyseverfahren 178 10.4.1 Allgemeines 178 10.4.2 Chemische Techniken inkl. Trennverfahren und Charakterisierungsverfahren für Oberflächen und Korngrößen 178 10.4.3 Mikroskopische Techniken 179 10.4.4 Spektroskopische Techniken 181 10.4.5 Diffraktometrische Techniken 183 10.5 In-situ-Analyseverfahren 184 10.6 Zusammenfassung 185 Literatur 185 Aufgaben 186 11 Übersicht über Batteriesysteme 187 11.1 Physikochemische Daten und Charakteristika 187 11.2 Investitions- und Betriebskosten 191 11.3 Marktstruktur 192 11.4 Verfügbarkeit von Informationen 192 11.5 Normungsdichte 193 Weiterführende Literatur 194 12 Blei-Säure-Batterien 195 12.1 Einführung und wirtschaftliche Bedeutung 196 12.2 Elektrochemie 196 12.2.1 Übersicht über aktive Komponenten 197 12.2.2 Übersicht über die wichtigsten Reaktionen an der positiven und negativen Elektrode 198 12.2.3 Beschreibung der Hauptreaktionen 200 12.2.4 Überentladereaktionen beim Entladen 201 12.2.5 Nebenreaktionen der positiven und negativen Elektrode beim Überladen 203 12.2.6 Nebenreaktionen und Selbstentladung im Ruhezustand 205 12.2.7 Laden und Entladen von Zellen in Reihe 206 12.3 Weitere elektrochemische Reaktionen 207 12.3.1 Batterien mit internem Sauerstoffkreislauf (verschlossene Batterien, VRLA) 208 12.3.2 Elektrochemie 208 12.4 Aktivmaterialien 213 12.4.1 Elektrische Leitfähigkeit der Aktivmassen 214 12.4.2 Effektive Oberfläche und Mikrostruktur der Aktivmassen 216 12.4.3 Bleisulfat 217 12.4.4 Spannungssack zu Beginn der Entladung 218 12.4.5 Herstellungsverfahren 220 12.5 Elektrolyt 220 12.6 Stromkollektoren, Gitter 222 12.6.1 Korrosionsbeständigkeit 224 12.6.2 Elektrischer Widerstand 224 12.6.3 Mechanische Stabilität 225 12.6.4 Elektrischer Kontakt zwischen Gittern und Aktivmassen 226 12.7 Herstellungsverfahren und weitere Komponenten zur Herstellung von Zellen oder Blöcken 226 12.7.1 Herstellung von Stromkollektoren und Elektroden (Platten) 226 12.7.2 Separator 227 12.7.3 Herstellung von Plattensätzen 228 12.7.4 Batteriegehäuse und Deckel 229 12.7.5 Zellverbinder 230 12.8 Strominhomogenität 230 12.9 Säureschichtung 232 12.10 Auslegung und konstruktive Unterschiede bei verschiedenen Anwendungen 235 12.10.1 Auslegung von Zellen 235 12.10.2 Starterbatterien 236 12.10.3 Traktionsbatterien für Flurförderzeuge und Semitraktionsbatterien 237 12.10.4 Batterien für stationäre bzw. ortsfeste Anlagen 238 12.10.5 Eigenschaften 239 12.10.6 Entladeverhalten und Kapazität 239 12.10.7 Überwachungsanforderungen beim Entladen 246 12.11 Leistungsabgabe und Innenwiderstand 246 12.12 Laden und Ladekennlinien 248 12.12.1 Grundlegendes zum Laden von Blei-Säure-Batterien 248 12.12.2 IU-Ladekennlinie 249 12.12.3 IUoU-Ladekennlinie 251 12.12.4 Weitere Ladekennlinien 252 12.12.5 Bewertung der Ladekennlinien 255 12.12.6 Vollladekriterien 257 12.13 Alterungseffekte 258 12.13.1 Übersicht zu Alterungseffekten 258 12.13.2 Verminderung der Oberfläche der aktiven Massen 260 12.13.3 Sulfatierung 260 12.13.4 Premature capacity loss (PLC) 261 12.13.5 Abschlammen der Aktivmasse 261 12.13.6 Korrosion des Separators 262 12.13.7 Austrocknen des Elektrolyts (verschlossene Batterien) 262 12.13.8 Dendritenbildung 263 12.13.9 Sauerstoffverzehr und Entstehung von Unterdruck in verschlossenen Batterien 263 12.14 Korrosion des positiven Gitters, positiven Kopfbleis, negativer Pole und Interzellverbinder 263 12.14.1 Korrosion des positiven Gitters 263 12.14.2 Auswirkungen der Gitterkorrosion 265 12.14.3 Korrosion der positiven Pole und Polbrücken (Kopfblei) 267 12.14.4 Korrosion der negativen Gitter, Pole und Polbrücken 269 12.14.5 Explosionsrisiko 270 12.15 Korrosion der Interzellverbinder 270 12.16 Betriebsstrategien und konstruktive Auswirkungen für Blei-Säure-Batterien 272 12.17 Zustandsbestimmung 274 12.17.1 Ladezustand 274 12.17.2 Kapazität bzw. State of Health 276 12.18 Sicherheit 277 12.18.1 Explosionsrisiko durch Knallgas 277 12.18.2 Wässrige Schwefelsäure 278 12.18.3 Umgang mit Blei 279 12.19 Batterieprobleme 279 Literatur 280 Aufgaben 283 13 Lithium-Ionen-Batterien 287 13.1 Einführung und wirtschaftliche Bedeutung 288 13.2 Elektrochemie 288 13.2.1 Grundprinzip 288 13.2.2 Übersicht über aktive Komponenten 290 13.2.3 Übersicht über die wichtigsten Reaktionen an der positiven und negativen Elektrode 291 13.2.4 Nebenreaktionen 293 13.2.5 Überlade- und Überentladereaktionen 294 13.3 Aktivmaterialien 294 13.3.1 Kathodenmaterialien 294 13.3.2 Anodenmaterialien 297 13.3.3 Ionenleitfähigkeit der Aktivmassen 301 13.4 Elektrolyt 301 13.4.1 Grundsätzliches 301 13.4.2 Organische Lösungsmittel 302 13.4.3 Weitere Bestandteile 303 13.5 Solid-electrolyte interface (SEI) und die Bedeutung für die Lithium-Ionen-Batterie 305 13.6 Stromkollektoren 307 13.7 Produktion von Elektroden 308 13.8 Separatoren 309 13.9 Sicherheitsmaßnahmen 310 13.10 Bauformen von Lithium-Ionen-Batterien 312 13.10.1 Aufbau von Zellen 312 13.10.2 Aufbau von Modulen und Batterien 315 13.11 Auslegung und konstruktive Unterschiede bei verschiedenen Anwendungen 316 13.11.1 Auslegung von Zellen 316 13.11.2 Elektrotraktionsbatterien 318 13.11.3 Starterbatterien 318 13.11.4 Batterien für stationäre bzw. ortsfeste Anlagen 319 13.11.5 Consumer-Batterien 320 13.12 Eigenschaften 321 13.12.1 Entladeverhalten und Kapazität 321 13.12.2 Kapazitätsangabe und Kapazitätsmessung 322 13.12.3 Überwachungsanforderungen 322 13.13 Innenwiderstandsmessung 323 13.14 Laden und Ladekennlinien 323 13.14.1 Ladekennlinien 323 13.14.2 Vollladung 324 13.14.3 Festkörperdiffusion beim Entladen und Laden 324 13.14.4 Laden bei tiefen Temperaturen 325 13.14.5 Schnellladen 325 13.15 Alterungseffekte 325 13.15.1 Alterungseffekte allgemein 325 13.15.2 Alterung der Kathode 326 13.15.3 Alterung der Anode 327 13.15.4 Alterung im Elektrolyt 330 13.15.5 Korrosion des Separators 331 13.15.6 Sonstige Alterungseffekte 331 13.16 Einfluss kalendarischer und zyklischer Alterung und Modellierung 331 13.16.1 Alterung und die Notwendigkeit ihrer Modellierung 331 13.16.2 Modellierung und Simulation von Alterung 332 13.16.3 Quantitative Modellansätze zur Beschreibung von Alterung 335 13.17 Batteriemanagementsysteme und Batteriebetriebsstrategien 336 13.17.1 Generelles 336 13.17.2 Technische Realisierungen von Batteriemanagementsystemen für Lithium-Ionen-Batterien 337 13.17.3 Balancing 339 13.17.4 Datenanalyse und Fehlererkennung 340 13.17.5 Integration von Kühlung und Heizung 341 13.18 Zustands- und Parameterbestimmung 341 13.18.1 Ladezustand 341 13.18.2 Kapazität, Innenwiderstand bzw. State of Health 342 13.19 Sicherheit 343 13.19.1 Allgemeine Sicherheitsaspekte 343 13.19.2 Missbrauchstests 344 13.20 State of Safety 346 13.20.1 Generelle Situation 346 13.20.2 Gefährdungs- und Sicherheitsstufen 346 13.20.3 Sicherheitsgrenzen 348 13.20.4 Definitionsversuche 349 13.21 Interne Kurzschlüsse 350 13.22 Thermal Runaway und thermische Propagation 351 13.22.1 Problematik und Feldsituation 351 13.22.2 Thermal runaway 353 13.22.3 Thermische Propagation 357 13.23 Sicherheitsengineering 361 13.24 Batterieprobleme 362 Literatur 365 Aufgaben 367 14 Andere Batterietechnologien 369 14.1 Alkalische Nickel-Batterien 370 14.1.1 Generelles 370 14.1.2 Physikalisch-chemische Grundlagen 370 14.1.3 Zellaufbau 372 14.1.4 Batterieeigenschaften 374 14.1.5 Alterungsverhalten 374 14.1.6 Sicherheitsaspekte 376 14.1.7 Optimaler Betrieb 377 14.1.8 Ausblick 377 14.2 Zink-Luft-Batterien 378 14.2.1 Generelles 378 14.2.2 Physikalisch-chemische Grundlagen 378 14.2.3 Zellaufbau 379 14.2.4 Eigenschaften 379 14.2.5 Alterungsverhalten 379 14.2.6 Optimaler Betrieb 380 14.2.7 Sicherheitseigenschaften 380 14.2.8 Ausblick 380 14.3 Redox-Flow-Batterien 380 14.3.1 Generelles und physikalisch-chemische Grundlagen 380 14.3.2 Ausblick 381 14.4 Hochtemperaturbatterien 382 14.4.1 Generelles 382 14.4.2 Physikalisch-chemische Grundlagen 382 14.4.3 Zellaufbau 383 14.4.4 Eigenschaften 383 14.4.5 Alterungserscheinungen 383 14.4.6 Sicherheitseigenschaften 383 14.4.7 Optimaler Betrieb 383 14.4.8 Ausblick 384 14.5 Lithium-Feststoffelektrolyt-Batterien 384 14.5.1 Generelles 384 14.5.2 Physikalisch-chemische Grundlagen 385 14.5.3 Ausblick 385 14.6 Lithium-Schwefel-Batterien 386 14.6.1 Generelles 386 14.6.2 Physikalisch-chemische Grundlagen 387 14.6.3 Ausblick 387 14.7 Lithium-Luft-Batterien 388 14.7.1 Generelles 388 14.7.2 Physikalisch-chemische Grundlagen 389 14.7.3 Aktueller Stand 389 14.8 Natrium-Luft-Batterien 390 14.8.1 Generelles 390 14.8.2 Physikalisch-chemische Grundlagen 390 14.8.3 Ausblick 390 14.9 Ultrakondensatoren und Hybridbatterien 390 14.9.1 Generelles 390 14.9.2 Physikalisch-chemische Grundlagen 391 14.9.3 Hybride Batteriekonzepte 392 Literatur 392 Aufgaben 393 15 Übersicht über Anwendungen 395 15.1 Allgemeine Bemerkungen 396 15.2 Leistungsverlauf 397 15.2.1 Gleichzeitige Verbindung von Batterien mit Ladegerät und Lasten 397 15.2.2 Zeitlich getrennte Verbindung von Batterien mit Ladegerät und Last 400 15.3 Ladezustand und Restkapazität 400 15.4 Wirkungsgrad 400 15.4.1 Wirkungsgrad bei zyklischer Belastung 401 15.4.2 Stand-by-Verluste 402 15.4.3 Relevanz des Wirkungsgrades der Batterie 402 15.5 Sicherheit und umweltverträglicher Umgang mit Batterien 403 15.6 Unterteilung in Anwendungsbereiche 403 15.6.1 Starterbatterien für Fahrzeuge (starting, lighting, ignition, SLI) 404 15.6.2 Batterien für die Elektromobilität 404 15.6.3 Batterien für Flurförderzeuge für den innerbetrieblichen Transport 404 15.6.4 Stationäre Anwendungen 405 15.6.5 Batterien für portable Geräte (Werkzeuge, Kommunikationsendgeräte etc.) 405 Literatur 405 Aufgaben 406 16 Starterbatterien für Fahrzeuge (starting, lighting, ignition, SLI) 407 16.1 Begriffsbestimmung 407 16.2 Anforderungen an die Batterie 408 16.3 Wahl der Batterietechnologie 412 16.4 Auslegung und Betrieb 414 16.5 Überwachung der Batterie 416 16.6 Sonstiges 417 Literatur 417 Aufgaben 417 17 Batterien für die Elektromobilität 419 17.1 Begriffsbestimmung 419 17.2 Anforderungen an die Batterie 421 17.3 Wahl der Batterietechnologie 424 17.4 Aufbau des Batteriesystems 425 17.5 Auslegung und Betrieb 426 17.6 Überwachung der Batterie 430 17.7 Sonstiges 431 Literatur 432 Aufgaben 433 18 Traktionsbatterien für den innerbetrieblichen Transport 435 18.1 Flurförderzeuge für den innerbetrieblichen Transport 435 18.1.1 Anforderungen 436 18.1.2 Wahl der Batterietechnologie 436 18.1.3 Betrieb 438 18.1.4 Überwachung von Batterien 444 18.2 Kleintraktionsbatterien 444 18.2.1 Anforderungen 445 18.2.2 Wahl der Batterietechnologie 445 18.2.3 Betrieb 445 Literatur 445 19 Stationäre Anwendungen von Batterien 447 19.1 Bereitschaftsparallelbetrieb für Netzersatz- und USV-Anlagen 448 19.1.1 Begriffsklärung 448 19.1.2 Anforderungen 450 19.1.3 Wahl der Batterietechnologie 451 19.1.4 Auslegung 452 19.1.5 Betrieb 453 19.1.6 Überwachung der Batterie 454 19.1.7 Sonstige Informationen 460 19.2 Dieselstart bei Netzersatzanlagen 460 19.2.1 Anforderungen 461 19.2.2 Wahl der Batterietechnologie 462 19.2.3 Wartung und Fehlerdiagnose 463 19.3 Batterien für den zeitlichen Ausgleich von Stromnachfrage und -angebot 463 19.3.1 Anwendungsgruppen 463 19.3.2 Anforderungen 465 19.3.3 Wahl der Batterietechnologie 466 19.3.4 Auslegung 467 19.3.5 Betriebsstrategie 469 19.3.6 Überwachung 470 19.4 Batterien für die Stabilisierung des Energieversorgungssystems 470 19.4.1 Beispiele für große Batteriespeicher auf der Welt und Bewertung 470 19.4.2 Anforderungen 471 19.4.3 Wahl der Batterietechnologie 472 19.4.4 Sonstiges 472 Literatur 473 Aufgaben 473 20 Batterien für portable Anwendungen 477 20.1 Begriffsbestimmung 477 20.2 Anforderungen an die Batterie 478 20.3 Wahl der Batterietechnologie 479 20.4 Auslegung und Betrieb 480 20.5 Überwachung der Batterien 481 20.6 Sonstiges 481 Literatur 482 Aufgaben 482 Anhang A Übersicht über Begriffe 483 Anhang B Sicherer und umweltverträglicher Umgang mit Batterien 495 B.1 Generelles 495 B.2 Elektrische Sicherheit 496 B.3 Brandschutz 499 B.4 Explosionsschutz 500 B.4.1 Explosionsschutz bei Blei-Säure-Batterien 501 B.4.2 Explosionsschutz bei Lithium-Ionen-Batterien 504 B.5 Bauliche Maßnahmen und Transport 504 B.6 Umweltbelastung und Entsorgung 505 Literatur 505 Anhang C Normenübersicht 507 Anhang D Elektrochemische Impedanzspektroskopie (EIS) 513 D.1 Begriffsübersicht 513 D.2 Ergebnisdarstellung 515 D.3 Bestimmung von Zellparametern mittels Impedanzspektroskopie 516 D.4 Qualität der Parameterbestimmung 522 Literatur 524 Anhang E Säureschichtung 525 Literatur 529 Stichwortverzeichnis 531

    2 in stock

    £63.00

  • Oxide Thermoelectric Materials: from Basic

    Wiley-VCH Verlag GmbH Oxide Thermoelectric Materials: from Basic

    1 in stock

    Book SynopsisThe first book of its kind?providing comprehensive information on oxide thermoelectrics This timely book explores the latest research results on the physics and materials science of oxide thermoelectrics at all scales. It covers the theory, design and properties of thermoelectric materials as well as fabrication technologies for devices and their applications. Written by three distinguished materials scientists, Oxide Thermoelectric Materials reviews: the fundamentals of electron and phonon transport; modeling of thermoelectric modules and their optimization; synthetic processes, structures, and properties of thermoelectric materials such as Bi2Te3- and skutterudite-based materials and Si-Ge alloys. In addition, the book provides a detailed description of the construction of thermoelectric devices and their applications. -Contains fundamentals and applications of thermoelectric materials and devices, and discusses their near-future perspectives -Introduces new, promising materials and technologies, such as nanostructured materials, perovskites, and composites -Paves the way for increased conversion efficiencies of oxides -Authored by well-known experts in the field of thermoelectrics Oxide Thermoelectric Materials is a well-organized guidebook for graduate students involved in physics, chemistry, or materials science. It is also helpful for researchers who are getting involved in thermoelectric research and development. Table of ContentsForeword ix Part I Theories and Fundamentals 1 1 Electron Transport Model in Nano Bulk Thermoelectrics 3 1.1 History of Conducting Oxides 3 1.2 Structural Characteristics of Oxides 8 1.3 Band Structure of Conventional Oxides 11 1.4 Electrical Properties 11 1.5 Model for Thermoelectric Oxides 15 1.6 Effect of Interface on Electron Transport 17 References 22 2 Controlling the Thermal Conductivity of Bulk Nanomaterials 25 2.1 Bonding and Lattice Vibration 25 2.2 Lattice Distortions in Determining Thermal Properties 25 2.2.1 Point Defects and Dislocations 25 2.2.2 Peierls Distortion 27 2.2.3 Octahedral Distortion in Manganite Perovskites 28 2.3 Callaway Model and the Minimum Thermal Properties 30 2.4 Temperature Relationship in Thermal Properties 32 2.5 Model for Lattice Thermal Conductivity 36 2.5.1 Kinetic Theory 36 2.5.2 Boltzmann Equation 36 2.5.3 Phonon–Phonon Collisions 38 2.6 Interfacial Thermal Conductivity 40 2.7 Model for Nano Bulk Materials 43 2.8 Minimum Value for Oxides 48 References 49 Part II Materials 53 3 Nonoxide Materials 55 3.1 Bi2Te3-Based Materials 55 3.2 Skutterudite-Based Materials 59 3.3 Si–Ge Alloys 62 3.4 Other Alloy Materials 66 References 71 4 Binary Oxides 77 4.1 Introduction for ZnO 77 4.2 Property of ZnO 77 4.2.1 Structure 77 4.2.2 Lattice Parameters 77 4.2.3 Electronic Band Structure 77 4.2.4 Mechanical Properties 79 4.2.5 Thermal Expansion Coefficients 79 4.2.6 Thermal Conductivity 80 4.2.7 Specific Heat 80 4.2.8 Electrical Properties of Undoped ZnO 81 4.3 Doping for ZnO-Based Thermoelectric Materials 81 4.4 ZnO Nanostructures 84 4.5 Introduction for In2O3 87 4.6 Property of In2O3 88 4.6.1 Structure 88 4.6.2 Electronic Band Structure 89 4.6.3 Thermal Properties and Electrical Properties 89 4.7 Doping for In2O3-BasedThermoelectricMaterials 90 4.8 In2O3 Nanostructures 94 4.9 TiO2 and Others 98 References 101 5 Perovskite-Type Oxides 105 5.1 Introduction for Perovskite-Type Oxides 105 5.2 Crystal Structure and Electronic Structure of Perovskite-Type Oxides 106 5.2.1 Crystal Structure 106 5.2.2 Electronic Structure 107 5.3 A- and B-Sites Doping for Perovskite-Type Oxides 108 5.3.1 SrTiO3 108 5.3.2 CaMnO3 109 5.3.3 LaCoO3 111 5.4 Double Perovskites 112 5.4.1 Structure of Double Perovskites 112 5.4.2 Thermoelectric Properties of A′A′′B2O5+𝛿 113 5.4.3 Thermoelectric Properties of A2B′B′′O6 113 5.4.4 Doping Modulation 115 5.4.5 Composite Ceramics 118 5.5 Nanostructure Property Relationships in Perovskite-Type Oxides 120 References 124 6 Oxide Cobaltites 133 6.1 Introduction 133 6.2 NaxCoO2 133 6.3 Ca3Co4O9 138 6.3.1 Single Dopants of Ca3Co4O9 139 6.3.2 Dual Dopants of Ca3Co4O9 144 6.3.3 Texture for Ca3Co4O9 147 6.3.4 Nanocomposites for Ca3Co4O9 147 6.4 New Concepts for Oxide Cobaltites 150 References 151 7 Promising Complex Oxides for High Performance 155 7.1 Crystal Structure–Property Relationships 155 7.2 History of Complex Superconductors 156 7.3 Ternary Oxyselenides 158 7.3.1 Donor Doping on [Bi2O2]2+ Layers 158 7.3.2 Donor Doping on [Se]2− Layers 160 7.3.3 The Solid Solution of Bi2O2Se and Bi2O2Te 160 7.4 Quaternary Oxyselenides 164 7.4.1 Thermoelectric Properties 166 7.4.2 Band Gap Tuning 168 7.4.3 Texturing 168 7.4.4 Modulation Doping 169 7.4.5 Nanocompositing 171 7.5 Complexity Through Disorder in the Unit Cell 173 7.6 Complex Unit Cells 174 References 176 8 New Thermoelectric Materials and Nanocomposites 179 8.1 Nanocomposite Design 180 8.1.1 Energy-filtering Design 180 8.1.2 All-Scale Hierarchical Architectures 181 8.1.3 Quantum Nanostructured Bulk Materials 183 8.2 Organic Thermoelectric Materials 183 8.2.1 p-Type Organic Thermoelectric Materials 184 8.2.2 PEDOT 184 8.2.3 PANI 187 8.2.3.1 The Molecular Structure of PANI 188 8.2.3.2 Conductive Mechanism of PANI 188 8.2.3.3 Synthesis of PANI 188 8.2.3.4 Electrochemical Method 189 8.2.4 Doping of PANI 189 8.2.5 Tuning the Work Function of Polyaniline 190 8.2.6 n-Type Thermoelectric Materials 192 8.3 Organic/Inorganic Thermoelectric Nanocomposites 192 8.3.1 0D Nanoparticles/Polymer 192 8.3.2 1D Nanowires or Nanotubes/Polymer 193 8.3.3 2D Nanosheets/Polymer 197 References 201 Part III Devices and Application 207 9 Oxide Materials Preparation 209 9.1 Synthesis Method of Nanopowder 209 9.1.1 Solid-State Reaction 209 9.1.2 Solution Preparation 210 9.1.2.1 Sol–Gel Method 211 9.1.2.2 Precipitation and Coprecipitation Method 211 9.1.2.3 Hydrothermal Method 213 9.1.3 Gas-Phase Reaction 214 9.2 Advanced Bulk Technology 214 9.2.1 Spark Plasma Sintering 215 9.2.2 Hot-Press Sintering 215 9.2.3 Microwave Sintering 217 9.2.4 Two-Step Sintering 218 9.2.5 Phase-Transformation Sintering 219 9.3 Sintering Conditions on the Properties of Bulk 219 9.3.1 Effect of Sintering Temperature 219 9.3.2 Effect of Sintering Atmosphere 220 9.3.3 Effect of the Addition for Sintering 220 References 221 10 Modeling and Optimizing of Thermoelectric Devices 229 10.1 Introduction to Thermoelectric Devices 229 10.2 The Theoretical Analysis 230 10.3 The Model Design 232 10.4 The Interfaces in Thermoelectric Modules 236 10.5 The Simulation and the Optimization 238 10.6 The Measurement Theories and Systems 241 10.7 All-oxide Thermoelectric Device 242 References 245 11 Photovoltaic Application of Thermoelectric Materials and Devices 247 11.1 Introduction 247 11.2 Photovoltaic–Thermoelectric Integration Devices 248 11.3 Photoelectric–Thermoelectric Composite Materials 253 References 260 Index 263

