Physics of gases Books
Oxford University Press Concepts in Thermal Physics
Book SynopsisAn understanding of thermal physics is crucial to much of modern physics, chemistry and engineering. This book provides a modern introduction to the main principles that are foundational to thermal physics, thermodynamics and statistical mechanics. The key concepts are carefully presented in a clear way, and new ideas are illustrated with copious worked examples as well as a description of the historical background to their discovery. Applications are presented to subjects as diverse as stellar astrophysics, information and communication theory, condensed matter physics and climate change. Each chapter concludes with detailed exercises.The second edition of this popular textbook maintains the structure and lively style of the first edition but extends its coverage of thermodynamics and statistical mechanics to include several new topics, including osmosis, diffusion problems, Bayes theorem, radiative transfer, the Ising model and Monte Carlo methods. New examples and exercises have been added throughout.Trade ReviewThis is probably the best book I know of thermodynamics and statistical physics. The authors have done really a great job. [...] The contents of the book are organised in such way that it can be used for a standard undergraduate level course in thermodynamics and statistical mechanics, where it is also possible to make the appropriate selection of the topics depending on the level and duration of the course. It could also be very useful as a source reference for lecturers in thermodynamics and statistical physics. * M.A.F. Sanjuan, Contemporary Physics *Table of ContentsI: PRELIMINARIES; II: KINETIC THEORY OF GASES; III: TRANSPORT AND THERMAL DIFFUSION; IV: THE FIRST LAW; V: THE SECOND LAW; VI: THERMODYNAMICS IN ACTION; VII: STATISTICAL MECHANICS; VIII: BEYOND THE IDEAL GAS; IX: SPECIAL TOPICS
£37.52
John Wiley & Sons Inc Applied Gas Dynamics
Book SynopsisIn Applied Gas Dynamics, Professor Ethirajan Rathakrishnan introduces the high-tech science of gas dynamics, from a definition of the subject to the three essential processes of this science, namely, the isentropic process, shock and expansion process, and Fanno and Rayleigh flows.Trade Review"He begins this single-authored text with basic facts: definitions, supersonic flow, speed of flow, temperature rise, Mach angle, thermodynamics of fluid flow, and so on. Subsequent chapters address steady one-dimensional flow, normal shock waves, oblique shock and expansion waves, compressible flow equations, similarity rule, and two-dimensional compressible flows, among other topics, ending with chapters on ramjet, and jets. Each chapter concludes with a summary and exercise problems." (SciTech Book News, December 2010) Table of ContentsPreface. About the Author. 1 Basic Facts. 1.1 Definition of Gas Dynamics. 1.2 Introduction. 1.3 Compressibility. 1.4 Supersonic Flow – What is it? 1.5 Speed of Sound. 1.6 Temperature Rise. 1.7 Mach Angle. 1.8 Thermodynamics of Fluid Flow. 1.9 First Law of Thermodynamics (Energy Equation). 1.10 The Second Law of Thermodynamics (Entropy Equation). 1.11 Thermal and Calorical Properties. 1.12 The Perfect Gas. 1.13 Wave Propagation. 1.14 Velocity of Sound. 1.15 Subsonic and Supersonic Flows. 1.16 Similarity Parameters. 1.17 Continuum Hypothesis. 1.18 Compressible Flow Regimes. 1.19 Summary. Exercise Problems. 2 Steady One-Dimensional Flow. 2.1 Introduction. 2.2 Fundamental Equations. 2.3 Discharge from a Reservoir. 2.4 Streamtube Area–Velocity Relation. 2.5 de Laval Nozzle. 2.6 Supersonic Flow Generation. 2.7 Performance of Actual Nozzles. 2.8 Diffusers. 2.9 Dynamic Head Measurement in Compressible Flow. 2.10 Pressure Coefficient. 2.11 Summary. Exercise Problems. 3 Normal Shock Waves. 3.1 Introduction. 3.2 Equations of Motion for a Normal Shock Wave. 3.3 The Normal Shock Relations for a Perfect Gas. 3.4 Change of Stagnation or Total Pressure Across a Shock. 3.5 Hugoniot Equation. 3.6 The Propagating Shock Wave. 3.7 Reflected Shock Wave. 3.8 Centered Expansion Wave. 3.9 Shock Tube. 3.10 Summary. Exercise Problems. 4 Oblique Shock and ExpansionWaves. 4.1 Introduction. 4.2 Oblique Shock Relations. 4.3 Relation between β and θ. 4.4 Shock Polar. 4.5 Supersonic Flow Over a Wedge. 4.6 Weak Oblique Shocks. 4.7 Supersonic Compression. 4.8 Supersonic Expansion by Turning. 4.9 The Prandtl–Meyer Expansion. 4.10 Simple and Nonsimple Regions. 4.11 Reflection and Intersection of Shocks and Expansion Waves. 4.12 Detached Shocks. 4.13 Mach Reflection. 4.14 Shock-Expansion Theory. 4.15 Thin Aerofoil Theory. 4.15.1 Application of Thin Aerofoil Theory. 4.16 Summary. Exercise Problems. 5 Compressible Flow Equations. 5.1 Introduction. 5.2 Crocco's Theorem. 5.3 General Potential Equation for Three-Dimensional Flow. 5.4 Linearization of the Potential Equation. 5.5 Potential Equation for Bodies of Revolution. 5.6 Boundary Conditions. 5.7 Pressure Coefficient. 5.8 Summary. Exercise Problems. 6 Similarity Rule. 6.1 Introduction. 6.2 Two-Dimensional Flow: The Prandtl-Glauert Rule for Subsonic Flow. 6.3 Prandtl–Glauert Rule for Supersonic Flow: Versions I and II. 6.4 The von Karman Rule for Transonic Flow. 6.5 Hypersonic Similarity. 