    1 in stock

    £114.26

  • Solid Oxide Fuel Cells: From Electrolyte-Based to

    Wiley-VCH Verlag GmbH Solid Oxide Fuel Cells: From Electrolyte-Based to

    1 in stock

    Book SynopsisPresents innovative approaches towards affordable, highly efficient, and reliable sustainable energy systems Written by leading experts on the subject, this book provides not only a basic introduction and understanding of conventional fuel cell principle, but also an updated view of the most recent developments in this field. It focuses on the new energy conversion technologies based on both electrolyte and electrolyte-free fuel cells?from advanced novel ceria-based composite electrolyte low temperature solid oxide fuel cells to non-electrolyte fuel cells as advanced fuel-to-electricity conversion technology. Solid Oxide Fuel Cells: From Electrolyte-Based to Electrolyte-Free Devices is divided into three parts. Part I covers the latest developments of anode, electrolyte, and cathode materials as well as the SOFC technologies. Part II discusses the non-electrolyte or semiconductor-based membrane fuel cells. Part III focuses on engineering efforts on materials, technology, devices and stack developments, and looks at various applications and new opportunities of SOFC using both the electrolyte and non-electrolyte principles, including integrated fuel cell systems with electrolysis, solar energy, and more. -Offers knowledge on how to realize highly efficient fuel cells with novel device structures -Shows the opportunity to transform the future fuel cell markets and the possibility to commercialize fuel cells in an extended range of applications -Presents a unique collection of contributions on the development of solid oxide fuel cells from electrolyte based to non-electrolyte-based technology -Provides a more comprehensive understanding of the advances in fuel cells and bridges the knowledge from traditional SOFC to the new concept -Allows readers to track the development from the conventional SOFC to the non-electrolyte or single-component fuel cell Solid Oxide Fuel Cells: From Electrolyte-Based to Electrolyte-Free Devices will serve as an important reference work to students, scientists, engineers, researchers, and technology developers in the fuel cell field. Table of ContentsPreface xiii Part I Solid Oxide Fuel Cell with Ionic Conducting Electrolyte 1 1 Introduction 3Bin Zhu and Peter D. Lund 1.1 An Introduction to the Principles of Fuel Cells 3 1.2 Materials and Technologies 5 1.3 New Electrolyte Developments on LTSOFC 10 1.4 Beyond the State of the Art: The Electrolyte-Free Fuel Cell (EFFC) 20 1.4.1 Fundamental Issues 23 1.5 Beyond the SOFC 25 References 28 2 Solid-State Electrolytes for SOFC 35Liangdong Fan 2.1 Introduction 35 2.2 Single-Phase SOFC Electrolytes 37 2.2.1 Oxygen Ionic Conducting Electrolyte 37 2.2.1.1 Stabilized Zirconia 37 2.2.1.2 Doped Ceria 39 2.2.1.3 SrO- and MgO-Doped Lanthanum Gallates (LSGM) 42 2.2.2 Proton-Conducting Electrolyte and Mixed Ionic Conducting Electrolyte 42 2.2.3 Alternative New Electrolytes and Research Interests 44 2.3 Ion Conduction/Transportation in Electrolytes 49 2.4 Composite Electrolytes 52 2.4.1 Oxide–Oxide Electrolyte 52 2.4.2 Oxide–Carbonate Composite 53 2.4.2.1 Materials Fabrication 54 2.4.2.2 Performance and Stability Optimization 57 2.4.3 Other Oxide–Salt Composite Electrolytes 60 2.4.4 Ionic Conduction Mechanism Studies of Ceria–Carbonate Composite 62 2.5 NANOCOFC and Material Design Principle 66 2.6 Concluding Remarks 67 Acknowledgments 69 References 69 3 Cathodes for Solid Oxide Fuel Cell 79Tianmin He, Qingjun Zhou, and Fangjun Jin 3.1 Introduction 79 3.2 Overview of Cathode Reaction Mechanism 80 3.3 Development of Cathode Materials 82 3.3.1 Perovskite Cathode Materials 82 3.3.1.1 Mn-Based Perovskite Cathodes 83 3.3.1.2 Co-Based Perovskite Cathodes 85 3.3.1.3 Fe-Based Perovskite Cathodes 88 3.3.1.4 Ni-Based Perovskite Cathodes 89 3.3.2 Double Perovskite Cathode Materials 89 3.4 Microstructure Optimization of Cathode Materials 94 3.4.1 Nanostructured Cathodes 94 3.4.2 Composite Cathodes 97 3.5 Summary 102 References 103 4 Anodes for Solid Oxide Fuel Cell 113Chunwen Sun 4.1 Introduction 113 4.2 Overview of Anode Reaction Mechanism 114 4.2.1 Basic Operating Principles of a SOFC 114 4.2.1.1 The Anode Three-Phase Boundary 115 4.3 Development of Anode Materials 117 4.3.1 Ni–YSZ Cermet Anode Materials 117 4.3.2 Alternative Anode Materials 118 4.3.2.1 Fluorite Anode Materials 118 4.3.2.2 Perovskite Anode Materials 120 4.3.3 Sulfur-Tolerant Anode Materials 124 4.4 Development of Kinetics, Reaction Mechanism, and Model of the Anode 126 4.5 Summary and Outlook 135 Acknowledgments 137 References 137 5 Design and Development of SOFC Stacks 145Wanbing Guan 5.1 Introduction 145 5.2 Change of Cell Output Performance Under 2D Interface Contact 145 5.2.1 Design of 2D Interface Contact Mode 145 5.2.2 Variations of Cell Output Performance Under 2D Contact Mode 147 5.2.3 2D Interface Structure Improvements and Enhancement of Cell Output Performance 149 5.2.4 Contributions of 3D Contact in 2D Interface Contact 151 5.2.5 Mechanism of Performance Enhancement After the Transition from 2D to 3D Interface 153 5.3 Control Design of Transition from 2D to 3D Interface Contact and Their Quantitative Contribution Differentiation 156 5.3.1 Control Design of 2D and 3D Interface Contact 156 5.3.2 Quantitative Effects of 2D Contact on the Transient Output Performance of a Cell 158 5.3.3 Quantitative Effects of 2D Contact on the Steady-State Output Performance of the Cell 161 5.3.4 Quantitative Effects of 3D Contact on Cell Transient Performance 163 5.3.5 Quantitative Effects of 3D Contact on the Steady-State Performance of a Cell 166 5.3.6 Differences Between 2D and 3D Interface Contacts 169 5.4 Conclusions 171 References 172 Part II Electrolyte-Free Fuel Cells: Materials, Technologies, and Working Principles 173 6 Electrolyte-Free SOFCs: Materials, Technologies, and Working Principles 175Bin Zhu, Liangdong Fan, Jung-Sik Kim, and Peter D. Lund 6.1 Concept of the Electrolyte-Free Fuel Cell 175 6.2 SLFC Using the Ionic Conductor-based Electrolyte 177 6.3 Developments on Advanced SLFC 179 6.4 From SLFCs to Semiconductor–Ionic Fuel Cells (SIFCs) 184 6.5 The SLFC Working Principle 196 6.6 Remarks 204 Acknowledgments 207 References 207 7 Ceria Fluorite Electrolytes from Ionic to Mixed Electronic and Ionic Membranes 213Baoyuan Wang, Liangdong Fan, Yanyan Liu, and Bin Zhu 7.1 Introduction 213 7.2 Doped Ceria as the Electrolyte for Intermediate Temperature SOFCs 214 7.3 Surface Doping for Low Temperature SOFCs 216 7.4 Non-doped Ceria for Advanced Low Temperature SOFCs 222 References 235 8 Charge Transfer in Oxide Solid Fuel Cells 239Jing Shi and Sining Yun 8.1 Oxygen Diffusion in Perovskite Oxides 239 8.1.1 Oxygen Vacancy Formation 239 8.1.2 Oxygen Diffusion Mechanisms 242 8.1.3 Anisotropy Oxygen Transport in Layered Perovskites 244 8.1.3.1 Oxygen Transport in Ruddlesden–Popper (RP) Perovskites 244 8.1.3.2 Oxygen Transport in A-Site Ordered Double Perovskites 244 8.1.4 Oxygen Ion Diffusion at Grain Boundary 246 8.1.5 Factors Controlling Oxygen Migration Barriers in Perovskites 248 8.2 Proton Diffusion in Perovskite-Type Oxides 249 8.2.1 Proton Diffusion Mechanisms 249 8.2.2 Proton–Dopant Interaction 253 8.2.2.1 Influence of Dopants in A-site 253 8.2.2.2 Influence of Dopants in B-Site 254 8.2.3 Long-range Proton Conduction Pathways in Perovskites 255 8.2.4 Hydrogen-Induced Insulation 256 8.3 Enhanced Ion Conductivity in Oxide Heterostructures 259 8.3.1 Enhanced Ionic Conduction by Strain 259 8.3.2 Enhanced Ionic Conductivity by Band Bending 263 8.3.2.1 Surface State-induced Band Bending 263 8.3.2.2 Band Bending in p–n Heterojunctions 265 8.3.2.3 p–n Heterojunction Structures in SOFC 265 8.4 Summary 266 Acknowledgments 267 References 267 9 Material Development II: Natural Material-based Composites for Electrolyte Layer-free Fuel Cells 275Chen Xia and Yanyan Liu 9.1 Introduction 275 9.1.1 Materials Development for EFFCs 275 9.1.2 Natural Materials as Potential Electrolytes 276 9.2 Industrial-grade Rare Earth for EFFCs 279 9.2.1 Rare-earth Oxide LCP 280 9.2.2 Semiconducting–Ionic Composite Based on LCP 281 9.2.2.1 LCP–LSCF 282 9.2.2.2 LCP–ZnO 284 9.2.3 Stability Operation and Schottky Junction of EFFC 288 9.2.3.1 Performance Stability 288 9.2.3.2 In Situ Schottky Junction Effect 288 9.2.4 Summary 290 9.3 Natural Hematite for EFFCs 291 9.3.1 Natural Hematite 292 9.3.2 Semiconducting–Ionic Composite Based on Hematite 295 9.3.2.1 Hematite–LSCF 295 9.3.2.2 Hematite/LCP–LSCF 297 9.3.3 Summary 300 9.4 Natural CuFe Oxide Minerals for EFFCs 302 9.4.1 Natural CuFe2O4 Mineral for EFFC 302 9.4.2 Natural Delafossite CuFeO2 for EFFC 305 9.4.3 Summary 308 9.5 Bio-derived Calcite for EFFC 308 9.5.1 Bio-derived Calcite for EFFC 309 9.5.2 Summary 312 References 314 10 Charge Transfer, Transportation, and Simulation 319Muhammad Afzal, Mustafa Anwar, Muhammad I. Asghar, Peter D. Lund, Naveed Jhamat, Rizwan Raza, and Bin Zhu 10.1 Physical Aspects 319 10.2 Electrochemical Aspects 320 10.3 Ionic Conduction Enhancement in Heterostructure Composites 321 10.4 Charge Transportation Mechanism and Coupling Effects 326 10.5 Surface and Interfacial State-Induced Superionic Conduction and Transportation 330 10.6 Ionic Transport Number Measurements 331 10.7 Determination of Electron and Ionic Conductivities in EFFCs 332 10.8 EIS Analysis 334 10.9 Semiconductor Band Effects on the Ionic Conduction Device Performance 335 10.10 Simulations 339 Acknowledgments 343 References 343 11 Electrolyte-Free Fuel Cell: Principles and Crosslink Research 347Yan Wu, Liangdong Fan, Naveed Mushtaq, Bin Zhu, Muhammad Afzal, Muhammad Sajid, Rizwan Raza, Jung-Sik Kim, Wen-Feng Lin, and Peter D. Lund 11.1 Introduction 347 11.2 Fundamental Considerations of Fuel Cell Semiconductor Electrochemistry 353 11.2.1 Physics and Electrochemistry at Interfaces 353 11.2.2 Electrochemistry vs. Semiconductor Physics 355 11.3 Working Principle of Semiconductor-Based Fuel Cells and Crossing Link Sciences 356 11.4 Extending Applications by Coupling Devices 367 11.5 Final Remarks 368 Acknowledgments 372 References 373 Part III Fuel Cells: From Technology to Applications 377 12 Scaling Up Materials and Technology for SLFC 379Kang Yuan, Zhigang Zhu, Muhammad Afzal, and Bin Zhu 12.1 Single-Layer Fuel Cell (SLFC) Engineering Materials 379 12.2 Scaling Up Single-Layer Fuel Cell Devices: Tape Casting and Hot Pressing 383 12.3 Scaling Up Single-Layer Fuel Cell Devices: Thermal Spray Coating Technology 386 12.3.1 Traditional Plasma Spray Coating Technology 387 12.3.2 New Developed Low-Pressure Plasma Spray (LPPS) Coating Technology 388 12.4 Short Stack 395 12.4.1 SLFC Cells 395 12.4.2 Bipolar Plate Design 396 12.4.3 Sealing and Sealant-Free Short Stack 396 12.5 Tests and Evaluations 397 12.6 Durability Testing 399 12.7 A Case Study for the Cell Degradation Mechanism 400 12.8 Continuous Efforts and Future Developments 404 12.9 Concluding Remarks 409 References 411 13 Planar SOFC Stack Design and Development 415Shaorong Wang, Yixiang Shi, Naveed Mushtaq, and Bin Zhu 13.1 Internal Manifold and External Manifold 415 13.2 Interface Between an Interconnect Plate and a Single Cell 416 13.3 Antioxidation Coating of the Interconnect Plate 418 13.4 Design the Flow Field of Interconnect Plate 419 13.4.1 Mathematical Simulation 420 13.4.2 Effect of Co-flow, Crossflow, and Counterflow 422 13.4.3 Air Flow Distribution Between Layers in a Stack 424 13.5 The Importance of Sealing 424 13.5.1 Thermal Cycling of the Sealing 428 13.5.2 Durability of Sealing 428 13.6 The Life of the Stack: The Chemical Problems on the Interface 429 13.7 Toward Market Products 431 13.8 Concluding Remarks 443 References 443 14 Energy System Integration and Future Perspectives 447Ghazanfar Abbas, Muhammad Ali Babar, Fida Hussain, and Rizwan Raza 14.1 Solar Cell and Fuel Cell 447 14.2 Fuel Cell–Solar Cell Integration 450 14.3 Solar Electrolysis–Fuel Cell Integration 452 14.4 Fuel Cell–Biomass Integration 453 14.5 The Fuel Cell System Modeling Using Biogas 454 14.5.1 Activation Loss 457 14.5.2 Ohmic Loss 457 14.5.3 Concentration Voltage Loss 458 14.6 The Fuel Cell System Efficiency (Heating and Electrical) 458 14.6.1 The Effect of Different Temperatures on System Efficiency 458 14.6.2 The Fuel Utilization Factor and Efficiencies of the System 458 14.6.3 The System Efficiencies and Operating Pressure 460 14.7 Integrated New Clean Energy System 460 14.8 Summary 462 References 462 Index 465

    1 in stock

    £112.46

  • Heterogeneous Catalysts: Advanced Design,

    Wiley-VCH Verlag GmbH Heterogeneous Catalysts: Advanced Design,

    1 in stock

    Book SynopsisPresents state-of-the-art knowledge of heterogeneous catalysts including new applications in energy and environmental fields This book focuses on emerging techniques in heterogeneous catalysis, from new methodology for catalysts design and synthesis, surface studies and operando spectroscopies, ab initio techniques, to critical catalytic systems as relevant to energy and the environment. It provides the vision of addressing the foreseeable knowledge gap unfilled by classical knowledge in the field. Heterogeneous Catalysts: Advanced Design, Characterization and Applications begins with an overview on the evolution in catalysts synthesis and introduces readers to facets engineering on catalysts; electrochemical synthesis of nanostructured catalytic thin films; and bandgap engineering of semiconductor photocatalysts. Next, it examines how we are gaining a more precise understanding of catalytic events and materials under working conditions. It covers bridging pressure gap in surface catalytic studies; tomography in catalysts design; and resolving catalyst performance at nanoscale via fluorescence microscopy. Quantum approaches to predicting molecular reactions on catalytic surfaces follows that, along with chapters on Density Functional Theory in heterogeneous catalysis; first principles simulation of electrified interfaces in electrochemistry; and high-throughput computational design of novel catalytic materials. The book also discusses embracing the energy and environmental challenges of the 21st century through heterogeneous catalysis and much more. Presents recent developments in heterogeneous catalysis with emphasis on new fundamentals and emerging techniques Offers a comprehensive look at the important aspects of heterogeneous catalysis Provides an applications-oriented, bottoms-up approach to a high-interest subject that plays a vital role in industry and is widely applied in areas related to energy and environment Heterogeneous Catalysts: Advanced Design, Characterization and Applications is an important book for catalytic chemists, materials scientists, surface chemists, physical chemists, inorganic chemists, chemical engineers, and other professionals working in the chemical industry.Table of ContentsVolume 1 Preface xv Section I Heterogeneous Catalysts Design and Synthesis 1 1 Evolution of Catalysts Design and Synthesis: From Bulk Metal Catalysts to Fine Wires and Gauzes, and that to Nanoparticle Deposits, Metal Clusters, and Single Atoms 3Wey Yang Teoh 1.1 The Cradle of Modern Heterogeneous Catalysts 3 1.2 The Game Changer: High-Pressure Catalytic Reactions 5 1.3 Catalytic Cracking and Porous Catalysts 8 1.4 Miniaturization of Metal Catalysts: From Supported Catalysts to Single-Atom Sites 12 1.5 Perspectives and Opportunities 15 References 16 2 Facets Engineering on Catalysts 21Jian (Jeffery) Pan 2.1 Introduction 21 2.2 Mechanisms of Facets Engineering 22 2.3 Anisotropic Properties of Crystal Facets 27 2.3.1 Anisotropic Adsorption 27 2.3.2 Surface Electronic Structure 28 2.3.3 Surface Electric Field 29 2.4 Effects of Facets Engineering 32 2.4.1 Optical Properties 32 2.4.2 Activity and Selectivity 33 2.5 Outlook 34 References 35 3 Electrochemical Synthesis of Nanostructured Catalytic Thin Films 39Hoi Ying Chung and Yun Hau Ng 3.1 Introduction 39 3.2 Principle of Electrochemical Method in Fabricating Thin Film 40 3.2.1 Anodization 42 3.2.1.1 Pulse or Step Anodization 45 3.2.2 Cathodic Electrodeposition 46 3.2.2.1 Pulse Electrodeposition 47 3.2.3 Electrophoretic Deposition 48 3.2.4 Combinatory Methods Involving Electrochemical Process 50 3.2.4.1 Combined Electrophoretic Deposition–Anodization (CEPDA) Approach 51 3.3 Conclusions and Perspective 52 References 53 4 Synthesis and Design of Carbon-Supported Highly Dispersed Metal Catalysts 57Enrique García-Bordejé 4.1 Introduction 57 4.2 Preparation of Catalysts on New Carbon Supports 58 4.2.1 Catalyst on Graphene Oxide 59 4.2.2 Catalyst on Graphene 60 4.2.2.1 Graphene or rGO as Starting Material 60 4.2.2.2 Graphene Oxide as Precursor of Graphene-Supported Catalyst 61 4.2.2.3 Graphene Derivatives: Doped Graphene and Synthetic Derivatives 62 4.2.3 Catalyst on Nanodiamonds and Onion-Like Carbon 63 4.2.4 SACs on Carbon Nitrides and Covalent Triazine Frameworks 67 4.2.5 Catalyst on Carbon Material from Hydrothermal Carbonization of Biomolecules 68 4.3 Emerging Techniques for Carbon-Based Catalyst Synthesis 69 4.3.1 Deposition of Colloidal Nanoparticles 70 4.3.2 Single-Metal Atom Deposition byWet Chemistry 71 4.3.3 Immobilization of Metal Clusters and SACs by Organometallic Approach 71 4.3.4 Chemical Vapor Deposition Techniques on Carbon Supports 72 4.3.5 Simultaneous Formation of Metallic Catalyst and Porous Carbon Support by Pyrolysis 73 4.3.6 Dry Mechanical Methods 73 4.3.7 Electrodeposition 73 4.3.8 Photodeposition 74 4.4 Conclusions and Outlook 74 References 75 5 Metal Cluster-Based Catalysts 79Vladimir B. Golovko 5.1 Introduction 79 5.2 Catalysts Made by Deposition of Clusters from the Gas Phase Under Ultrahigh Vacuum 81 5.3 Chemically Synthesized Metal Clusters 85 5.4 Catalysis Using the Chemically Synthesized Metal Clusters 88 5.5 Conclusion 95 References 96 6 Single-Atom Heterogeneous Catalysts 103Yaxin Chen, ZhenMa, and Xingfu Tang 6.1 Introduction 103 6.2 Concept and Advantages of SACs 104 6.2.1 Concept of SACs 104 6.2.2 Advantages of SACs 105 6.2.2.1 Maximum Atom Efficiency 105 6.2.2.2 Unique Catalytic Properties 105 6.2.2.3 Identification of Catalytically Active Sites 105 6.2.2.4 Establishment of Intrinsic Reaction Mechanisms 106 6.3 Synthesis of SACs 107 6.3.1 Physical Methods 108 6.3.2 Chemical Methods 108 6.3.2.1 Bottom-Up SyntheticMethods 109 6.3.2.2 Top-Down SyntheticMethods 112 6.4 Challenges and Perspective 113 References 114 7 Synthesis Strategies for Hierarchical Zeolites 119Xicheng Jia, Changbum Jo, and Alex C.K. Yip 7.1 Introduction 119 7.2 Hierarchical Zeolites 122 7.2.1 Increased Intracrystalline Diffusion 123 7.2.2 Reduced Steric Limitation 123 7.2.3 Changed Product Selectivity 124 7.2.4 Decreased Coke Formation 124 7.3 Modern Strategies for the Synthesis of Hierarchical Zeolites 124 7.3.1 Hard Templates 124 7.3.1.1 Confined-Space Method 125 7.3.1.2 Carbon Nanotubes and Nanofibers 127 7.3.1.3 Ordered Mesoporous Carbons 128 7.3.2 Soft Templates 130 7.3.2.1 Templating with Surfactants 130 7.3.2.2 Silanization TemplatingMethods 135 7.3.3 Dealumination 136 7.3.4 Desilication 138 7.4 Conclusion 140 References 141 8 Design of Molecular Heterogeneous Catalysts with Metal–Organic Frameworks 147Marco Ranocchiari 8.1 Secondary Building Units (SBUs) and IsoreticularMOFs 151 8.2 The Tools to Build Molecular Active Sites: Reticular Chemistry and Beyond 152 8.2.1 Pre-synthetic Methodologies 153 8.2.2 Post-synthetic Methodologies 155 8.2.2.1 Post-synthetic Modification (PSM) 155 8.2.2.2 Post-synthetic Exchange (PSE) 156 8.3 MOFs in Catalysis 156 8.3.1 The Difference Between MOFs and Standard Heterogeneous and Homogeneous Catalysts 157 8.4 Conclusion: Where to Go from Here 158 References 158 9 Hierarchical and Anisotropic Nanostructured Catalysts 161Hamidreza Arandiyan, YuanWang, Christopher M.A. Parlett, and Adam Lee 9.1 Introduction 161 9.2 Top-Down vs. Bottom-Up Approaches 162 9.3 Shape Anisotropy and Nanostructured Assemblies 162 9.4 Janus Nanostructures 165 9.5 Hierarchical Porous Catalysts 169 9.6 Functionalization of Porous/Anisotropic Substrates 170 9.7 Perspective 174 References 176 10 Flame Synthesis of Simple and Multielemental Oxide Catalysts 183Wey Yang Teoh 10.1 From Natural Aerosols Formation to Engineered Nanoparticles 183 10.2 Flame Aerosol Synthesis and Reactors 185 10.3 Simple Metal Oxide-Based Catalysts 189 10.4 Multielemental Oxide-Based Catalysts 192 10.4.1 Solid Solution Metal Oxide Catalysts 192 10.4.2 Composite Metal Oxide Catalysts 192 10.4.3 Complex Metal Oxide Catalysts 197 10.5 Perspective and Outlook 197 References 199 11 Band Engineering of Semiconductors Toward Visible-Light-Responsive Photocatalysts 203Akihide Iwase 11.1 Basis of Photocatalyst Materials 203 11.2 Photocatalyst Material Groups 204 11.2.1 Variety of Photocatalyst Materials 204 11.2.2 Main Constituent Metal Elements in Photocatalyst Materials 205 11.3 Design of Band Structures of Photocatalyst Materials 206 11.3.1 Doped Photocatalysts 206 11.3.2 Valence-Band-Controlled Photocatalysts 208 11.3.3 Solid Solution Photocatalysts 209 11.4 Preparation of Photocatalysts 210 11.4.1 Solid-State Reaction Method 211 11.4.2 Flux Method 211 11.4.3 Hydrothermal Synthesis Method/Solvothermal Synthesis Method 211 11.4.4 Polymerized (Polymerizable) Complex Method 211 11.4.5 PrecipitationMethod 212 11.4.6 Loading of Cocatalysts 212 References 212 Section II Surface Studies and Operando Spectroscopies in Heterogeneous Catalysis 215 12 Toward Precise Understanding of Catalytic Events and Materials Under Working Conditions 217Atsushi Urakawa References 220 13 Pressure Gaps in Heterogeneous Catalysis 225Lars Österlund 13.1 Introduction 225 13.2 High-Pressure Studies of Catalysts 226 13.3 Adsorption on Solid Surfaces at Low and High Pressures 229 13.3.1 Kinetically Restricted Adsorbate Structures 229 13.3.2 Thermodynamically Driven Reactions on Solid Surfaces 234 13.3.3 Reactions on Supported Nanoparticle Catalysts 244 13.4 Conclusions and Outlook 246 Acknowledgments 247 References 247 14 In Situ Transmission Electron Microscopy Observation of Gas/Solid and Liquid/Solid Interfaces 253Ayako Hashimoto 14.1 Introduction 253 14.2 Observation in Gas and Liquid Phases 254 14.2.1 Window-Type System 254 14.2.2 Differential Pumping-Type System 256 14.2.3 Other Systems 257 14.3 Applications and Outlook 259 References 261 15 Tomography in Catalyst Design 263Dorota Matras, Jay Pritchard, Antonios Vamvakeros, Simon D.M. Jacques, and Andrew M. Beale 15.1 Introduction 263 15.2 Imaging with X-Rays 264 15.3 Conventional Absorption CT to Study Catalytic Materials 265 15.4 X-Ray Diffraction Computed Tomography (XRD-CT) 267 15.5 Pair Distribution Function CT 269 15.6 Multimodal XANES-CT, XRD-CT, and XRF-CT 270 15.7 Atom Probe Tomography 272 15.8 Ptychographic X-Ray CT 273 15.9 Conclusions 274 References 275 16 Resolving Catalyst Performance at Nanoscale via Fluorescence Microscopy 279Alexey Kubarev and Maarten Roeffaers 16.1 Fluorescence Microscopy as Catalyst Characterization Tool 279 16.2 Basics of Fluorescence and Fluorescence Microscopy 280 16.3 Strategies to Resolve Catalytic Processes in a Fluorescence Microscope 283 16.4 Wide-Field and Confocal Fluorescence Microscopy 284 16.5 Super-resolution Fluorescence Microscopy 285 16.6 What Can We Learn About Catalysts from (Super-resolution) Fluorescence Microscopy: Case Studies 286 16.7 Conclusions and Outlook 291 References 292 17 In Situ Electron Paramagnetic Resonance Spectroscopy in Catalysis 295Yiyun Liu and RyanWang 17.1 Introduction 295 17.2 Basic Principles of Electron Paramagnetic Resonance (EPR) 296 17.3 Experimental Methods and Setup for In Situ cw-EPR 298 17.4 Applications of In Situ EPR Spectroscopy 302 17.4.1 Cu-Zeolite Systems 303 17.4.2 Radicals and Radical Ions 305 17.5 Conclusions 306 References 307 18 Toward Operando Infrared Spectroscopy of Heterogeneous Catalysts 311Davide Ferri 18.1 Brief Theory on Infrared Spectroscopy 311 18.2 Different Modes of IR Measurements 314 18.3 Measuring the “Background” 318 18.4 Using Probe Molecules to Identify Heterogeneous Sites 320 18.5 IR Measurements Under Operando Conditions 325 18.6 Case Studies of Operando IR Spectroscopy 328 18.6.1 Selective Catalytic Reduction of NO by NH3 Measured Using Operando Transmission IR 328 18.6.2 Methanation of CO2 Measured Using Operando DRIFTS 329 18.6.3 Selective Oxidation of Alcohols Measured Using Operando ATR-IR 331 18.7 Perspective and Outlook 333 References 334 19 Operando X-Ray Spectroscopies on Catalysts in Action 339Olga V. Safonova and Maarten Nachtegaal 19.1 Fundamentals of X-Ray Spectroscopy 339 19.2 X-Ray Absorption Spectroscopy Methods 342 19.3 High-Energy-Resolution (Resonant) X-Ray Emission Spectroscopy 347 19.4 In Situ and Operando Cells 351 19.5 Application of Time-Resolved Methods 353 19.6 Limitations and Challenges 356 19.7 Concluding Remarks 357 References 358 20 Methodologies to Hunt Active Sites and Active Species 363Atsushi Urakawa 20.1 Introduction 363 20.2 Modulation Excitation Technique 365 20.3 Steady-State Isotopic Transient Kinetic Analysis (SSITKA) 369 20.4 Multivariate Analysis 371 20.5 Outlook 373 References 373 21 Ultrafast Spectroscopic Techniques in Photocatalysis 377Chun Hong Mak, Rugeng Liu, and Hsien-Yi Hsu 21.1 Transient Absorption Spectroscopy 377 21.1.1 Introduction 377 21.1.2 Conventional Heterogeneous Photocatalyst 380 21.1.3 Dye-Sensitized Heterogeneous Photocatalyst 384 21.2 Time-Resolved Photoluminescence 386 21.2.1 Introduction 386 21.2.2 Applications of TRPL in Heterogeneous Catalysis 387 21.3 Time-Resolved Microwave Conductivity 389 21.3.1 Introduction 389 21.3.2 Applications of TRMC in Heterogeneous Catalysis 391 References 393 Volume 2 Preface xv Section III Ab Initio Techniques in Heterogeneous Catalysis 399 22 Quantum Approaches to Predicting Molecular Reactions on Catalytic Surfaces 401Patrick Sit 23 Density Functional Theory in Heterogeneous Catalysis 405Patrick Sit and Linghai Zhang 24 Ab InitioMolecular Dynamics in Heterogeneous Catalysis 419Ye-Fei Li 25 First Principles Simulations of Electrified Interfaces in Electrochemistry 439Stephen E.Weitzner and Ismaila Dabo 26 Time-Dependent Density Functional Theory for Excited-State Calculations 471Chi Yung Yam 27 The GW Method for Excited States Calculations 483Paolo Umari 28 High-Throughput Computational Design of Novel Catalytic Materials 497Chenxi Guo, Jinfan Chen, and Jianping Xiao Section IV Advancement in Energy and Environmental Catalysis 525 29 Embracing the Energy and Environmental Challenges of the Twenty-First Century Through Heterogeneous Catalysis 527Yun Hau Ng 30 Electrochemical Water Splitting 533Guang Liu, Kamran Dastafkan, and Chuan Zhao 31 New Visible-Light-Responsive Photocatalysts for Water Splitting Based on Mixed Anions 557Kazuhiko Maeda 32 Electrocatalysts in Polymer Electrolyte Membrane Fuel Cells 571StephenM. Lyth and Albert Mufundirwa 33 Conversion of Lignocellulosic Biomass to Biofuels 593Cristina García-Sancho, Juan A. Cecilia, and Rafael Luque 34 Conversion of Carbohydrates to High Value Products 617Isao Ogino 35 Enhancing Sustainability Through Heterogeneous Catalytic Conversions at High Pressure 633Nat Phongprueksathat and Atsushi Urakawa 36 Electro-, Photo-, and Photoelectro-chemical Reduction of CO2 649Jonathan Albo,Manuel Alvarez-Guerra, and Angel Irabien 37 Photocatalytic Abatement of Emerging Micropollutants in Water and Wastewater 671Lan Yuan, Zi-Rong Tang, and Yi-Jun Xu 38 Catalytic Abatement of NOx Emissions over the Zeolite Catalysts 685Runduo Zhang, Peixin Li, and HaoWang Index 699 9783527344154

    1 in stock

    £223.51

  • The New International System of Units (SI):

    Wiley-VCH Verlag GmbH The New International System of Units (SI):

    1 in stock

    Book SynopsisThe International System of Units, the SI, provides the foundation for all measurements in science, engineering, economics, and society. The SI has been fundamentally revised in 2019. The new SI is a universal and highly stable unit system based on invariable constants of nature. Its implementation rests on quantum metrology and quantum standards, which base measurements on the manipulation and counting of single quantum objects, such as electrons, photons, ions, and flux quanta. This book explains and illustrates the new SI, its impact on measurements, and the quantum metrology and quantum technology behind it. The book is based on the book ?Quantum Metrology: Foundation of Units and Measurements? by the same authors. From the contents: -Measurement -The SI (Système International d?Unités) -Realization of the SI Second: Thermal Beam Cs Clock, Laser Cooling, and the Cs Fountain Clock -Flux Quanta, Josephson Effect, and the SI Volt -Quantum Hall Effect, the SI Ohm, and the SI Farad -Single-Charge Transfer Devices and the SI Ampere -The SI Kilogram, the Mole, and the Planck constant -The SI Kelvin and the Boltzmann Constant -Beyond the present SI: Optical Clocks and Quantum Radiometry -Outlook Table of ContentsForeword ix Preface xi List of Abbreviations xv 1 Introduction 1 References 3 2 Some Basics 5 2.1 Measurement 5 2.1.1 Limitations of Measurement Uncertainty 5 2.1.1.1 The Fundamental Quantum Limit 6 2.1.1.2 Noise 7 2.2 The SI (Système International d’Unités) 9 2.2.1 The Second: Unit of Time 11 2.2.2 The Meter: Unit of Length 13 2.2.3 The Kilogram: Unit of Mass 14 2.2.4 The Ampere: Unit of Electric Current 15 2.2.5 The Kelvin: Unit of Thermodynamic Temperature 16 2.2.6 The Mole: Unit of Amount of Substance 18 2.2.7 The Candela: Unit of Luminous Intensity 19 2.2.8 Summary: Base and Derived Units of the SI 21 References 21 3 Realization of the SI Second: Thermal Beam Cs Clock, Laser Cooling, and the Cs Fountain Clock 23 3.1 The Thermal Beam Cs Clock 25 3.2 Techniques for Laser Cooling and Trapping of Atoms 28 3.2.1 Doppler Cooling, Optical Molasses, and Magneto-Optical Traps 29 3.2.2 Cooling Below the Doppler Limit 31 3.3 The Cs Fountain Clock 32 References 35 4 Flux Quanta, Josephson Effect, and the SI Volt 39 4.1 Josephson Effect and Quantum Voltage Standards 39 4.1.1 Basics of Superconductivity 39 4.1.2 Basics of the Josephson Effect 41 4.1.2.1 AC and DC Josephson Effect 42 4.1.2.2 Mixed DC and AC Voltages: Shapiro Steps 43 4.1.3 Basic Physics of Real Josephson Junctions 44 4.1.4 Josephson Voltage Standards 46 4.1.4.1 General Overview: Materials and Technology of Josephson Arrays 47 4.1.4.2 SIS Josephson Voltage Standards 48 4.1.4.3 Programmable Binary Josephson Voltage Standards 50 4.1.4.4 Pulse-Driven AC Josephson Voltage Standards 53 4.1.5 Metrology with Josephson Voltage Standards 57 4.1.5.1 DC Voltage, the SI Volt 57 4.1.5.2 The Conventional Volt in the Previous SI 59 4.1.5.3 AC Measurements with Josephson Voltage Standards 59 4.2 Flux Quanta and SQUIDs 62 4.2.1 Superconductors in External Magnetic Fields 62 4.2.1.1 Meissner–Ochsenfeld Effect 63 4.2.1.2 Flux Quantization in Superconducting Rings 65 4.2.1.3 Josephson Junctions in External Magnetic Fields and Quantum Interference 66 4.2.2 Basics of SQUIDs 67 4.2.3 Applications of SQUIDs in Measurement 71 4.2.3.1 Real DC SQUIDs 71 4.2.3.2 SQUID Magnetometers and Magnetic Property Measurement Systems 73 4.2.3.3 Cryogenic Current Comparators: Current and Resistance Ratios 74 4.2.3.4 Biomagnetic Measurements 76 4.3 Traceable Magnetic Flux Density Measurements 77 References 80 5 Quantum Hall Effect, the SI Ohm, and the SI Farad 87 5.1 Basic Physics of Three- and Two-Dimensional Semiconductors 88 5.1.1 Three-Dimensional Semiconductors 88 5.1.2 Two-Dimensional Semiconductors 90 5.2 Two-Dimensional Electron Systems in Real Semiconductors 91 5.2.1 Basic Properties of Semiconductor Heterostructures 92 5.2.2 Epitaxial Growth of Semiconductor Heterostructures 93 5.2.3 Semiconductor Quantum Wells 94 5.2.4 Modulation Doping 95 5.3 The Hall Effect 97 5.3.1 The Classical Hall Effect 97 5.3.1.1 The Classical Hall Effect in Three Dimensions 97 5.3.1.2 The Classical Hall Effect in Two Dimensions 98 5.3.2 Physics of the Quantum Hall Effect 99 5.4 Metrology Using the Quantum Hall Effect 103 5.4.1 DC Quantum Hall Resistance Standards, the SI Ohm 103 5.4.2 The Conventional Ohm in the Previous SI 104 5.4.3 Technology of DC Quantum Hall Resistance Standards and Resistance Scaling 106 5.4.4 AC Quantum Hall Resistance Standards, the SI Farad 108 5.4.5 Relation Between Electrical Metrology and the Fine-Structure Constant 110 5.5 Graphene for Resistance Metrology 111 5.5.1 Basic Properties of Graphene 111 5.5.2 Fabrication of Graphene Monolayers for Resistance Metrology 113 5.5.3 Quantum Hall Effect in Monolayer Graphene 115 References 117 6 Single-Charge Transfer Devices and the SI Ampere 123 6.1 Basic Physics of Single-Electron Transport 124 6.1.1 Single-Electron Tunneling 124 6.1.2 Coulomb Blockade in SET Transistors 125 6.1.3 Coulomb Blockade Oscillations and Single-Electron Detection 127 6.1.4 Clocked Single-Electron Transfer 129 6.2 Quantized Current Sources 130 6.2.1 Metallic Single-Electron Pumps 131 6.2.2 Semiconducting Quantized Current Sources 133 6.2.2.1 GaAs-Based SET Devices 133 6.2.2.2 Silicon-Based SET Devices 137 6.2.3 Superconducting Quantized Current Sources 138 6.2.4 Self-Referenced Quantized Current Sources 140 6.3 Realization of the SI Ampere 142 6.3.1 Ampere Realization via the SI Volt and SI Ohm 142 6.3.2 Direct Ampere Realization with Quantized Current Sources 144 6.4 Consistency Tests: Quantum Metrology Triangle 144 References 146 7 The SI Kilogram, the Mole, and the Planck Constant 153 7.1 From “Monitoring the Stability of the Kilogram” to the Planck Constant 156 7.2 The Avogadro Experiment 158 7.3 The Kibble Balance Experiment 165 7.4 The Mole: Unit of Amount of Substance 169 7.5 The CODATA Evaluation of the Value of the Defining Planck Constant and the Maintenance and Dissemination of the Kilogram 170 7.5.1 The CODATA Evaluation and the Final Value of the Defining Planck Constant, h 170 7.5.2 Realization, Maintenance, and Dissemination of the Kilogram 172 References 173 8 The SI Kelvin and the Boltzmann Constant 181 8.1 Primary Thermometers 182 8.1.1 Dielectric Constant Gas Thermometry 183 8.1.2 Acoustic Gas Thermometry 184 8.1.3 Radiation Thermometry 186 8.1.4 Doppler Broadening Thermometry 187 8.1.5 Johnson Noise Thermometry 189 8.1.6 Coulomb Blockade Thermometry 191 8.2 The CODATA Evaluation of the Value of the Defining Boltzmann Constant, Realization and Dissemination of the New Kelvin 193 8.2.1 The CODATA Evaluation of the Final Value of the Defining Boltzmann Constant 193 8.2.2 Realization and Dissemination of the Kelvin 194 References 194 9 Beyond the Present SI: Optical Clocks and Quantum Radiometry 201 9.1 Optical Clocks and a New Second 201 9.1.1 Femtosecond Frequency Combs 204 9.1.2 Trapping of Ions and Neutral Atoms for Optical Clocks 209 9.1.2.1 Ion Traps 209 9.1.2.2 Optical Lattices 211 9.1.3 Neutral Atomic clocks 211 9.1.4 Atomic Ion Clocks 214 9.1.5 Possible Variation of the Fine-Structure Constant, 𝛼 217 9.2 Single-Photon Metrology and Quantum Radiometry 220 9.2.1 Single-Photon Sources 222 9.2.1.1 (NV) Color Centers in Diamond 223 9.2.1.2 Semiconductor Quantum Dots 225 9.2.2 Single-Photon Detectors 227 9.2.2.1 Nonphoton-Number-Resolving Detectors 227 9.2.2.2 Photon-Number-Resolving Detectors 228 9.2.3 Metrological Challenge 229 References 230 10 Outlook 245 References 246 Index 247

    1 in stock

    £110.66

  • Heterogeneous Catalysis for Sustainable Energy

    Wiley-VCH Verlag GmbH Heterogeneous Catalysis for Sustainable Energy

    2 in stock

    Book SynopsisHeterogeneous Catalysis for Sustainable Energy Explore the state-of-the-art in heterogeneous catalysis In Heterogeneous Catalysis for Sustainable Energy, a team of distinguished researchers delivers a comprehensive and cutting-edge treatment of recent advancements in energy-related catalytic reactions and processes in the field of heterogeneous catalysis. The book includes extensive coverage of the hydrogen economy, methane activation, methanol-to-hydrocarbons, carbon dioxide conversion, and biomass conversion. The authors explore different aspects of the technology, like reaction mechanisms, catalyst synthesis, and the commercial status of the reactions. The book also includes: A thorough introduction to the hydrogen economy, including hydrogen production, the reforming of oxygen-containing chemicals, and advances in Fischer-Tropsch Synthesis Comprehensive explorations of methane activation, including steam and dry reforming of methane and methane activation over zeolite catalysts Practical discussions of alkane activation, including cracking of hydrocarbons to light olefins and catalytic dehydrogenation of light alkanes In-depth examinations of zeolite catalysis and carbon dioxide as C1 building block Perfect for catalytic, physical, and surface chemists, Heterogeneous Catalysis for Sustainable Energy also belongs in the libraries of materials scientists with an interest in energy-related reactions and processes in the field of heterogeneous catalysis.Table of ContentsPART I: INTRODUCTION Chapter 1 Heterogeneous Catalysis in Face of Energy Challenges PART II: HYDROGEN ECONOMY Chapter 2 Water-gas Shift Reaction Chapter 3 Reforming of Oxygenates Chapter 4 The Fischer-Tropsch Synthesis Chapter 5 Ammonia Synthesis PART III: METHANE ACTIVATION Chapter 6 Steam and Dry Reforming of Methane Chapter 7 Oxidative Coupling and Dehydroaromatisation Chapter 8 Selective Oxidation to C1 Oxygenates Chapter 9 Halogenation and Oxy-halogenation PART IV: ALKANE ACTIVATION Chapter 10 Catalytic Cracking over Solid Acids Chapter 11 Catalytic Dehydrogenation of Light Alkanes Chapter 12 Selective Oxidation to Oxygenates PART V: METHANOL-TO-HYDROCARBONS Chapter 13 Zeolite Catalysts and Their Behaviors Chapter 14 Reaction and Deactivation Mechanism Chapter 15 Insights from Theoretical Calculations Chapter 16 Commercial Status and Economics PART VI: CARBON DIOXIDE AS C1 BUILDING BLOCK Chapter 17 Overview on CO2 mission and Utilization Chapter 18 Chemical Fixation into Carbonates Chapter 19 Reduction to Methanol PART VII: BIOMASS CONVERSION Chapter 20 Catalytic Conversion of Triglycerides Chapter 21 Catalytic Conversion of Glycerol Chapter 22 Conversion of Carbohydrates and Their Derivatives Chapter 23 Nitrogen Containing Platform Molecules to Chemicals PART VIII: PROSPECT Chapter 24 Summary and Outlook

    2 in stock

    £127.50

  • Textile-Based Energy Harvesting and Storage

    Wiley-VCH Verlag GmbH Textile-Based Energy Harvesting and Storage

    1 in stock

    Book SynopsisTextile-Based Energy Harvesting and Storage Devices for Wearable Electronics Discover state-of-the-art developments in textile-based wearable and stretchable electronics from leaders in the field In Textile-Based Energy Harvesting and Storage Devices for Wearable Electronics, renowned researchers Professor Xing Fan and his co-authors deliver an insightful and rigorous exploration of textile-based energy harvesting and storage systems. The book covers the principles of smart fibers and fabrics, as well as their fabrication methods. It introduces, in detail, several fiber- and fabric-based energy harvesting and storage devices, including photovoltaics, piezoelectrics, triboelectrics, supercapacitors, batteries, and sensing and self-powered electric fabrics. The authors also discuss expanded functions of smart fabrics, like stretchability, hydrophobicity, air permeability and color-changeability. The book includes sections on emerging electronic fibers and textiles, including stress-sensing, strain-sensing, and chemical-sensing textiles, as well as emerging self-powered electronic textiles. Textile-Based Energy Harvesting and Storage Devices for Wearable Electronics concludes with an in-depth treatment of upcoming challenges, opportunities, and commercialization requirements for electronic textiles, providing valuable insight into a highly lucrative new commercial sector. The book also offers: A thorough introduction to the evolution from classical functional fibers to intelligent fibers and textiles An exploration of typical film deposition technologies, like dry-process film deposition and wet-process technologies for roll-to-roll device fabrication Practical discussions of the fabrication process of intelligent fibers and textiles, including the synthesis of classical functional fibers and nano/micro assembly on fiber materials In-depth examinations of energy harvesting and energy storage fibers, including photovoltaic, piezoelectric, and supercapacitor fibers Perfect for materials scientists, engineering scientists, and sensor developers, Textile-Based Energy Harvesting and Storage Devices for Wearable Electronics is also an indispensable resource for electrical engineers and professionals in the sensor industry seeking a one-stop reference for fiber- and fabric-based energy harvesting and storage systems for wearable and stretchable power sources.Table of ContentsPreface xi 1 On the Basis of Fibers and Textiles 1 1.1 On the Basis of Fibers 2 1.1.1 Nature Fibers 2 1.1.2 Chemical Fibers 4 1.1.3 Classical Functional Fibers 7 1.2 On the Basis of Textiles 11 1.2.1 Traditional Textiles 12 1.2.2 Classical Functional Textiles 15 1.3 The Evolution from Classical Functional Fibers to Intelligent Fibers and Textiles 20 1.3.1 Shape Memory Fibers and Textiles 20 1.3.2 Intelligent Temperature-Regulating Fibers and Textiles 22 1.3.3 Intelligent Color-Changing Fibers and Textiles 24 1.3.4 Wearable Electronic Intelligent Fibers and Textiles 27 1.4 Conclusions 30 References 31 2 A Brief Introduction to Typical Film Deposition Technologies 33 2.1 Dry-Process Film Deposition Technologies 34 2.1.1 Physical Vapor Deposition for Film Deposition 34 2.1.2 Chemical Vapor Deposition for Film Deposition 37 2.1.3 Morphology and Pattern Design 41 2.2 Typical Wet-Process Technologies for Roll-to-Roll Device Fabrication 44 2.2.1 Chemical Reaction Coating for Thin Film Preparation 45 2.2.2 Electrochemical Reaction Method for Thin Film Preparation 49 2.2.3 Spray Pyrolysis 50 2.2.4 Langmuir–Blodgett Technique 51 2.3 Typical Film Structure Characterization Technologies 54 2.3.1 Thin Film Analysis Method: Crystal Structure Properties 54 2.3.2 Thin Film Analysis Method: Morphology Properties 58 2.3.3 Thin Film Analysis Method: Chemical Composition and Structure Properties 60 2.4 Conclusions 64 References 65 3 The Fabrication Process of Intelligent Fibers and Textiles 69 3.1 The Synthesis of Classical Functional Fibers 70 3.1.1 Wet Spinning 70 3.1.2 Electrospinning 71 3.1.3 Dry Spinning 74 3.1.4 Thermal Drawing Process 74 3.1.5 Surface Modification Method 76 3.2 The Nano/Micro-Assembly on Fiber Materials 79 3.2.1 Chemical Liquid Phase Deposition 79 3.2.2 Plasma Spraying Method 87 3.2.3 Chemical Vapor Deposition 88 3.2.4 Physical Vapor Deposition 90 3.3 Device Assembly from Fibers to Textiles 91 3.3.1 Direct Coating Based on Fabric 92 3.3.2 Layer Stacking of Fabric Electrodes 94 3.3.3 Interweaving of Fiber Electrodes 95 3.3.4 Weaving of Fiber Devices 97 3.3.5 Other Assembly Methods 97 References 100 4 Energy Harvesting Fibers 105 4.1 Photovoltaic Fibers 105 4.1.1 Fiber-Shaped Inorganic Solar Cell 106 4.1.2 Fiber-Shaped Organic Polymer Solar Cell 108 4.1.3 Fiber-Shaped Dye-Sensitized Solar Cell 113 4.1.4 Fiber-Shaped Perovskite Solar Cell 119 4.2 Piezoelectric Fibers 124 4.2.1 Working Principle of Piezoelectricity 124 4.2.2 Piezoelectric Materials 125 4.2.3 Fiber-Shaped Piezoelectric Devices Based on Piezoceramics 126 4.2.4 Fiber-Shaped Piezoelectric Devices Based on Piezopolymers 127 4.2.5 Fiber-Shaped Piezoelectric Devices Based on Piezocomposites 130 4.3 Triboelectric Fibers 132 4.3.1 Working Principle of Triboelectric Nanogenerator 132 4.3.2 Triboelectrification Materials 134 4.3.3 Triboelectric Fiber Devices 135 4.4 Thermoelectric Fibers 140 4.4.1 Introduction of Thermoelectric Effect 140 4.4.2 TE Materials for Wearable Thermoelectric Devices 141 4.4.3 Fiber-Shaped Thermoelectric Devices 145 4.5 Conclusions and Outlook 147 References 148 5 Energy Storage Fibers 157 5.1 Supercapacitor Fibers 157 5.1.1 Supercapacitor Fibers with Carbon-Based Capacitive Materials 159 5.1.2 Supercapacitor Fibers with Composited Capacitive Materials 166 5.2 Battery Fibers 169 5.2.1 Primary Battery Fibers 170 5.2.2 Lithium-Ion Battery Fibers 173 5.2.3 Lithium-Sulfur Battery Fibers 174 5.2.4 Metal-Air Battery Fibers 177 5.2.5 Other Battery Fibers 180 5.3 Phase-Transit Fibers 182 5.3.1 Phase-Transit Fibers Based on Hydrocarbons and Fatty Acids 184 5.3.2 Phase-Transit Fibers Based on Fatty Alcohols 187 5.3.3 Phase-Transit Fibers Based on Other Kinds of Phase-Transit Materials 190 5.4 Conclusions 192 References 193 6 Smart Energy Textiles 197 6.1 Energy Harvesting Textiles 198 6.1.1 Photovoltaic Energy Harvesting Textiles 198 6.1.2 Thermoelectric Energy Harvesting Textiles 203 6.1.3 Mechanical Energy Harvesting Textiles 205 6.2 Energy Storage Textiles 209 6.2.1 Supercapacitor Textiles 209 6.2.2 Primary Battery Textiles 212 6.2.3 Secondary Battery Textiles 213 6.3 Hybrid Energy Textiles 218 6.3.1 Multiple Energy Harvesting Hybrid Textiles 219 6.3.2 Harvesting-Storage Hybrid Energy Textiles 222 6.4 Commercialization Power Requirements of Smart Energy Textiles 224 References 225 7 Function Expansion of Smart Energy Fibers and Textiles 231 7.1 Stretchability of Smart Energy Fibers and Textiles 231 7.1.1 Stretchable Electrode Based on Elastic Conductive Materials 232 7.1.2 Stretchable Electrode Based Electrode Structural Designs 236 7.1.3 Assembling of Fiber-Type and Textile-Type Stretchable Devices 238 7.2 Hydrophobicity of Smart Energy Fibers and Textiles 240 7.2.1 The History of Conventional Hydrophobic Fabrics 240 7.2.2 The Development of Hydrophobic Coatings 241 7.2.3 Fabricating Technologies for Hydrophobic Smart Energy Fibers and Textiles 245 7.3 Endurability of Smart Energy Fibers and Textiles 247 7.3.1 Mechanical Stability of Smart Energy Fibers and Textiles 247 7.3.2 Chemical Stability of Smart Energy Fibers and Textiles 249 7.3.3 OtherWorking Stability Under Complicate Environment 251 7.4 Air Permeability of Smart Energy Fibers and Textiles 253 7.4.1 The Influence of Textile Materials on Air Permeability 253 7.4.2 The Influence of Textile Structure Design on Air Permeability 255 7.5 Color-Change Ability of Smart Energy Fibers and Textiles 258 7.5.1 Color-Changeable Materials 259 7.5.2 Color-Changeable Textiles 261 7.6 Conclusions 263 References 264 8 Emerging Electronic Fibers and Textiles 273 8.1 Stress Sensing Textiles 274 8.1.1 Piezoresistive Stress Sensing Textiles 274 8.1.2 Capacitive Stress Sensing Textiles 278 8.1.3 Other Stress Sensing Textiles 284 8.2 Strain Sensing Textiles 286 8.2.1 Piezoresistive Strain Sensing Textiles 286 8.2.2 Capacitive Strain Sensing Textiles 292 8.2.3 Triboelectricity Strain Sensing Textiles 296 8.3 Chemical Sensing Textiles 298 8.3.1 Ion Sensing Textiles 298 8.3.2 Humidity Sensing Textiles 301 8.3.3 Gas Sensing Textiles 301 8.4 Other Function Coupled Textiles 304 8.5 Conclusions and Outlook 306 References 306 9 Towards Self-Powered Electronic Textiles 313 9.1 Self-Powered Electronic Devices 313 9.1.1 Independent Self-Powered Electronic Devices 314 9.1.2 Integrated Self-Powered Electronic Devices 317 9.1.3 Other Types of Self-Powered Electronic Devices 320 9.2 Flexible Self-Powered Electronic Devices 321 9.2.1 Flexible Independent Self-Powered Electronic Devices 322 9.2.2 Flexible Integrated Self-Powered Electronic Devices 324 9.2.3 Other Types of Flexible Self-Powered Electronic Devices 327 9.3 Self-Powered Electronic Fibers 327 9.3.1 Fiber-Type and Textile-Type Independent Self-Powered Electronic Devices 329 9.3.2 Textile-Type Integrated Self-Powered Electronic Devices 331 9.4 Summary 335 References 336 10 The Future of Electronic Textiles 341 10.1 Commercialization Requirements Beyond Energy Efficiency 342 10.1.1 Energy Supply 343 10.1.2 Electronic Function Expansion 344 10.1.3 Mechanical Durability 344 10.1.4 Wearability 345 10.2 Challenges for Smart Electronic Textiles 345 10.2.1 Energy Efficiency 346 10.2.2 Diversity of Functions 347 10.2.3 Wearing Comfort 347 10.2.4 Fabrication Technology 349 10.3 A Prospective Discussion on Smart Electronic Textiles 351 References 355 Index 357

    1 in stock

    £117.26

  • Introduction to Energy and Sustainability

    Wiley-VCH Verlag GmbH Introduction to Energy and Sustainability

    1 in stock

    Book SynopsisOffers a comprehensive review of the currently existing energy production and consumption technologies Offering unique perspectives from one social and one natural scientist and combining them with the view of an industry expert, this book covers definitions and ways of quantifying energy and sustainability, and examines today?s energy production and consumption technologies?paying particular attention to the environmental, historic, and regulatory aspects of each introduced energy technology. It also deals with alternative and future energy technologies, as well as examples of sustainable approaches to everyday issues of transportation, urban planning, and home construction. Introduction to Energy and Sustainability starts with a section on introductory concepts and covers such things as the history of our relationship with energy; defining and quantifying both energy and sustainability; flows and conversions of energy and matter; and the laws of thermodynamics energy production today. It examines how energy is produced and consumed in our modern world?and looks at what types of energy exist and how we use it. The book also discusses the future of energy and how we will provide and utilize our current and forthcoming sources of power as our world changes. -Balances the treatment of hard science and engineering concepts of energy and sustainability with a thorough discussion of their socioeconomic and geopolitical implications -Offers a unique perspective of one social and one natural scientist, combined with the view of an industry expert -Filled with chapters that feature practice questions and solutions -Relevant to students in energy fields and environmentalists Introduction to Energy and Sustainability is an ideal text for post-graduate level students of energy fields. It will also greatly benefit environmentalists, engineers, power engineers, and chemists in industry. Table of ContentsPreface xv Acknowledgments xix Part I Introductory Concepts 1 1 Brief History of Our Relationship with Energy 3 1.1 Discussion Questions 9 Further Reading 10 2 Defining and Quantifying Energy 11 2.1 International System of Units 11 2.2 Definition of Force, Energy, and Power 17 2.3 Units of Energy and Their Interconversion 20 2.4 Heat Capacity 23 2.5 Phase Changes 25 2.6 Energy Content of Fuels 27 2.7 Practice Problems 29 2.8 Solutions to Practice Problems 30 2.9 Discussion Questions 32 Further Reading 33 3 Flows and Conversions of Energy and Matter 35 3.1 Forms of Energy 35 3.2 Earth’s Water Cycle 38 3.3 Carbon Cycle 40 3.4 Earth’s Energy Balance 43 3.5 Energy Balance of the United States 45 3.6 Practice Problems 47 3.7 Solutions to Practice Problems 48 3.8 Discussion Questions 49 Further Reading 49 4 Defining and Quantifying Sustainability 51 4.1 Defining Sustainability 54 4.2 Quantifying Development 57 4.3 Energy Security, Environmental Stewardship, Economic Growth, and Equity 62 4.4 Examples of Sustainable and Unsustainable Development 65 4.5 Practice Problems 68 4.6 Solutions to Practice Problems 68 4.7 Discussion Questions 69 Further Reading 70 5 Laws of Thermodynamics 73 5.1 Energy Conversions 73 5.2 Second Law of Thermodynamics 76 5.3 Entropy 78 5.4 Heat Transfer Mechanisms 80 5.5 Practice Problems 82 5.6 Solutions to Practice Problems 83 5.7 Discussion Questions 85 Further Reading 85 Part II Energy Production Today 87 6 Fossil Fuels and Pollution 89 6.1 Origins and Evolution of Fossil Fuels 89 6.2 Combustion – How Does it Work? 91 6.3 Pollutants: Undesirable Products of Combustion 92 6.4 Where Are the Pollutants? Environmental Discrimination and Environmental Justice 102 6.5 Practice Problems 103 6.6 Solutions to Practice Problems 103 6.7 Discussion Questions 105 Reference 105 Further Reading 106 7 Coal 107 7.1 Coal Formation 107 7.2 History of Human Coal Use 108 7.3 Manufactured Gas: Creating New Markets for Coal 115 7.4 Coal and Labor 120 7.5 Coal and Environmental Regulations 122 7.6 How Does It Work? 123 7.6.1 Coal Mining 124 7.6.2 Coal Analysis 124 7.6.3 Coal Utilization 126 7.7 Supply and Demand 128 7.8 Environmental and Societal Risks 130 7.9 Future of Coal 133 7.10 Practice Problems 136 7.11 Solutions to Practice Problems 136 7.12 Discussion Questions 137 Reference 138 Further Reading 138 8 Oil 141 8.1 Formation of Oil 141 8.2 History of Human Oil Use 143 8.3 How Does It Work? 156 8.4 Oil Refining 159 8.5 Supply and Demand 162 8.6 Environmental and Societal Risks 164 8.7 Political Risks in International Oil 166 8.7.1 The Case of Venezuela 168 8.8 Future of Oil 178 8.9 Practice Problems 179 8.10 Solutions to Practice Problems 179 8.11 Discussion Questions 180 Further Reading 181 9 Natural Gas 183 9.1 History of Human Natural Gas Use 183 9.2 How Does It Work? 191 9.2.1 Chemical Composition 191 9.3 Supply and Demand 195 9.4 Environmental and Societal Risks 197 9.5 Global Approaches to Natural Gas 201 9.5.1 Germany and Poland 201 9.5.2 Russia 202 9.5.3 Australia 202 9.5.4 China 203 9.6 Future of Natural Gas 203 9.7 Practice Problems 204 9.8 Solutions to Practice Problems 204 9.9 Discussion Questions 205 Further Reading 205 10 Unconventional Sources of Fossil Fuels 207 10.1 Enhanced Oil Recovery 208 10.2 Expanding into Hostile Regions: Offshore and the Arctic 211 10.3 Economic Benefits of Oil Sands vs. the Environmental Costs of Tar Sands 217 10.3.1 Heavy Oil in Venezuela 224 10.4 Shale Gas and Oil: Innovations in Drilling and the Fracking Revolution 225 10.5 Future of Unconventional Oil and Gas 232 10.6 Practice Problem 234 10.7 Solution to Practice Problem 234 10.8 Discussion Questions 234 Further Reading 235 11 Nuclear Energy 237 11.1 History of Nuclear Energy Use 237 11.2 How Does It Work? 238 11.2.1 Atomic Structure 238 11.2.2 Radioactivity 239 11.2.3 Nuclear Fission 241 11.2.4 Nuclear Fuel and Reactor Design 243 11.3 Supply and Demand 246 11.3.1 Uranium Supply and Demand 246 11.3.2 Nuclear Electricity 247 11.3.3 Fuel Reprocessing 248 11.4 Environmental and Societal Risks 249 11.4.1 Nuclear Accidents 251 11.5 Global Approaches to Nuclear Energy 255 11.6 Future of Nuclear Power 260 11.7 Practice Problems 261 11.8 Solutions to Practice Problems 261 11.9 Discussion Questions 263 Further Reading 264 12 Hydroelectric Power 265 12.1 How Does it Work? 266 12.1.1 Pumped Storage 268 12.2 Supply and Demand 270 12.3 Environmental and Societal Impacts 273 12.4 Global Approaches to Hydroelectric Energy 276 12.4.1 Norway 276 12.4.2 China 277 12.4.3 United States 277 12.5 Future of Hydroelectric Energy 278 12.6 Practice Problems 280 12.7 Solutions to Practice Problems 280 12.8 Discussion Questions 282 Further Reading 282 13 Production and Storage of Electricity 285 13.1 Measuring and Quantifying Electricity 286 13.2 Electromagnetic Induction 288 13.3 Storage of Electricity: Batteries 291 13.4 Electric Cars 295 13.5 Supply and Demand 296 13.6 Practice Problems 299 13.7 Solutions to Practice Problems 299 13.8 Discussion Questions 300 Further Reading 300 Part III Energy Consumption Today 303 14 Energy Use in Transportation 305 14.1 Cars and Internal Combustion Engines 306 14.2 Trains 310 14.3 Global Shipping 315 14.4 Airplanes 316 14.5 Practice Problems 318 14.6 Solutions to Practice Problems 319 14.7 Discussion Questions 320 Further Reading 321 15 Agricultural Energy Use 323 15.1 Fertilizers 325 15.2 Farm Mechanization 328 15.3 Pesticides 330 15.4 Carbon Emissions in Agriculture 331 15.5 Food Waste 332 15.6 Practice Problems 334 15.7 Solutions to Practice Problems 335 15.8 Discussion Questions 335 Further Reading 335 16 Energy Use in Buildings: Residential and Commercial Consumption 339 16.1 Heating 340 16.2 Air-Conditioning and Refrigeration 342 16.3 Lighting 346 16.4 Labor-Saving Appliances 349 16.5 Practice Problems 350 16.6 Solutions to Practice Problems 350 16.7 Discussion Questions 351 Further Reading 351 17 Industrial Energy Consumption 353 17.1 Production of Iron and Steel 353 17.2 Aluminum Production 356 17.3 Production of Cement 358 17.4 Production of Plastics 360 17.5 Embodied Energy 362 17.6 Practice Problems 363 17.7 Solutions to Practice Problems 364 17.8 Discussion Questions 364 Further Reading 365 Part IV Energy Transitions 367 18 Sustainability Transition: Why, When, How Long? 369 18.1 Drivers of Previous Transitions 369 18.2 Economics of Energy Transitions: Primacy of Price 372 18.2.1 Scarcity of Supply 373 18.2.2 Internalization of Externalities 373 18.3 Politics of Energy Transitions 374 18.4 Geopolitical Drivers of Transition: Resource Curse 378 18.5 Exxon, World Bank, and Chad: A Failed Experiment in Avoiding Resource Curse 379 18.6 Timeline for the Sustainability Transition 381 18.7 Regional Specificities and International Tensions 382 18.8 Practice Problem 384 18.9 Solution to Practice Problem 384 18.10 Discussion Questions 385 Further Reading 385 19 Climate Change 387 19.1 Definition of Climate 389 19.2 Measuring and Modeling Climate 390 19.3 Is It Changing? 390 19.4 Are We Responsible? 391 19.5 The Earth is Warming. So What? 394 19.5.1 Feedback Loops 398 19.6 Societal and Economic Effects of Climate Change 399 19.7 Can We Stop It? 401 19.8 Practice Problems 402 19.9 Solutions to Practice Problems 403 19.10 Discussion Questions 403 Further Reading 404 Part V Energy Production Tomorrow 407 20 Biomass as a Source of Energy 409 20.1 How Does It Work? 411 20.1.1 Wood as a Fuel 412 20.1.2 Municipal Waste 414 20.1.3 Biofuels 416 20.2 Supply and Demand 419 20.3 Environmental and Societal Risks 421 20.4 Global Approaches to Biomass Utilization 423 20.4.1 Brazil and Sugarcane-Based Ethanol 424 20.4.2 United States and Corn-Based Ethanol 425 20.5 Future of Biomass as an Energy Source 427 20.6 Practice Problems 428 20.7 Solutions to Practice Problems 428 20.8 Discussion Questions 429 Further Reading 430 21 Wind Energy 433 21.1 History of Use of Wind Energy 433 21.2 How Does It Work? 437 21.3 Supply and Demand 441 21.4 Environmental and Societal Risks 444 21.5 Future of Wind Energy 447 21.6 Practice Problems 447 21.7 Solutions to Practice Problems 447 21.8 Discussion Questions 449 Further Reading 449 22 Solar Energy 451 22.1 History of Human Solar Energy Usage 451 22.2 How Does It Work? 453 22.2.1 Solar Electricity 456 22.3 Supply and Demand 460 22.4 Environmental and Societal Risks 461 22.5 Global Approaches to Solar Energy 462 22.6 Future of Solar Energy 465 22.7 Practice Problems 465 22.8 Solutions to Practice Problems 466 22.9 Discussion Questions 467 Further Reading 467 23 Hydrogen as a Fuel 469 23.1 History of Human Hydrogen Use 470 23.2 Production of Hydrogen 471 23.2.1 Steam Reforming 472 23.2.2 Electrolysis 473 23.3 Hydrogen as a Combustion Fuel 474 23.4 Hydrogen Fuel Cells 474 23.5 Hydrogen as a Nuclear Fuel: Where Does the Solar Energy Really Come From? 477 23.5.1 Nuclear Fusion on Earth 478 23.6 Environmental and Societal Risks 480 23.7 Future of Hydrogen as a Fuel 481 23.8 Practice Problems 482 23.9 Solutions to Practice Problems 482 23.10 Discussion Questions 483 Further Reading 483 24 Geothermal Energy 485 24.1 History of Geothermal Energy Use 485 24.2 How Does It Work? 486 24.3 Supply and Demand 490 24.4 Global Approaches to Geothermal Energy 492 24.4.1 Iceland 492 24.4.2 Costa Rica 492 24.4.3 West of the United States 493 24.5 Environmental and Societal Risks 493 24.6 Practice Problems 495 24.7 Solutions to Practice Problems 495 24.8 Discussion Questions 496 Further Reading 496 Part VI Energy Consumption Tomorrow 499 25 Changes in Global Energy Consumption Patterns 501 25.1 Developing Countries Become Developed 503 25.2 Population Growth 504 25.3 Middle Class Growth in the Developing World 507 25.4 Sustainability as a Source of Friction Between Developed and Developing Countries 508 25.5 Outsourcing Unsustainable Practices 509 25.6 Practice Problems 511 25.7 Solutions to Practice Problems 511 25.8 Discussion Questions 512 Further Reading 512 26 Energy Conservation 515 26.1 Increasing the Efficiency of Appliances and Energy-Consuming Devices 515 26.2 Minimizing Energy Waste 518 26.3 Changes in Habits and Living Standards 519 26.4 Reduction in Material Consumption 522 26.4.1 Reduce 523 26.4.2 Reuse 523 26.4.3 Recycle 525 26.5 Global Approaches to Energy Conservation and Recycling 527 26.5.1 Japan 528 26.5.2 Sweden 528 26.5.3 USA 529 26.6 Practice Problems 529 26.7 Solutions to Practice Problems 530 26.8 Discussion Questions 530 Further Reading 531 27 Future of Cars 533 27.1 Fuel Efficiency Standards for Vehicles 533 27.2 Powertrain Competition 536 27.3 Driverless Vehicles and Ride-Sharing Services 538 27.4 Changing Habits: Car as a Status Symbol? 540 27.5 Practice Problems 541 27.6 Solutions to Practice Problems 541 27.7 Discussion Questions 542 Further Reading 543 28 Energy Conservation in Architectural Design and Urban Planning 545 28.1 Energy Efficiency in Old Buildings 545 28.2 Energy Conservation in New Construction 547 28.2.1 Construction 548 28.2.2 Day-to-Day Operation 548 28.2.3 Energy-Efficient Design Features 550 28.2.4 Demolition 553 28.2.5 LEED Certifications 553 28.3 Energy Conservation in Urban Planning 554 28.4 Future of Residential Construction 557 28.5 Practice Problems 558 28.6 Solutions to Practice Problems 558 28.7 Discussion Questions 559 Further Reading 559 Appendix 561 Index 563

    1 in stock

    £75.16

  • Nonlinear Optics on Ferroic Materials

    Wiley-VCH Verlag GmbH Nonlinear Optics on Ferroic Materials

    2 in stock

    Book SynopsisNonlinear Optics on Ferroic Materials Covering the fruitful combination of nonlinear optics and ferroic materials! The use of nonlinear optics for the study of ferroics, that is, magnetically, electrically or otherwise spontaneously ordered and switchable materials has witnessed a remarkable development since its inception with the invention of the laser in the 1960s. This book on Nonlinear Optics on Ferroic Materials reviews and advances an overarching concept of ferroic order and its exploration by nonlinear-optical methods. In doing so, it brings together three fields of physics: symmetry, ferroic order, and nonlinear laser spectroscopy. It begins by introducing the fundamentals for each of these fields. The book then discusses how nonlinear optical studies help to reveal properties of ferroic materials that are often inaccessible with other methods. In this, consequent use is made of the unique degrees of freedom inherent to optical experiments. An excursion into the theoretical foundations of nonlinear optical processes in ferroics rounds off the discussion. The final part of the book explores classes of ferroic materials of primary interest. In particular, this covers multiferroics with magnetoelectric correlations and oxide-electronic heterostructures. An outlook towards materials exhibiting novel forms of ferroic states or correlated arrangements beyond ferroic order and the study these systems by nonlinear optics concludes the work. The book is aimed equally at experienced scientists and young researchers at the interface between condensed-matter physics and optics and with a taste for bold, innovative ideas.Table of ContentsPreface xiii Acknowledgements xv 1 A Preview of the Subject of the Book 1 1.1 Symmetry Considerations 1 1.2 Ferroic Materials 3 1.3 Laser Optics 6 1.4 Creating the Trinity 8 1.5 Structure of this Book 10 Part I The Ingredients and Their Combination 11 2 Symmetry 13 2.1 Describing Interactions in Condensed-Matter Systems 13 2.2 Introduction to Practical Group Theory 15 2.3 Crystals 16 2.3.1 Types of Symmetry Operations 17 2.3.2 Combinations of Operations 20 2.3.3 Nomenclature 20 2.4 Point Groups and Space Groups 21 2.4.1 Point Groups 21 2.4.2 Space Groups 24 2.5 From Symmetries to Properties 25 2.5.1 Deriving the Components of the Property Tensors 25 2.5.2 Parity of the Property Tensors 25 2.5.3 Introducing Inhomogeneity 26 2.5.4 Beyond Group Theory: Particularisation 28 3 Ferroic Materials 31 3.1 Ferroic Phase Transitions 32 3.1.1 Landau-Theoretical Description and Order Parameter 33 3.1.2 First- and Second-Order Phase Transitions 34 3.1.3 Critical Exponents 36 3.1.4 Domain States and Domains 37 3.1.5 Softness 39 3.2 Ferroic States 41 3.2.1 Conjugate Field and Switchability 41 3.2.2 Hysteresis 42 3.2.3 Curie Temperature 42 3.3 Antiferroic States 43 3.4 Classification of Ferroics 44 3.4.1 Ferromagnetism 46 3.4.2 Ferroelectricity 56 3.4.3 Ferroelasticity 64 3.4.4 Ferrotoroidicity 68 3.4.5 Other Forms of Primary Ferroic Order 76 3.4.6 Higher-Order Ferroics 78 3.4.7 Multiferroics 81 4 Nonlinear Optics 91 4.1 Interaction of Materials with the Electromagnetic Radiation Field 93 4.1.1 Hamilton Operator 93 4.1.2 Multipole Expansion 95 4.2 Wave Equation in Nonlinear Optics 97 4.2.1 Derivation of the Wave Equation with an Extended Source Term 98 4.2.2 General Solution of the Wave Equation 99 4.2.3 Four Solutions of Particular Interest 101 4.3 Microscopic Sources of Nonlinear Optical Effects 103 4.4 Important Nonlinear Optical Processes 107 4.4.1 Two-Photon Sum Frequency Generation 108 4.4.2 Second Harmonic Generation 108 4.4.3 Two-Photon Difference Frequency Generation 109 4.4.4 Optical Parametric Generation 109 4.4.5 Third Harmonic Generation 109 4.5 Nonlinear Spectroscopy of Electronic States 110 4.5.1 Transition Matrix Elements 110 4.5.2 Resonance Behaviour at the Contributing Frequencies 110 4.5.3 Local-Field Corrections 110 4.5.4 Linear Optical Properties at the Contributing Frequencies 111 4.5.5 Phase Matching 111 5 Experimental Aspects 113 5.1 Laser Sources 113 5.1.1 Nanosecond Laser Systems with Optical Parametric Oscillator 114 5.1.2 Femtosecond Laser Systems with Optical Parametric Amplifier 115 5.2 Experimental Set-Ups 116 5.2.1 Spectral Resolution 117 5.2.2 Imaging by Projection 127 5.2.3 Imaging by Scanning 133 5.3 Temporal Resolution 134 6 Nonlinear Optics on Ferroics – An Instructive Example 137 6.1 SHG Contributions from Antiferromagnetic Cr 2 O 3 140 6.2 SHG Spectroscopy 146 6.3 Topography on Antiferromagnetic Domains 149 6.4 Magnetic Structure in the Spin-Flop Phase 152 Part II Novel Functionalities 155 7 The Unique Degrees of Freedom of Optical Experiments 157 7.1 Polarisation-Dependent Spectroscopy 158 7.1.1 Basic Methodical Aspects 158 7.1.2 Resonance Enhancement of Signals 159 7.1.3 Sublattice Selectivity 162 7.1.4 Separation of Coexisting Types of Order 164 7.1.5 Spectral Identification of Symmetries 166 7.2 Spatial Resolution – Domains 167 7.2.1 Access to Hidden Domain States 168 7.2.2 Domain Microscopy at Different Resolution 171 7.2.3 Domain Topography Below the Optical Resolution Limit 173 7.2.4 Domain Topography in Three Dimensions 178 7.3 Temporal Resolution – Correlation Dynamics 181 7.3.1 Overview 181 7.3.2 Dynamical Properties of Ferromagnetic Systems 186 7.3.3 Dynamical Processes in Antiferromagnetic Systems 190 7.3.4 Nonlinear Effects in the Few-Terahertz Range 196 8 Theoretical Aspects 201 8.1 Microscopic Sources of SHG in Ferromagnetic Metals 202 8.2 Microscopic Sources of SHG in Antiferromagnetic Insulators 203 8.2.1 Chromium Sesquioxide 203 8.2.2 Hexagonal Manganites 207 8.2.3 Nickel Oxide 210 Part III Materials and Applications 211 9 SHG and Multiferroics with Magnetoelectric Correlations 213 9.1 Type-I Multiferroics – The Hexagonal Manganites 214 9.1.1 Synthesis and Crystal Structure 214 9.1.2 Lattice Trimerisation 215 9.1.3 Antiferromagnetic Order of the Mn 3+ Lattice 231 9.1.4 Magnetic Order of the Rare-Earth System 243 9.1.5 Magnetic Sublattice Interactions 247 9.1.6 Magnetoelectric Sublattice Interactions 250 9.1.7 Dynamic Correlations 259 9.2 Type-I Multiferroics – BiFeO 3 262 9.2.1 Synthesis and Crystal Structure 262 9.2.2 Ferroelectric Order 264 9.2.3 Antiferromagnetic Order 264 9.2.4 Magnetoelectric Coupling Effects 266 9.3 Type-I Multiferroics with Strain-Induced Ferroelectricity 275 9.4 Type-II Multiferroics – MnWO 4 278 9.4.1 Synthesis and Crystal Structure 278 9.4.2 Multiferroic Order 279 9.4.3 SHG Contributions – Incommensurate SHG 280 9.4.4 Types of Domains 284 9.4.5 Poling Dynamics 287 9.4.6 Multiferroic Domain Walls 289 9.5 Type-II Multiferroics – TbMn 2 O 5 291 9.5.1 Synthesis, Crystal Structure, and Magnetic Order 291 9.5.2 Decomposition of Contributions to the Spontaneous Polarisation 292 9.6 Type-II Multiferroics – TbMnO 3 295 9.6.1 Synthesis, Crystal Structure, and Magnetic Order 295 9.6.2 Domains and Poling 295 9.6.3 Optical Domain Switching 297 9.6.4 Robustness of the Multiferroic State 302 9.7 Type-II Multiferroics with Higher-Order Domain Functionalities 304 9.7.1 Magnetoelectric Inversion of a Domain Pattern 305 9.7.2 Magnetoelectric ‘Teleportation’ of a Domain Pattern 309 10 SHG and Materials with Novel Types of Primary Ferroic Orders 313 10.1 Ferrotoroidics 314 10.1.1 Ferrotoroidic LiCoPO 4 314 10.1.2 Ferrotoroidics Other than LiCoPO 4 320 10.1.3 Status of Ferrotoroidicity as Primary Ferroic Order 324 10.2 Ferro-Axial Order – RbFe(MoO 4) 2 325 10.2.1 Structure and Phase Transitions 325 10.2.2 Ferroic Nature of the Rotational Transition 326 11 SHG and Oxide Electronics – Thin Films and Heterostructures 329 11.1 Growth Techniques 330 11.1.1 Pulsed-Laser Deposition 331 11.1.2 Molecular Beam Epitaxy 332 11.1.3 Sputter Deposition 332 11.1.4 Metal-Organic Chemical Vapour Deposition 333 11.2 Thin Epitaxial Oxide Films with Magnetic Order 334 11.2.1 Ferrimagnetic Garnets 334 11.2.2 Ferromagnetic Metals 334 11.2.3 EuO – A Ferromagnetic Insulator 336 11.3 Thin Epitaxial Oxide Films with Ferroelectric Order 341 11.3.1 Crystal Structure and Domain Configurations: BiFeO 3 342 11.3.2 From Domains to Domain Walls: SrMnO 3 345 11.3.3 Internal Structure of Domain Walls: Pbzr X Ti 1−x O 3 347 11.3.4 From Domain Walls to Interfaces: LaAlO 3 on SrTiO 3 350 11.4 Poling Dynamics in Ferroelectric Thin Films 357 11.5 Growth Dynamics in Oxide Electronics by In Situ SHG Probing 361 11.5.1 Early ISHG Experiments 362 11.5.2 Experimental Set-Up for ISHG 363 11.5.3 Emergence of Ferroelectric Order in a Single Film 365 11.5.4 From Single Films to Multi-Layer Heterostructure 367 11.5.5 From Multi-Layer Heterostructures to Symmetry Engineering 368 11.5.6 Growth Dynamics – Interaction Between Materials 370 11.5.7 Growth Dynamics – Interaction Between Interfaces 372 12 Nonlinear Optics on Ordered States Beyond Ferroics 375 12.1 Superconductors 375 12.2 Metamaterials – Photonic Crystals 379 12.2.1 Optical Properties 380 12.2.2 Ferroic Properties 380 12.2.3 Quasicrystalline Metamaterials 382 12.3 Topological Insulators 384 Part IV Epilogue 387 13 A Retrospect of the Subject of the Book 389 References 393 Index 443

    2 in stock

    £92.66

  • Diarylethene Molecular Photoswitches: Concepts

    Wiley-VCH Verlag GmbH Diarylethene Molecular Photoswitches: Concepts

    1 in stock

    Book SynopsisA comprehensive review to the synthesis, properties, and applications of diarylethene-based molecular photoswitches Diarylethene Molecular Photoswitches: Concept and Functionalities provides the fundamental concepts of molecular photoswitches and includes information on how the bistable photoswitches of diarylethenes modulate the functions of materials and biological activities. Written by Masahiro Irie (the inventor of photochromic diarylethene compound), the book explores the reaction mechanism, photoswitching performance, photoswitchable crystals, and the myriad applications of diarylethenes based photoswitches. This book offers academics, chemists, and engineers an essential resource for understanding the molecular photoswitches and provides a guide to the development of new photoresponsive materials. The author explores the applications based on diarylethene and its dirivatives to Field-Effect Transistors, Metal-Organic Frameworks including nanoparticles, super-resolution fluorescence microscopies, drug release, and self-healing materials. This important book: * Offers a guide to diarylethene derivatives, the most widely studied compounds worldwide among the photochromic compounds * Includes the basic concepts of molecular photoswitches * Explores the myraid applications grounded in diarylethene and its derivatives * Presents an authortative text from the inventor of the photochromic diarylethene compound Written for materials scientists, organic, polymer, and physical chemists, and electronics engineers, Diarylethene Molecular Photoswitches offers an introduction to the topic and includes recent developments in the field. Table of ContentsPreface ix 1 Introduction 1 1.1 General Introduction 1 1.2 Discovery of Diarylethene Molecular Photoswitches 4 References 12 2 Reaction Mechanism 15 2.1 Basic Concepts 15 2.2 Theoretical Study 20 2.3 Reaction Dynamics 22 2.3.1 Cyclization Reaction 22 2.3.2 Cycloreversion Reaction 27 References 29 3 Photoswitching Performance 31 3.1 Quantum Yield 31 3.1.1 Photocyclization Quantum Yield 31 3.1.2 Solvent Effect on Cyclization Quantum Yield 42 3.1.3 Photocycloreversion Quantum Yield 44 3.2 Thermal Stability 49 3.3 Fatigue Resistance 53 3.4 Fluorescence Property 60 3.4.1 Turn-Off Mode Photoswitching 61 3.4.2 Turn-On Mode Photoswitching 76 3.5 Chiral Property 80 References 86 4 Photoswitchable Crystals 93 4.1 Dichroism 93 4.2 X-Ray Crystallographic Analysis 97 4.3 Quantum Yield 101 4.4 Multicolored Systems and Nano-Layered Periodic Structures 106 4.5 Fluorescent Crystals 108 4.6 Photomechanical Response 110 4.6.1 Surface Morphology Change 112 4.6.2 Reversible Shape Change 113 4.6.3 Bending Response of Mixed Crystals 116 References 121 5 Memory 125 5.1 Single-Molecule Memory 125 5.2 Near-Field Optical Memory 128 5.3 Three-Dimensional Optical Memory 130 5.4 Readout Using Infrared Absorption, Raman Scattering, and Refractive Index Changes 132 References 134 6 Switches 137 6.1 Single-Molecule Conductance Photoswitch 137 6.2 Optical Switch Based on Refractive Index Change 141 6.3 Magnetism 141 References 146 7 Surface Properties 149 7.1 SurfaceWettability 149 7.2 Selective Metal Deposition 151 7.3 Subwavelength Nanopatterning 154 References 155 8 Polymers and Liquid Crystals 157 8.1 Polymers 157 8.2 Liquid Crystals 175 References 178 9 Applications 183 9.1 Organic Field-Effect Transistors (OFETs) 183 9.2 Metal Organic Frameworks (MOFs) 185 9.3 Super-Resolution Fluorescence Microscopy 188 9.3.1 Control of Cycloreversion Quantum Yield 189 9.3.2 Fatigue Resistance 191 9.3.3 Photoswitching with Single-Wavelength Visible Light 192 9.3.4 Super-Resolution Bioimaging 195 9.4 Chemical Reactivity Control 197 9.5 Biological Activity 201 9.6 Color Dosimeters 204 References 209 A Synthesis Procedures of Typical Diarylethenes 213 A.1 1,2-Bis(2,4-dimethyl-5-phenyl-3-thienyl)perfluorocyclopentene 213 A.2 1,2-Bis(2-ethyl-6-phenyl-1-benzothiophene-1,1-dioxide-3-yl)-perfluorocyclopenetene 215 References 217 Index 219

    1 in stock

    £108.86

  • Sodium-Ion Batteries: Materials,

    Wiley-VCH Verlag GmbH Sodium-Ion Batteries: Materials,

    1 in stock

    Book SynopsisPresents uparalleled coverage of Na-ion battery technology, including the most recent research and emerging applications Na-ion battery technologies have emerged as cost-effective, environmentally friendly alternatives to Li-ion batteries, particularly for large-scale storage applications where battery size is less of a concern than in portable electronics or electric vehicles. Scientists and engineers involved in developing commercially viable Na-ion batteries need to understand the state-of-the-art in constituent materials, electrodes, and electrolytes to meet both performance metrics and economic requirements. Sodium-Ion Batteries: Materials, Characterization, and Technology provides in-depth coverage of the material constituents, characterization, applications, upscaling, and commercialization of Na-ion batteries. Contributions by international experts discuss the development and performance of cathode and anode materials and their characterization - using methods such as NMR spectroscopy, magnetic resonance imaging (MRI), and computational studies - as well as ceramics, ionic liquids, and other solid and liquid electrolytes. Discusses the development of battery technology based on the abundant alkali ion sodium Features a thorough introduction to Na-ion batteries and their comparison with Li-ion batteries Reviews recent research on the structure-electrochemical performance relationship and the development of new solid electrolytes Includes a timely overview of commercial perspectives, cost analysis, and safety issues of Na-ion batteries Covers emerging technologies including Na-ion capacitors, aqueous sodium batteries, and Na-S batteries The handbook Sodium-Ion Batteries: Materials, Characterization, and Technology is an indispensable reference for researchers and development engineers, materials scientists, electrochemists, and engineering scientists in both academia and industry.Table of ContentsVolume 1 Preface xiii Part I Anodes 1 1 Graphite as an Anode Material in Sodium-Ion Batteries 3Gustav Avall, Mustafa Goktas, and Philipp Adelhelm 2 Hard Carbon Anodes for Na-Ion Batteries 27Fei Xie, Zhen Xu, Zhenyu Guo, Yuqi Li, Yaxiang Lu, Maria-Magdalena Titirici, and Yong-Sheng Hu 3 Alloy Anodes for Sodium-Ion Batteries 61Yan Yu, Xianhong Rui, and Xianghua Zhang Part II Cathodes 93 4 Sodium Layered Oxide Cathode Materials 95A. Robert Armstrong, Stephanie F. Linnell, Philip A. Maughan, Begoña Silván, and Nuria Tapia-Ruiz 5 Phosphate-Based Polyanionic Sodium-Ion Electrode Materials 129G. M. Nolis, M. Casas-Cabanas, and M. Galceran 6 Prussian Blue Electrodes for Sodium-Ion Batteries 167Sai Gourang Patnaik and Philipp Adelhelm Part III Advanced Characterization of Na-Ion Battery Electrodes 189 7 Understanding Na-Ion Batteries on the Atomic Scale Through Operando X-ray and Neutron Scattering 191Christian Kolle Christensen and Dorthe Bomholdt Ravnsbæk 8 NMR Investigations of Sodium-Ion Batteries 215Christopher A. O’Keefe and Clare P. Grey 9 Computational Studies on Na-Ion Electrode Materials 259Emilia Olsson and Qiong Cai 10 Pair Distribution Function Analysis of Sodium-Ion Batteries 301Phoebe K. Allan and Joshua M. Stratford Volume 2 Preface xiii Part IV Electrolytes 333 11 Ester- and Ether-Based Electrolytes for Na-Ion Batteries 335Yuqi Li, Lin Zhou, Fei Xie, Yu Li, Zhao Chen, Yaxiang Lu, and Yong-Sheng Hu 12 Ionic Liquid and Polymer-Based Electrolytes for Sodium Battery Applications 357Maria Forsyth, Faezeh Makhlooghiazad, Fangfang Chen, Ju Sun, and Patrick C. Howlett 13 Sodium-ion-conducting Oxides Used as Solid Electrolytes in Sodium Batteries -- Learning from the Past 391F. Tietz 14 Polymers in Sodium-Ion Batteries 429Heather Au and Maria Crespo-Ribadeneyra Part V Safety and Other Practical Aspects 501 15 Sodium-Ion Batteries: Aging, Degradation, Failure Mechanisms and Safety 503Julia Weaving, James Robinson, Daniela Ledwoch, Guanjie He, Emma Kendrick, Paul Shearing, and Daniel Brett 16 Practical Application of Room Temperature Na-Ion Batteries 531Kun Tang and Yu Ren 17 On the Environmental Competitiveness of Sodium-Ion Batteries -- Current State of the Art in Life Cycle Assessment 551Jens Peters, Manuel Baumann, Marcel Weil, and Stefano Passerini Part VI Other Na Based Technologies 573 18 High-Power Sodium-Ion Batteries and Sodium-Ion Capacitors 575Binson Babu and Andrea Balducci 19 Rechargeable Seawater Batteries 603Wang-geun Lee and Youngsik Kim 20 Sodium Solid-state Batteries 641Edouard Quérel and Ainara Aguadero Index 705

    1 in stock

    £204.00

  • Perovskite Solar Cells: Materials, Processes, and

    Wiley-VCH Verlag GmbH Perovskite Solar Cells: Materials, Processes, and

    1 in stock

    Book SynopsisPresents a thorough overview of perovskite research, written by leaders in the field of photovoltaics The use of perovskite-structured materials to produce high-efficiency solar cells is a subject of growing interest for academic researchers and industry professionals alike. Due to their excellent light absorption, longevity, and charge-carrier properties, perovskite solar cells show great promise as a low-cost, industry-scalable alternative to conventional photovoltaic cells. Perovskite Solar Cells: Materials, Processes, and Devices provides an up-to-date overview of the current state of perovskite solar cell research. Addressing the key areas in the rapidly growing field, this comprehensive volume covers novel materials, advanced theory, modelling and simulation, device physics, new processes, and the critical issue of solar cell stability. Contributions by an international panel of researchers highlight both the opportunities and challenges related to perovskite solar cells while offering detailed insights on topics such as the photon recycling processes, interfacial properties, and charge transfer principles of perovskite-based devices. Examines new compositions, hole and electron transport materials, lead-free materials, and 2D and 3D materials Covers interface modelling techniques, methods for modelling in two and three dimensions, and developments beyond Shockley-Queisser Theory Discusses new fabrication processes such as slot-die coating, roll processing, and vacuum sublimation Describes the device physics of perovskite solar cells, including recombination kinetics and optical absorption Explores innovative approaches to increase the light conversion efficiency of photovoltaic cells Perovskite Solar Cells: Materials, Processes, and Devices is essential reading for all those in the photovoltaic community, including materials scientists, surface physicists, surface chemists, solid state physicists, solid state chemists, and electrical engineers. Table of ContentsForeword xv 1 Chemical Processing of Mixed-Cation Hybrid Perovskites: Stabilizing Effects of Configurational Entropy 1 Feray Ünlü, Eunhwan Jung, Senol Öz, Heechae Choi, Thomas Fischer, andSanjay Mathur 1.1 Introduction 1 1.1.1 Stability Issues of Organic–Inorganic Hybrid Perovskites 2 1.2 Crystal Structure of Perovskites 4 1.2.1 Goldschmidt Tolerance Factor for 3D Structure 5 1.2.2 Octahedral Factor 5 1.2.3 Role of A-Site Cation 7 1.2.4 Theoretical Calculations: Molecular Dynamics of A-Site Cation 8 1.2.5 Entropy of Mixing: Configurational Effects in Mixed-Cation Perovskites 11 1.3 Multiple A-Site Cation Perovskites 12 1.3.1 FA+/MA+ Alloying for Higher Phase Stability and Photovoltaic Efficiency 12 1.3.2 Cesium Inclusion for Thermal Stability 13 1.3.3 Rb+ Small-Cation Influence on Perovskite Structure for Thermal Stability 15 1.3.4 Guanidinium Large-Cation Influence on Perovskite Structure for Stability 16 1.3.5 Triple- and Quadruple-Cation Hybrid Perovskites for Stability and Optimum Performance 17 1.3.6 Larger Organic Cations: Reducing Dimensionality for Improved Thermal Stability 20 1.4 Conclusion and Perspectives 22 Acknowledgments 24 References 24 2 Flash Infrared Annealing for Processing of Perovskite Solar Cells 33 Sandy Sánchez and Anders Hagfeldt 2.1 Introduction 33 2.2 Perovskite Crystal Nucleation and Growth from Solution 34 2.2.1 The Antisolvent Dripping Method 34 2.2.2 Thermodynamics of Nucleation and Crystal Growth 34 2.2.3 Kinetic Process for Rapid Thermal Growth 36 2.3 Rapid Thermal Annealing 37 2.3.1 The FIRA Method 37 2.3.2 FIRA and Antisolvent 39 2.3.3 Perovskite Film Crystallization for a Single IR Pulse 40 2.3.4 Perovskite Crystallization with Pulse Duration 42 2.3.5 Pulsed FIRA Method for Inorganic Perovskite Composition 45 2.3.6 Warmed-Pulsed FIRA Method 46 2.3.7 Crystallization Behavior of Mixed Perovskite Solutions 47 2.4 Structural Analysis of FIRA-Annealed Perovskite Films with Variable Pulse Time 50 2.4.1 Planar and Mesoporous Substrates 50 2.4.2 Crystal Structure Analysis 51 2.4.3 Structure of the Intermediate Phases 53 2.4.4 Internal Crystal Domain Structure 56 2.5 A Cost-Effective and Environmentally Friendly Method 57 2.5.1 Life-Cycle Assessment (LCA) of the Perovskite Film Synthesis Methods 57 2.5.2 Relative Cost and Environmental Impact of the AS and FIRA Methods 58 2.6 Application for MAPI3 Perovskite Solar Cells 60 2.6.1 Single IR Pulse and MAPbI3 Perovskite Composition 60 2.6.2 Large-Area Devices 60 2.7 Planar Devices Architecture and Mixed Perovskite Composition 64 2.7.1 Thin Film Analysis 64 2.7.2 PV Performance and Electronic Characteristic of the Devices 64 2.8 Pulsed FIRA for Inorganic Perovskite Solar Cells 67 2.8.1 Thin Film Analysis 67 2.8.2 PV Performance 68 2.9 Rapid Manufacturing of PSCs with an Adapted Perovskite Chemical Composition 71 2.9.1 Rapid Annealed TiO2 Mesoscopic Film 71 2.9.2 FCG Perovskite Stabilized with TBAI 72 2.9.3 PV Performance of the Manufactured PSCs 73 2.10 Outlook and Technical Details 75 2.10.1 Optimization of FIRA Process for Tandem Solar Cells 75 2.10.2 Automatic Roll-to-Roll System for the FIRA Manufacture of Perovskite Solar Cells 77 2.10.3 Electronic Setup 78 2.10.4 LabView Interface 78 2.11 Experimental Methods 80 2.11.1 Manufacture of Perovskite Solar Cells 80 2.11.2 Perovskite Solution Preparation 80 2.11.3 Antisolvent Method 81 2.11.4 FIRA Method 81 2.11.5 HTM Deposition and Back Contact Evaporation 81 2.11.6 Device Characterization 82 2.11.7 Material Characterization 82 2.11.8 Temperature Measurement 83 List of Abbreviations 83 Acknowledgments 84 References 84 3 Passivation of Hybrid/Inorganic Perovskite Solar Cells 91 Muhammad Akmal Kamarudin and Shuzi Hayase 3.1 Introduction 91 3.1.1 Types of Passivation 93 3.1.1.1 Bulk Passivation 93 3.1.1.2 Surface Passivation 93 3.1.2 Passivating Materials 95 3.1.2.1 Metal Halides 95 3.1.2.2 Organic Acids (—COOH, —SOOH, and —POOH) 96 3.1.2.3 Organosulfur Compound 98 3.1.2.4 Amines 98 3.1.2.5 Graphene 100 3.1.2.6 Metal Oxides 100 3.1.2.7 Organic Halides 102 3.1.2.8 Quantum Dots 104 3.1.2.9 Polymers 104 3.1.2.10 Zwitterions 107 3.2 Conclusion 107 References 108 4 Tuning Interfacial Effects in Hybrid Perovskite Solar Cells 113 Rafael S. Sánchez, Lionel Hirsch, and Dario M. Bassani 4.1 Strategies for Interfacial Deposition and Analysis 113 4.1.1 Tailoring the PS Properties and Microstructural Interface Through Solvent Engineering 114 4.1.2 Tailoring the PS Properties and Microstructural Interface Through Non-solvent Methods 117 4.2 Defect Formation in PS Films and Interfaces 118 4.2.1 Defect Formation in the PS Bulk and at the Surface During Film Crystallization 119 4.2.2 Defect Formation and Dynamics of PSC Under Working Conditions 122 4.3 Passivation Strategies of PS 126 4.4 Measuring and Tuning the Work Function and Surface Potential in PSC 130 4.5 Tuning the Wettability and Compatibility Between Layers 138 4.6 Effect on Device Efficiency and Lifetime 142 4.6.1 Moisture Effects on PS Films and PSC 142 4.6.2 Photoinduced Degradation of PS Films and PSC 146 4.6.3 Thermal Degradation of PS Films and PSC 149 4.6.4 Other Sources of Degradation in PSC 150 4.7 Conclusions and Prospects 153 References 154 5 All-inorganic Perovskite Solar Cells 175 Yaowen Li and Yongfang Li 5.1 Introduction 175 5.2 Basic Knowledge of All-inorganic Pero-SCs 176 5.2.1 Crystalline Structure 176 5.2.2 Stability 177 5.2.2.1 Thermal Stability 177 5.2.2.2 Phase Stability 177 5.2.2.3 Light Stability 178 5.2.3 Working Principle 178 5.3 Lead-Based Inorganic Pero-SCs 179 5.3.1 CsPbI3 179 5.3.1.1 Additive Engineering 181 5.3.1.2 Organic Compound Treatment 181 5.3.1.3 Crystal Size Reduction and Morphology Optimization 183 5.3.1.4 Current Density Increase 185 5.3.2 CsPbI2Br 185 5.3.2.1 Fabrication Methods 185 5.3.2.2 Ionic Incorporation 189 5.3.2.3 Interface Engineering 191 5.3.3 CsPbIBr2 193 5.3.3.1 Crystal Growth 194 5.3.3.2 Ionic Incorporation 195 5.3.3.3 Interface Engineering 196 5.3.4 CsPbBr3 196 5.3.4.1 Fabrication Method 197 5.3.4.2 Ionic Incorporation 199 5.3.4.3 Interface Engineering 199 5.4 Tin-Based Inorganic Pero-SCs 200 5.4.1 CsSnI3 200 5.4.1.1 Fabrication Methods 201 5.4.1.2 Additive Engineering 203 5.4.1.3 Substrate Control 203 5.4.2 CsSnIxBr3−x 204 5.5 Other Inorganic Pero-SCs 204 5.5.1 Ge-Based Inorganic Pero-SCs 205 5.5.2 Sb-Based Inorganic Pero-SCs 205 5.5.3 Bi-Based Inorganic Pero-SCs 206 5.5.3.1 A3B2I9 Structure 206 5.5.3.2 Other Structures 207 5.5.4 Double B site Cation Perovskite 207 5.6 Conclusion 209 References 210 6 Tin Halide Perovskite Solar Cells 223 Thomas Stergiopoulos 6.1 Introduction 223 6.2 Why Tin Halide Perovskites? 223 6.2.1 Tin as the Sole Viable Alternative 223 6.2.2 Favorable Optoelectronic Properties of Tin Perovskites 224 6.2.2.1 Low Bandgap 224 6.2.2.2 High Charge Carrier Mobility 224 6.2.2.3 Similar Properties with Lead Perovskites 225 6.3 Concerns About Tin-Based Perovskites 225 6.3.1 Severe Non-radiative Recombination 225 6.3.2 Poor Stability 226 6.4 Control of Hole Doping 227 6.4.1 Sn2+ Compensation/Necessity of Adding SnF2 227 6.4.2 Additives to Improve SnF2 Dispersion 227 6.4.3 Elimination of Sn4+ Impurities 229 6.4.3.1 SnI2 Purification 229 6.4.3.2 Reaction of Sn Powder with Sn4+ Residuals 229 6.4.3.3 Addition of Reducing Agents 230 6.5 Films Deposition 231 6.5.1 Crystallization Tuning 231 6.5.1.1 Solvent Engineering 231 6.5.1.2 Additives to Slow Down Crystallization Kinetics 232 6.5.2 Posttreatment Strategies/Surface Trap Passivation 233 6.6 Contacts/Interface Engineering 234 6.7 Ongoing Challenges 235 6.7.1 Efficiency 235 6.7.2 Stability 238 6.7.3 Performance over the S–Q Limit/Toward Multijunction Solar Cells 238 6.7.4 Sustainability 241 6.8 Conclusion 241 Acknowledgments 242 References 242 7 Low-Temperature and Facile Solution-Processed Two-Dimensional Materials as Electron Transport Layer for Highly Efficient Perovskite Solar Cells 247 Shao Hui, Najib H. Ladi, Han Pan, Yan Shen, and Mingkui Wang 7.1 Introduction 247 7.2 Charge Transport in Perovskite Solar Cells 249 7.3 Brief Development of Perovskite Solar Cells 251 7.4 Functions and Requirements of Electron Transport Layer 253 7.5 Features and Advantages of Two-Dimensional Electron Transport Materials 256 7.6 Van der Waals Heterojunctions 256 7.7 Quantum Confinement Effect in Two-Dimensional Electron Transport Materials and Its Application 258 7.8 Other Physical Properties of Two-Dimensional Electron Transport Materials 259 7.9 Synthesis of Various Two-Dimensional Materials 260 7.10 Application of Two-Dimensional Material as an Electron Transport Layer in Perovskite Solar Cells 262 7.11 Conclusion and Outlook 266 List of Abbreviations 267 References 268 8 Metal Oxides in Stable and Flexible Halide Perovskite Solar Cells: Toward Self-Powered Internet of Things 273 Carlos Pereyra, Haibing Xie, Amir N. Shandy, Vanessa Martínez, HenckPierre, Elia Santigosa, Daniel A. Acuña-Leal, Laia Capdevila, Quentin Billon,Löis Mergny, María Ramos-Payán, Mónica Gomez, Bindu Krishnan, MariaMuñoz, David M. Tanenbaum, Anders Hagfeldt, and Monica Lira-Cantu 8.1 Introduction 273 8.2 Metal Oxides in Normal (n–i–p), Inverted (p–i–n) and “Oxide-Sandwich” Halide Perovskite Solar Cells 275 8.3 Mesoporous Metal Oxide Bilayers in Highly Stable Carbon-Based Perovskite Solar Cells 277 8.4 Solution-Processable Metal Oxides for Flexible Halide Perovskite Solar Cells 288 8.5 Characterization of PSC by Electrochemical Impedance Spectroscopy (EIS) 294 8.6 Conclusions 299 Acknowledgments 299 References 300 9 Electron Transport Layers in Perovskite Solar Cells 311 Fatemeh Jafari, Mehrad Ahmadpour, Um Kanta Aryal, Mariam Ahmad,Michela Prete, Naeimeh Torabi, Vida Turkovic, Horst-Günter Rubahn, AbbasBehjat, and Morten Madsen 9.1 Introduction 311 9.2 Requirements of Ideal Electron Transport Layers (ETL) 312 9.3 Overview of Electron Transport Materials 314 9.3.1 Metal Oxide Electron Transport Materials 314 9.3.2 Organic Electron Transport Materials 317 9.4 The Architectures of Perovskite Solar Cells 321 9.4.1 Mesoscopic Perovskite Solar Cells 321 9.4.2 Planar Perovskite Solar Cells 323 Acknowledgments 324 References 324 10 Dopant-Free Hole-Transporting Materials for Perovskite Solar Cells 331 Meenakshi Pegu, Shahzada Ahmad, and Samrana Kazim 10.1 Introduction 331 10.1.1 Device Structure of Perovskite Solar Cells 332 10.1.2 Charge Transport in Perovskite Solar Cells and Role of HTM 333 10.2 Hole-Transporting Material for Perovskite Solar Cells 334 10.2.1 Characteristics of an HTM and Interaction with Perovskite 334 10.2.2 Nature of HTM: Organometallic, Inorganic, and Organic (Small Molecules and Polymers) 336 10.2.3 Doping of Hole-Transporting Materials in PSCs 337 10.3 Dopant-Free Organic HTMs for Perovskite Solar Cells 340 10.3.1 Dopant-Free Organic Polymer As HTM 340 10.3.2 Dopant-Free Small Molecules as HTM 340 10.3.2.1 Triarylamine-Based HTM 340 10.3.2.2 Carbazole-Based HTMs 348 10.3.2.3 Thiophene-Based HTMs 349 10.3.2.4 Acene-Based HTMs 350 10.3.2.5 Triazatruxene-Based HTMs 350 10.3.2.6 Tetrathiafulvalene-Based HTM 353 10.3.2.7 Organometallic Compounds and Other Molecules as HTM 353 10.4 Conclusion and Outlook 356 Acknowledgments 356 List of Abbreviations 356 References 359 11 Impact of Monovalent Metal Halides on the Structural and Photophysical Properties of Halide Perovskite 369 Mojtaba Abdi-Jalebi and M. Ibrahim Dar 11.1 Introduction 369 11.2 Metal Halides 369 11.3 Monovalent Metal Halides 370 11.4 Impact of Monovalent Metal Halides on the Morphological, Structural and Optoelectronic Properties of Perovskites 372 11.5 Impact of Monovalent Metal Halides on Photovoltaic Device Characterizations 378 References 384 12 Charge Carrier Dynamics in Perovskite Solar Cells 389 Mohd T. Khan, Abdullah Almohammedi, Samrana Kazim, and Shahzada Ahmad 12.1 Introduction 389 12.2 Space Charge-Limited Conduction 390 12.3 Immitance Spectroscopy 395 12.3.1 Impedance Spectroscopy 395 12.3.2 Capacitance Spectroscopy 402 12.3.2.1 Capacitance vs. Frequency (C–f ) Measurements 403 12.3.2.2 Capacitance vs. Voltage (C–V) Measurements and Mott–Schottky Analysis 406 12.3.2.3 Thermal Admittance Spectroscopy 409 12.4 Transient Spectroscopy 413 12.4.1 Time-Resolved Microwave Conductivity Measurements 413 12.4.2 Transient Absorption Spectroscopy 417 12.4.3 Time-Resolved Photoluminescence 420 12.5 Conclusion 423 Acknowledgments 424 References 424 13 Printable Mesoscopic Perovskite Solar Cells 431 Daiyu Li, Yaoguang Rong, Yue Hu, Anyi Mei, and Hongwei Han 13.1 Introduction 431 13.2 Device Structures and Working Principles 432 13.3 Progress of Efficiency and Stability 433 13.4 Scaling-up of Printable Mesoscopic Perovskite Solar Cells 438 13.4.1 The Structure of Printable Mesoscopic PSC Modules 438 13.4.2 Solution Deposition Methods of Printable Mesoscopic PSC Modules 440 13.4.3 Encapsulation of Printable Mesoscopic PSCs 442 13.4.4 The Recycling of Printable Mesoscopic PSCs 442 13.4.5 Mass-Production of Printable Mesoscopic PSC Modules 444 13.4.6 Standardizing the Evaluation of PSC Modules 445 13.4.7 Standardizing the Aging Measurements of PSC Modules 447 13.5 Conclusions 449 References 449 14 Upscaling of Perovskite Photovoltaics 453 Dongju Jang, Fu Yang, Lirong Dong, Christoph J. Brabec, and Hans-Joachim Egelhaaf 14.1 Introduction 453 14.2 Techniques for Upscaling 457 14.3 State-of-the-art of Large-Area High-Quality Perovskite Devices 467 14.4 Strategies of Upscaling of Perovskite Devices 471 14.4.1 Strategies for Up-Scaling Perovskite Layers 473 14.4.1.1 Physical Methods 473 14.4.1.2 Chemical Methods 476 14.4.1.3 Post-Growth Treatment 477 14.4.2 Scalable Charge Extraction Layers 478 14.4.3 Scalable Electrodes 479 14.4.3.1 Bottom Electrode 479 14.4.3.2 Top Electrode 481 14.5 Module Layout 481 14.6 Lifetime Aspects 484 14.7 Summary and Outlook 486 References 489 15 Scalable Architectures and Fabrication Processes of Perovskite Solar Cell Technology 497 Ghufran S. Hashmi 15.1 Background 497 15.1.1 Configurations and Device Architectures of Perovskite Solar Cells 498 15.1.2 HTM-Free Device Configurations for Perovskite Solar Cells 499 15.1.3 Perovskites-Based Tandem Solar Cells 500 15.2 Scalable Device Designs of Perovskite Solar Cells 501 15.2.1 Scalable n–i–p Configuration-Based Perovskite Solar Modules 501 15.2.2 Scalable p–i–n Configuration-Based Perovskite Solar Modules 504 15.2.3 Scalable n–i–p and p–i–n Configuration-Based Flexible Perovskite Solar Modules 504 15.2.4 HTM-Free Perovskite Solar Modules 508 15.3 Critical Overview on Scalable Materials Deposition Methods 509 15.4 Nutshell of Long-Term Device Stability of Perovskite Solar Cells and Modules 513 15.5 Conclusive Summary and Futuristic Outlook 514 References 515 16 Multi-Junction Perovskite Solar Cells 521 Suhas Mahesh and Bernard Wenger 16.1 Introduction 521 16.1.1 How Efficient Can Solar Cells Be? 523 16.1.2 How Do Multi-Junction Solar Cells Work? 525 16.1.3 Multi-Junction: Two-Terminal, Three-Terminal, and Four-Terminal Multi-Junctions 525 16.1.4 Why Perovskites for Multi-Junctions? 528 16.2 Perovskite-Silicon Tandems 529 16.2.1 Bandgap Engineering 530 16.2.2 Parasitic Absorption 532 16.2.3 Optical Management 535 16.3 Perovskite–Perovskite Tandems 536 16.4 Characterizing Tandems 538 16.5 Commercialization 539 16.5.1 Reliability 540 16.5.2 Scalability 540 16.5.3 Cost 541 16.6 Outlook 542 References 543 Index 549

    1 in stock

    £143.95

  • Solar-to-Chemical Conversion: Photocatalytic and

    Wiley-VCH Verlag GmbH Solar-to-Chemical Conversion: Photocatalytic and

    1 in stock

    Book SynopsisThis comprehensive book systematically covers the fundamentals in solar energy conversion to chemicals, either fuels or chemical products. It includes natural photosynthesis with emphasis on artificial processes for solar energy conversion and utilization. The chemical processes of solar energy conversion via homogeneous and/or heterogeneous photocatalysis has been described with the mechanistic insights. It also consists of reaction systems toward a variety of applications, such as water splitting for hydrogen or oxygen evolution, photocatalytic CO2 reduction to fuels, and light driven N2 fixation, etc. This unique book offers the readers a broad view of solar energy utilization based on chemical processes and their perspectives for future sustainability.Table of Contents1 Introduction: A Delicate Collection of Advances in Solar-to-Chemical Conversions 1Hongqi Sun 2 Artificial Photosynthesis and Solar Fuels 7Jun Ke 2.1 Introduction of Solar Fuels 7 2.2 Photosynthesis 8 2.3 Principles of Photocatalysis 10 2.4 Products of Artificial Photosynthesis 13 2.5 Perspective 34 3 Natural and Artificial Photosynthesis 41Dimitrios A. Pantazis 3.1 Introduction 41 3.2 Overview of Natural Photosynthesis 43 3.3 Light Harvesting and Excitation Energy Transfer 44 3.4 Charge Separation and Electron Transfer 48 3.5 Water Oxidation 53 3.6 Carbon Fixation 61 3.7 Conclusions 63 4 Photocatalytic Hydrogen Evolution 77Amanj Kheradmand, Yuxiang Zhu, Shengshen Gu and Yijiao Jiang 4.1 Introduction 77 4.2 Fundamentals of Photocatalytic H2 Evolution 79 4.3 Photocatalytic H2 Evolution Under UV Light 82 4.4 Photocatalytic H2 Evolution Under Visible Light 88 4.5 Photocatalytic H2 Evolution Under Near-Infrared Light 95 4.6 Roles of Sacrificial Reagents and Reaction Pathways 99 4.7 Summary and Outlook 102 5 Photoelectrochemical Hydrogen Evolution 107Zhiliang Wang and Lianzhou Wang 5.1 Background of PhotoelectrocatalyticWater Splitting 107 5.2 Mechanism of Charge Separation and Transfer 109 5.3 Strategy for Improving Charge Transfer 112 5.4 Strategy for Improving Electron-Hole Separation 116 5.5 Surface Cocatalyst Design 120 5.6 Unbiased PECWater Splitting 122 5.7 Conclusion and Perspective 123 6 Photocatalytic Oxygen Evolution 129Huayang Zhang, Wenjie Tian and Shaobin Wang 6.1 Introduction 129 6.2 Homogeneous PhotocatalyticWater Oxidation 131 6.3 Heterogeneous PhotocatalyticWater Oxidation 137 6.4 Catalytic Active Site-Catalysis Correlation in LD Semiconductors 156 6.5 Conclusions and Perspectives 157 7 Photoelectrochemical Oxygen Evolution 163Fumiaki Amano 7.1 Introduction 163 7.2 Honda-Fujishima Effect 164 7.3 Factors Affecting the Photoanodic Current 165 7.4 Electrode Potentials at Different pH 168 7.5 Evaluation of PEC Performance 170 7.6 Flat Band Potential and Photocurrent Onset Potential 172 7.7 Selection of Materials 173 7.8 Enhancement of PEC Properties 175 7.9 PEC Device forWater Splitting 182 7.10 Conclusions and Outlook 184 8 Photocatalytic and Photoelectrochemical Overall Water Splitting 189Nur Aqlili Riana Che Mohamad, Filipe Marques Mota and Dong Ha Kim 8.1 Introduction 189 8.2 Photocatalytic OverallWater Splitting 190 8.3 Photoelectrochemical OverallWater Splitting 213 8.4 Concluding Remarks and Outlook 230 9 Photocatalytic CO2 Reduction 243Maochang Liu, Guijun Chen, Boya Min, Jinwen Shi, Yubin Chen and Qibin Liu 9.1 Introduction 243 9.2 Principle of Photocatalytic Reduction of CO2 245 9.3 Energy and Mass Transfers in Photocatalytic Reduction of CO2 247 9.4 Conclusions 265 10 Photoelectrochemical CO2 Reduction 269Zhongxue Yang, Hui Ning, Qingshan Zhao, Hongqi Sun and Mingbo Wu 10.1 Introduction 269 10.2 PEC CO2 Reduction Principles 272 10.3 Application of Solar-to-Chemical Energy Conversion in PEC CO2 Reduction 276 10.4 Other Configurations for PEC CO2 Reduction 289 10.5 Conclusion and Outlook 292 11 Photocatalytic and Photoelectrochemical Nitrogen Fixation 301Lei Shi and Hongqi Sun 11.1 Introduction 301 11.2 Fundamental Principles and Present Challenges 303 11.3 Strategies for Catalyst Design and Fabrication 307 11.4 Conclusions and Outlook 333 12 Photocatalytic Production of Hydrogen Peroxide Using MOF Materials 339Xiaolang Chen, Yasutaka Kuwahara, Kohsuke Mori and Hiromi Yamashita 12.1 Introduction 339 12.2 Photocatalytic H2O2 Production Through Selective Two-Electron Reduction of O2 Utilizing NiO/MIL-125-NH2 340 12.3 Two-Phase System Utilizing Linker-Alkylated Hydrophobic MIL-125-NH2 for Photocatalytic H2O2 Production 346 12.4 Ti Cluster-Alkylated Hydrophobic MIL-125-NH2 for Photocatalytic H2O2 Production in Two-Phase System 356 12.5 Conclusion and Outlooks 362 13 Photocatalytic and Photoelectrochemical Reforming of Methane 365Jinqiang Zhang and Hongqi Sun 13.1 Introduction 365 13.2 Photo-Mediated Processes 367 13.3 Differences Between Photo-Assisted Catalysis and Thermocatalysis 369 13.4 Reactions of Methane Conversion via Photo-Assisted Catalysis 373 13.5 Conclusions and Perspectives 383 14 Photocatalytic and Photoelectrochemical Reforming of Biomass 389Xiaoqing Liu, Wei Wei and Bing-Jie Ni 14.1 Introduction 389 14.2 Fundamentals of Photocatalytic and Photoelectrochemical Processes 391 14.3 Photocatalytic Reforming of Biomass 393 14.4 Photoelectrochemical Reforming of Biomass 406 14.5 Conclusion Remarks and Perspectives 412 15 Reactors, Fundamentals, and Engineering Aspects for Photocatalytic and Photoelectrochemical Systems 419Boon-Junn Ng, Xin Ying Kong, Yi-Hao Chew, Yee Wen Teh and Siang-Piao Chai 15.1 Fundamental Mechanisms of Photocatalytic and PEC Processes 419 15.2 Reactor Design and Configuration 428 15.3 Engineering Aspects of Photocatalytic and PEC Processes 436 15.4 Conclusions and Outlook 443 List of Abbreviations 444 References 445 16 Prospects of Solar Fuels 449Hongqi Sun Index 453

    1 in stock

    £104.96

  • Optik und Photonik

    Wiley-VCH Verlag GmbH Optik und Photonik

    2 in stock

    Book SynopsisVollständig überarbeitete Neuauflage des maßgeblichen Grundlagen-Lehrbuchs zur Optik und Photonik - umfassend überarbeitet und mit einem neuen Kapitel zur Metamaterialoptik erweitert Die Optik ist eines der ältesten und faszinierendsten Teilgebiete der Physik und fest in den Curricula des Physikstudiums verankert. Sie beschäftigt sich mit der Ausbreitung von Licht und Phänomenen wie Interferenz, Brechung, Beugung und optischen Abbildungen. Die Photonik umfasst optische Phänomene, die primär auf der Wechselwirkung von (quantisiertem) Licht und Materie beruhen, und befasst sich mit dem Verständnis und der Entwicklung optischer Bauteile und Systeme wie etwa Lasern, LEDs und photonischen Kristallen. In bewährter Weise gibt die vollständig überarbeitete und erweiterte Neuauflage des "Saleh/Teich" eine Einführung in die Grundlagen der Optik und Photonik für Studierende der Physik und verwandter Wissenschaften. Ausführliche Erklärungen, rund 1000 Abbildungen und die zur quantitativen Durchdringung notwendige Mathematik ermöglichen ein tiefes Verständnis aller Teilgebiete der klassischen und modernen Optik. * Umfassend und verständlich: sämtliche Grundlagen der Optik und Photonik in einem Werk vereint * Geschrieben von hervorragenden Didaktikern mit langer Lehrerfahrung: optische Phänomene und deren Physik stehen im Vordergrund, der notwendige mathematische Apparat wird behutsam entwickelt * Überarbeitet und erweitert: alle Kapitel wurden mit Blick auf noch bessere Verständlichkeit kritisch geprüft und aktualisiert * Komplett neu: umfangreiches Kapitel zu Metamaterialoptik "Optik und Photonik" richtet sich an Bachelor- und Master-Studierende der Physik, Materialwissenschaften und Ingenieurwissenschaften.Trade ReviewSehr schön sind auch die Kapitel über Photonenoptik, statistische Optik und Metamaterialien. Physik in unserer Zeit, 24.09.2020Table of ContentsVorwort zur dritten Auflage xix Vorwort zur zweiten Auflage xxiii Teil I Optik 1 1 Strahlenoptik 3 1.1 Postulate der Strahlenoptik 4 1.2 Einfache optische Komponenten 6 1.3 Gradientenindexoptik 14 1.4 Matrizenoptik 19 2 Wellenoptik 29 2.1 Die Postulate der Wellenoptik 30 2.2 Monochromatische Wellen 31 2.3 Die Beziehung zwischen Wellenoptik und Strahlenoptik 35 2.4 Einfache optische Komponenten 36 2.5 Interferenz 42 2.6 Polychromatisches und gepulstes Licht 49 3 Optik von Strahlbündeln 57 3.1 Der Gaußstrahl 57 3.2 Durchgang durch optische Komponenten 64 3.3 Hermite-Gauß-Strahlen 70 3.4 Laguerre-Gauß-Strahlen 72 3.5 Nichtbeugende Strahlen 74 4 Fourieroptik 79 4.1 Lichtausbreitung im Vakuum 80 4.2 Die optische Fouriertransformation 88 4.3 Lichtbeugung 91 4.4 Bildentstehung 98 4.5 Holographie 105 5 Elektromagnetische Optik 117 5.1 Die elektromagnetische Theorie des Lichts 118 5.2 Elektromagnetische Wellen in Dielektrika 121 5.3 Monochromatische elektromagnetische Wellen 124 5.4 Einfache elektromagnetische Wellen 126 5.5 Absorption und Dispersion 130 5.6 Die Streuung elektromagnetischer Wellen 137 5.7 Pulsausbreitung in dispersiven Medien 143 6 Polarisationsoptik 151 6.1 Die Polarisation des Lichts 152 6.2 Reflexion und Brechung 159 6.3 Die Optik anisotroper Medien 163 6.4 Optische Aktivität und Magnetooptik 172 6.5 Optik von Flüssigkristallen 175 6.6 Polarisierende Bauelemente 177 7 Optik photonischer Kristalle 185 7.1 Optik von dielektrischen Schichtmedien 187 7.2 Eindimensionale photonische Kristalle 200 7.3 Zwei- und dreidimensionale photonische Kristalle 211 8 Optik von Metallen und Metamaterialien 221 8.1 Einfach- und doppelt-negative Medien 223 8.2 Optik von Metallen: Plasmonik 234 8.3 Optik von Metamaterialien 245 8.4 Transformationsoptik 253 9 Wellenleiteroptik 261 9.1 Wellenleiter aus ebenen Spiegeln 262 9.2 Ebene dielektrische Wellenleiter 267 9.3 Zweidimensionale Wellenleiter 273 9.4 Optische Kopplung in Wellenleitern 276 9.5 Photonische Kristalle als Wellenleiter 282 9.6 Plasmonische Wellenleiter 283 10 Faseroptik 289 10.1 Geführte Strahlen 290 10.2 Geführte Wellen 293 10.3 Dämpfung und Dispersion 306 10.4 Hohlkernfasern und Fasern aus photonischen Kristallen 314 10.5 Materialien für optische Fasern 316 11 Resonatoroptik 321 11.1 Resonatoren aus ebenen Spiegeln 323 11.2 Kugelspiegelresonatoren 330 11.3 Zwei- und dreidimensionale Resonatoren 337 11.4 Mikro- und Nanoresonatoren 340 12 Statistische Optik 349 12.1 Statistische Eigenschaften von stochastischem Licht 350 12.2 Interferenz von partiell kohärentem Licht 359 12.3 Transmission von partiell kohärentem Licht durch optische Systeme 364 12.4 Partielle Polarisation 370 13 Photonenoptik 377 13.1 Das Photon 378 13.2 Photonenströme 387 13.3 Quantenzustände des Lichts 396 Teil II Photonik 411 14 Licht und Materie 413 14.1 Energieniveaus 413 14.2 Die Besetzung von Energieniveaus 428 14.3 Die Wechselwirkung von Photonenmit Atomen 430 14.4 Thermisches Licht 443 14.5 Lumineszenz und Lichtstreuung 446 15 Laserverstärker 457 15.1 Theorie der Laserverstärkung 459 15.2 Pumpen des Verstärkers 461 15.3 Verbreitete Laserverstärker 468 15.4 Die Nichtlinearität von Verstärkern 476 15.5 Verstärkerrauschen 480 16 Laser 485 16.1 Theorie der Laseroszillation 486 16.2 Die Eigenschaften der Laserstrahlung 490 16.3 Bauarten von Lasern 500 16.4 Gepulste Laser 523 17 Halbleiteroptik 543 17.1 Halbleiter 544 17.2 Wechselwirkungen von Photonen mit Ladungsträgern 569 18 LED und Laserdioden 585 18.1 Lichtemittierende Dioden (LED) 586 18.2 Optische Halbleiterverstärker 607 18.3 Laserdioden 618 18.4 Quanteneinschlusslaser 627 18.5 Mikroresonatorlaser 636 18.6 Nanoresonatorlaser 642 19 Photodetektoren 651 19.1 Photodetektoren 652 19.2 Photoleiter 660 19.3 Photodioden 663 19.4 Lawinenphotodioden 669 19.5 Arraydetektoren 679 19.6 Rauschen in Photodetektoren 681 20 Akustooptik 705 20.1 DieWechselwirkung von Licht und Schall 706 20.2 Akustooptische Bauelemente 714 20.3 Akustooptik von anisotropen Medien 721 21 Elektrooptik 727 21.1 Grundlagen der Elektrooptik 728 21.2 Elektrooptik anisotroper Medien 737 21.3 Elektrooptik von Flüssigkristallen 742 21.4 Photorefraktivität 749 21.5 Elektroabsorption 753 22 Nichtlineare Optik 759 22.1 Nichtlineare optische Medien 760 22.2 Nichtlineare Optik zweiter Ordnung 763 22.3 Nichtlineare Optik dritter Ordnung 775 22.4 Nichtlineare Optik zweiter Ordnung: Die Theorie gekoppelter Wellen 782 22.5 Nichtlineare Optik dritter Ordnung: Die Theorie gekoppelter Wellen 789 22.6 Anisotrope nichtlineare Medien 794 22.7 Dispersive nichtlineare Medien 796 23 Ultraschnelle Optik 803 23.1 Eigenschaften von Pulsen 804 23.2 Pulsformung und Kompression 810 23.3 Pulsausbreitung in optischen Fasern 821 23.4 Ultraschnelle lineare Optik 831 23.5 Ultraschnelle nichtlineare Optik 838 23.6 Pulsdetektion 854 24 Optische Verbindungen und Schalter 869 24.1 Optische Verbindungen 871 24.2 Passive optische Router 881 24.3 Photonische Schalter 887 24.4 Photonische Logikgatter 908 25 Faseroptische Kommunikation 919 25.1 Faseroptische Komponenten 920 25.2 Faseroptische Nachrichtensysteme 931 25.3 Modulation und Multiplexing 945 25.4 Kohärente optische Kommunikation 952 25.5 Faseroptische Netze 958 Anhang A Die Fouriertransformation 969 A.1 Die eindimensionale Fouriertransformation 969 A.2 Zeitliche und spektrale Breite 970 A.3 Die zweidimensionale Fouriertransformation 973 Anhang B Lineare Systeme 977 B.1 Eindimensionale lineare Systeme 977 B.2 Zweidimensionale lineare Systeme 979 Anhang C Die Moden linearer Systeme 981 C.1 Die Moden eines diskreten linearen Systems 982 C.2 Die Moden eines kontinuierlichen durch einen Integraloperator beschriebenen Systems 982 C.3 Die Moden eines durch gewöhnliche Differentialgleichungen beschriebenen Systems 983 C.4 Die Moden eines durch eine partielle Differentialgleichung beschriebenen Systems 984 Lösungen zu den Übungen 987 1 Strahlenoptik987 2 Wellenoptik 992 3 Optik von Strahlbündeln 994 4 Fourieroptik 996 5 Elektromagnetische Optik 998 6 Polarisationsoptik 998 7 Optik photonischer Kristalle 999 9 Wellenleiteroptik 999 10 Faseroptik 1000 11 Resonatoroptik 1002 12 Statistische Optik 1003 13 Photonenoptik 1004 14 Licht und Materie 1005 15 Laserverstärker 1006 16 Laser 1008 17 Halbleiteroptik 1010 18 LED und Laserdioden 1012 19 Photodetektoren 1014 20 Akustooptik 1015 21 Elektrooptik 1016 22 Nichtlineare Optik 1016 23 Ultraschnelle Optik 1020 24 Optische Verbindungen und Schalter 1020 Stichwortverzeichnis 1023

    2 in stock

    £76.00

  • Graphdiyne: Fundamentals and Applications in

    Wiley-VCH Verlag GmbH Graphdiyne: Fundamentals and Applications in

    1 in stock

    Book SynopsisGraphdiyne Discover the most cutting-edge developments in the study of graphdiyne from a pioneer of the field In Graphdiyne: Fundamentals and Applications in Renewable Energy and Electronics, accomplished chemist Dr. Yuliang Li delivers a practical and insightful compilation of theoretical and experimental developments in the study of graphdiyne. Of interest to both academics and industrial researchers in the fields of nanoscience, organic chemistry, carbon science, and renewable energies, the book systematically summarizes recent research into the exciting new material. Discover information about the properties of graphdiyne through theoretical simulations and experimental characterizations, as well as the development of graphdiyne with appropriate preparation technology. Learn to create new graphdiyne-based materials and better understand its intrinsic properties. Find out about synthetic methodologies, the controlled growth of aggregated state structures, and structural characterization. In addition to demonstrating the interdisciplinary potential and relevance of graphdiyne, the book also offers readers: A thorough introduction to basic structure and band gap engineering, including molecular and electronic structure, mechanical properties, and the layers structure of bulk graphdiyne Explorations of Graphdiyne synthesis and characterization, including films, nanotube arrays and nanowires, nanowalls, and nanosheets, as well as characterization methods Discussions of the functionalization of graphdiyne, including heteroatom doping, metal decoration, and absorption of guest molecules Rigorous treatments of Graphdiyne-based materials in catalytic applications, including photo- and electrocatalysts Perfect for organic chemists, electronics engineers, materials scientists, and physicists, Graphdiyne: Fundamentals and Applications in Renewable Energy and Electronics will also find its place on the bookshelves of surface and solid-state chemists, electrochemists, and catalytic chemists seeking a one-stop reference on this rising-star carbon material.Table of ContentsPreface xi 1 Introduction 1 Yongjun Li and Yuliang Li 1.1 The Development of Carbon Materials 1 1.2 Models and Nomenclature 3 1.3 Brief Introduction of Graphdiyne 7 References 8 2 Basic Structure and Band Gap Engineering: Theoretical Study of GDYs 13 Feng He 2.1 Structures 13 2.1.1 Theoretical Prediction and Classification 13 2.1.2 Geometric Structures of GDYs 16 2.2 Electronic Structures 18 2.2.1 Dirac Cones in α-, β-, and 6,6,12-Graphynes 18 2.2.2 Semiconductor Properties of γ-Graphynes 20 2.2.3 Electronic Structures Comparison of GDYs 22 2.2.4 Structure and Size-Based Electronic Properties 24 2.2.5 Strain-Dependent Electronic Properties 29 2.3 Mechanical Properties 32 2.3.1 Mechanical Properties of GDYs 32 2.3.2 Mechanical Properties of γ-Graphyne 34 2.3.3 Mechanical Properties of γ-Graphdiyne 37 2.3.4 Mechanical Properties of γ-Graphynes Family 40 2.3.5 The Influence Factors on the Mechanical Properties of GDYs 43 2.4 Layers Structure of Bulk GDYs 46 2.4.1 Stacking Modes for Bilayer α-Graphyne 46 2.4.2 Stacking Modes for Bilayer γ-Graphyne 48 2.4.3 Stacking Modes for Bilayer γ-Graphdiyne 50 2.4.4 Identification on the Stacking Structures of GDY 51 2.5 Band Gap Engineering of GDYs 54 2.5.1 Influences of Nonmetal Doping 54 2.5.2 Influences of Chemical Modification and Functionalization 58 2.5.3 Tunable Band Gap Under Strain 64 2.5.4 Graphyne Nanoribbons under Strain or Electric Field 69 References 71 3 GDY Synthesis and Characterization 79 Yingjie Zhao, Qingyan Pan, and Hui Liu 3.1 Synthesis 79 3.1.1 Basic Chemistry 79 3.1.2 Cu-Surface-Mediated Synthesis 81 3.1.3 Template Synthesis 94 3.1.4 Interfacial Synthesis 103 3.1.5 Vapor–Liquid–Solid (VLS) Growth 103 3.1.6 Chemical Vapor Deposition (CVD) Growth 106 3.1.7 Explosion Approach 107 3.2 Characterization 108 3.2.1 Raman Spectroscopy 108 3.2.2 X-ray Photoelectron Spectroscopy (XPS) 111 3.2.3 X-ray Absorption Spectroscopy (XAS) 111 3.2.4 Microscope Technology 113 3.2.5 X-ray Diffraction (XRD) Technique 115 3.2.6 Others 115 3.3 Summary 117 References 118 4 Functionalization of GDYs 125 Changshui Huang and Ning Wang 4.1 Heteroatom Doping 125 4.1.1 Nitrogen and Phosphor Doping 126 4.1.2 Halogen Doping 134 4.1.3 Sulfur, Boron, Hydrogen, and Other Nonmetal Heteroatoms 138 4.1.4 Dual Heteroatom Doping 145 4.2 Metal Decoration 146 4.2.1 Metal Atomic Decoration 146 4.2.2 Metallic Compounds 150 4.3 Absorption of Guest Molecules 153 References 156 5 Graphdiyne-Based Materials in Catalytic Applications 165 Yurui Xue and Yuliang Li 5.1 Graphdiyne-Based Zero-Valent Metal Atomic Catalysts 166 5.1.1 Synthetic Strategy for GDY-Based ACs 166 5.1.2 Adsorption Geometry and Electronic Structures of GDY-Based ACs 168 5.1.3 Morphology and Valence States of GDY-Based ACs 168 5.1.4 Application of GDY-Based ACs 174 5.1.4.1 Applied for Water Splitting 174 5.1.4.2 Applied for Ammonia Synthesis at Ambient Conditions 176 5.1.4.3 Applied for Oxygen Reduction Reaction 180 5.1.4.4 Applied for Organic Reactions 180 5.2 GDY-Based Heterojunction Catalysts 182 5.2.1 Hydrogen Evolution Reaction on GDY-Based Heteros 184 5.2.2 Oxygen Evolution Reaction on GDY-Based Heterojunction 192 5.2.3 Photo-/Photoelectrocatalytic Oxygen Evolution Reaction 197 5.2.4 Applied for Overall Water Splitting 200 5.2.5 Applied for Other Catalysis 203 5.3 Graphdiyne-Based Metal-Free Catalysts 206 5.3.1 Applied for Water Splitting 206 5.3.2 Applied for Oxygen Reduction Reactions 208 5.3.3 Applied for Photocatalysis 211 References 214 6 Graphdiyne-Based Materials in Rechargeable Batteries Applications 221 Zicheng Zuo and Yuliang Li 6.1 Introduction 221 6.2 Lithium-Ion Battery Anodes 224 6.3 Graphdiyne Derivatives for LIB Anodes 235 6.4 Sodium Ion Battery Anodes 243 6.5 Electrochemical Interface 245 6.5.1 Function of Interface 245 6.5.2 Protection for LIBs Anodes 248 6.5.3 Protection for LIB Cathodes 253 6.6 Lithium–Sulfur Battery 259 6.7 Lithium Metal Anodes 262 6.8 Supercapacitor Electrodes 267 6.9 Fuel Cells 270 References 277 7 Graphdiyne-Based Materials in Solar Cells Applications 287 Tonggang Jiu and Chengjie Zhao 7.1 Perovskite Solar Cells 289 7.1.1 Graphdiyne-Based Materials in Interfacial Layers 289 7.1.2 Graphdiyne-Based Materials in Active Layers 296 7.2 Organic Solar Cells 304 7.3 Others 309 7.3.1 Quantum Dots Solar Cells 309 7.3.2 Dye-Sensitized Solar Cells 311 7.4 Future Perspectives 312 References 312 8 Graphdiyne: Electronics, Thermoelectrics, and Magnetism Applications 315 Jialiang Xu and Xiaodong Qian 8.1 Electronic Devices 315 8.2 Optic Devices 322 8.3 Thermoelectric Materials 331 8.4 Magnetism 332 References 336 9 Graphdiyne-Based Materials in Sensors and Separation Applications 341 Yanbing Guo, Chuanqi Pan, and Yuhua Zhu 9.1 Sensors 341 9.1.1 Biomolecules Sensor 341 9.1.1.1 DNA Detection 341 9.1.1.2 RNA and Amino Acids Detection 344 9.1.2 Small-Molecule Detection Sensor 346 9.1.2.1 Gas Sensor 346 9.1.2.2 Humidity Detection 350 9.1.2.3 Hydrogen Peroxide Detection 350 9.1.2.4 Glucose Detection 350 9.1.3 Other Sensors 352 9.2 Separation 352 9.2.1 Gas Separation 352 9.2.1.1 Hydrogen Separation 352 9.2.1.2 Oxygen Separation 354 9.2.1.3 Carbon Dioxide Separation 356 9.2.1.4 Helium Separation 356 9.2.2 Oil/Water Separation 358 9.3 Conclusion and Perspective 360 References 361 10 Perspectives 367 Yuliang Li 10.1 Chemical Synthesis Methodology and Aggregate Structures of Graphdiyne 369 10.2 Controllable Preparation of Highly Ordered Graphdiyne 370 10.3 Fundamental Physical Properties and Applications of Graphdiyne 371 Index 373

    1 in stock

    £117.26

  • Halide Perovskite Semiconductors: Structures,

    Wiley-VCH Verlag GmbH Halide Perovskite Semiconductors: Structures,

    1 in stock

    Book SynopsisHalide Perovskite Semiconductors Enables readers to acquire a systematic and in-depth understanding of various fundamental aspects of halide perovskite semiconductors Halide Perovskite Semiconductors: Structures, Characterization, Properties, and Phenomena covers the most fundamental topics with regards to halide perovskites, including but not limited to crystal/defect theory, crystal chemistry, heterogeneity, grain boundaries, single-crystals/thin-films/nanocrystals synthesis, photophysics, solid-state ionics, spin physics, chemical (in)stability, carrier dynamics, hot carriers, surface and interfaces, lower-dimensional structures, and structural/functional characterizations. Included discussions on the fundamentals of halide perovskites aim to expand the basic science fields of physics, chemistry, and materials science. Edited by two highly qualified researchers, Halide Perovskite Semiconductors includes specific information on: Crystal/defect theory of halide perovskites, crystal chemistry of halide perovskites, and processing and microstructures of halide perovskites Single-crystals of halide perovskites, nanocrystals of halide perovskites, low-dimensional perovskite crystals, and nanoscale heterogeneity of halide perovskites Carrier mobilities and dynamics in halide perovskites, light emission of halide perovskites, photophysics and ultrafast spectroscopy of halide perovskites Hot carriers in halide perovskites, correlating photophysics with microstructures in halide perovskites, chemical stability of halide perovskites, and solid-state ionics of halide perovskites Readers can find solutions to technological issues and challenges based on the fundamental knowledge gained from this book. As such, Halide Perovskite Semiconductors is an essential in-depth treatment of the subject, ideal for solid-state chemists, materials scientists, physical chemists, inorganic chemists, physicists, and semiconductor physicists.Table of ContentsPreface xv 1 Introduction to Perovskite 1Tianwei Duan, Iván Mora-Seró, and Yuanyuan Zhou 1.1 Evolution of Perovskite 1 1.2 Structure of Perovskite 2 1.3 Property and Application of Perovskite 4 1.4 Summary and Outlook 7 2 Halide Perovskite Single Crystals 9Clara Aranda-Alonso and Michael Saliba 2.1 Introduction 9 2.2 Crystal Structure 9 2.3 Synthesis Methods 14 2.4 Optoelectronic Properties of Halide Perovskite Single Crystals 21 2.5 Applications 29 3 Halide Perovskite Nanocrystals 49Samrat Das Adhikari, Andrés F. Gualdrón-Reyes, and Iván Mora-Seró 3.1 Introduction 49 3.2 Methodology 51 3.3 Quantum Confinement Effect 57 3.4 Solution-processed Halide Exchange 59 3.5 Post-synthesis Defect Recovery 61 3.6 Different Shapes of the Nanocrystals 62 3.7 Doping in Perovskite Nanocrystals 64 3.8 Lead-free Perovskite Nanocrystals 69 3.9 Summary 70 4 Dimensionality Modulation in Halide Perovskites 79Akriti, Jee Yung Park, Shuchen Zhang, and Letian Dou 4.1 Classification of Low-Dimensional Perovskites 79 4.2 Synthesis and Characterization of Morphological Low-Dimensional (ABX3) Halide Perovskites 80 4.3 Synthesis and Characterization of Molecular Low-Dimensional (Non-ABX3) Halide Perovskites 83 4.4 Applications of Low-Dimensional Halide Perovskites 101 4.5 Current Challenges and Prospects of Low-Dimensional Halide 5 Halide Double Perovskites 115Carina Pareja-Rivera, Dulce Zugasti-Fernández, Paul Olalde-Velasco, and Diego Solis-Ibarra 5.1 Definition and Structure 116 5.2 Properties 118 5.3 Applications in Solar Cells and LEDs 123 5.4 Other Applications 126 5.5 Related Materials: Layered Double Perovskites and Vacancy Ordered Double Perovskites 132 5.6 Conclusions 135 6 Tin Halide Perovskite Solar Cells 147Xianyuan Jiang, Zihao Zang, and Zhijun Ning 6.1 Introduction 147 6.2 Tin Perovskite Properties 148 6.3 Perovskite Composition Engineering 151 6.4 Additives Manipulation 155 6.5 Device Architecture Engineering 156 6.6 Conclusion 158 7 Fundamentals and Synthesis Methods of Metal Halide Perovskite Thin Films 165Mingwei Hao, Tanghao Liu, Yalan Zhang, Tianwei Duan, and Yuanyuan Zhou 7.1 Introduction 165 7.2 Fundamentals of MHPs Thin Films 166 7.3 Thin Film Growth Mechanism 173 7.4 One-step Growth 180 7.5 Two-step Growth 186 7.6 Scalable Growth Methods 192 7.7 Postdeposition Treatments 200 7.8 Summary 203 8 First Principles Atomistic Theory of Halide Perovskites 215Linn Leppert 8.1 Introduction: What I Talk About When I Talk About First Principles Calculations of Halide Perovskites 215 8.2 Structural Properties 217 8.3 Optoelectronic Properties 231 8.4 Concluding Remarks: First Person Singular 242 9 Comparing the Charge Dynamics in MAPbBr3 and MAPbI3 Using Microwave Photoconductance Measurements 251Tom J. Savenije, Jiashang Zhao, and Valentina M. Caselli 9.1 Time-Resolved Microwave Conductivity 251 9.2 Global Modeling of TRMC Data 254 9.3 TRMC Measurements on MAPbI3 and MAPbBr3 255 9.4 TRMC Measurements on MAPbI3 and MAPbBr3 with Charge Selective 10 Hot Carriers in Halide Perovskites 263Jia Wei Melvin Lim, Yue Wang, and Tze Chien Sum 10.1 Introduction 263 10.2 Hot Carrier Cooling Mechanisms 265 10.3 Slow Hot Carrier Cooling in Halide Perovskites 266 10.4 Utilizing Hot Carriers in Halide Perovskites 275 10.5 Multiple Exciton Generation 280 10.6 Multiple Exciton Generation Mechanisms 283 10.7 Efficient Multiple Exciton Generation in Halide Perovskites 289 10.8 Utilizing Multiple Exciton Generation in Halide Perovskites 296 10.9 Conclusion and Outlook 299 11 Ionic Transport in Perovskite Semiconductors 305Wenke Zhou, Yicheng Zhao, and Qing Zhao 11.1 Theoretical Basis of Ionic Transport 305 11.2 Characterizations of Ionic Transport 306 11.3 Mobile Ions in Perovskite Film Under Electric Field 309 11.4 The Factors Affecting Ionic Transport in Perovskites 311 11.5 The Impact of Ionic Transport on Perovskite Films and Devices 318 11.6 Summary and Outlook 322 12 Light Emission of Halide Perovskites 329David O. Tiede, Juan F. Galisteo-López, and Hernán Míguez 12.1 Introduction 329 12.2 Charge-Carrier Recombination in Lead-Halide Perovskites 330 12.3 Photoinduced Effects on Charge Carrier Recombination 338 12.4 Lasing in Lead-Halide Perovskites 341 12.5 Conclusions 345 13 Epitaxy and Strain Engineering of Halide Perovskites 351Yang Hu, Jie Jiang, Lifu Zhang, Yunfeng Shi, and Jian Shi 13.1 Introduction 351 13.2 Epitaxy of Thin Film and Nanostructures 353 13.2.1 Epitaxial Substrates 353 13.2.2 Epitaxial Growth and Defects Formation Mechanisms 355 13.2.3 Experimental Progresses 358 13.3 Strain Engineering 360 13.3.1 Theoretical Progresses 361 13.3.2 Experimental Progresses 363 13.4 Opportunities and Challenges 365 Acknowledgments 366 References 367 14 Electron Microscopy of Perovskite Solar Cell Materials 377Mathias U. Rothmann, Wei Li, and Zhiwei Tao 14.1 Introduction 377 14.2 Fundamentals of Electron Microscopy 377 14.3 Signal Generation 379 14.4 SEM 381 14.5 Conclusions 406 15 In Situ Characterization of Halide Perovskite Synthesis 411Maged Abdelsamie, Tim Kodalle, Mriganka Singh, and Carolin M. Sutter-Fella 15.1 Introduction 411 15.2 Fundamentals of X-Ray Scattering and Fluorescence Techniques 412 15.3 In Situ Optical Spectroscopy 423 15.4 Examples of In Situ Multimodal Characterization During Solution-Based Fabrication 430 15.5 Probing Beam–Sample Interaction 435 15.6 Summary and Outlook 437 16 Multimodal Characterization of Halide Perovskites: From the Macro to the Atomic Scale 443Tiarnan A. S. Doherty and Samuel D. Stranks 16.1 Introduction 443 16.2 Early Multimodal CharacterizationWork 445 16.3 Recent Multimodal Characterization 450 16.4 Pressing Challenges and Opportunities 464 16.5 Outlook and Opportunities 471 References 475 Index 483

    1 in stock

    £112.00

© 2025 Book Curl

    • American Express
    • Apple Pay
    • Diners Club
    • Discover
    • Google Pay
    • Maestro
    • Mastercard
    • PayPal
    • Shop Pay
    • Union Pay
    • Visa

    Login

    Forgot your password?

    Don't have an account yet?
    Create account