6.6 Three-Dimensional Flow: Gothert’s Rule. 6.7 Summary. Exercise Problems. 7 Two-Dimensional Compressible Flows. 7.1 Introduction. 7.2 General Linear Solution for Supersonic Flow. 7.3 Flow Over a Wave-Shaped Wall. 7.4 Summary. Exercise Problems. 8 Flow with Friction and Heat Transfer. 8.1 Introduction. 8.2 Flow in Constant Area Duct with Friction. 8.4 Flow with Heating or Cooling in Ducts. 8.5 Summary. Exercise Problems. 9 Method of Characteristics. 9.1 Introduction. 9.2 The Concepts of Characteristic. 9.3 The Compatibility Relation. 9.4 The Numerical Computational Method. 9.5 Theorems for Two-Dimensional Flow. 9.6 Numerical Computation with Weak Finite Waves. 9.7 Design of Supersonic Nozzle. 9.8 Summary. 10 Measurements in Compressible Flow. 10.1 Introduction. 10.2 Pressure Measurements. 10.3 Temperature Measurements. 10.4 Velocity and Direction. 10.5 Density Problems. 10.6 Compressible Flow Visualization. 10.7 Interferometer. 10.8 Schlieren System. 10.9 Shadowgraph. 10.10 Wind Tunnels. 10.11 Hypersonic Tunnels. 10.12 Instrumentation and Calibration of Wind Tunnels. 10.13 Calibration and Use of Hypersonic Tunnels. 10.14 Flow Visualization. 10.15 Summary. Exercise Problems. 11 Ramjet. 11.1 Introduction. 11.2 The Ideal Ramjet. 11.3 Aerodynamic Losses. 11.4 Aerothermodynamics of Engine Components. 11.5 Flow Through Inlets. 11.6 Performance of Actual Intakes. 11.7 Shock–Boundary Layer Interaction. 11.8 Oblique Shock Wave Incident on Flat Plate. 11.9 Normal Shocks in Ducts. 11.10 External Supersonic Compression. 11.11 Two-Shock Intakes. 11.12 Multi-Shock Intakes. 11.13 Isentropic Compression. 11.14 Limits of External Compression. 11.15 External Shock Attachment. 11.16 Internal Shock Attachment. 11.17 Pressure Loss. 11.18 Supersonic Combustion. 11.19 Summary. 12 Jets. 12.1 Introduction. 12.2 Mathematical Treatment of Jet Profiles. 12.3 Theory of Turbulent Jets. 12.4 Experimental Methods for Studying Jets and the Techniques Used for Analysis. 12.5 Expansion Levels of Jets. 12.6 Control of Jets. 12.7 Summary. Appendix. References. Index.
£114.26
New Academic Science Ltd Compressible Flow
Book Synopsis
£47.50
New Academic Science Ltd Gas Tables for Compressible Flow Calculation
Book Synopsis
£20.00
New Age International Pvt Ltd Publishers Electric Power Systems
Book Synopsis
£10.00
Low Price Publications Text Book on Natural Gas
Book Synopsis"Text Book of Natural Gas" covers fundamentals to policy, with focus on energy sector. Offers insights on gas supply contracts from author's experience. Valuable resource for academia and industry, especially in India's evolving hydrocarbon sector.
£7.64
World Scientific Publishing Co Pte Ltd Physics On Ultracold Quantum Gases
Book SynopsisThis book derives from the content of graduate courses on cold atomic gases, taught at the Renmin University of China and at the University of Science and Technology of China. It provides a brief review on the history and current research frontiers in the field of ultracold atomic gases, as well as basic theoretical description of few- and many-body physics in the system. Starting from the basics such as atomic structure, atom-light interaction, laser cooling and trapping, the book then moves on to focus on the treatment of ultracold Fermi gases, before turning to topics in quantum simulation using cold atoms in optical lattices.The book would be ideal not only for professionals and researchers, but also for familiarizing junior graduate students with the subject and aiding them in their preparation for future study and research in the field.
£85.50
World Scientific Publishing Co Pte Ltd Monte Carlo Methods In Mechanics Of Fluid And Gas
Book SynopsisThis book is devoted to analysis of Monte Carlo methods developed in rarefied gas dynamics. Presented is the short history of the development of such methods, described are their main properties, their advantages and deficiencies. It is shown that the contemporary stage in the progress of computational methods cannot be regarded without a complex approach to the preparation of algorithms taking into account all the peculiarities of the problem under consideration, that is, of the physical nature of a process, the mathematical model and the theoretical aspects of computational mathematics and stochastic processes. Thoroughly investigated is the possibility of application of Monte Carlo methods in some kindred areas of science which are non-traditional for the use of statistical modeling (continuous media, turbulence). Considered are the possible directions of development of statistical modeling.Table of ContentsThe Main Equations and Approaches to Solution of the Problems in Rarefied Gas Dynamics; Development of the Numerical Methods of Solution of the Linear Kinetic Equations; Methods of Solution of the Nonlinear Problems in rarefied Gas Dynamics; Modeling of the Flows of Continuous Media; Solution of the Navier-Stokes Equations; Studies of the Weakly Perturbed Flows of Rarefied Gas; Study of the Flows about Different Bodies in Transitional Regime; Determination of the Aerodynamical Characteristics of the Returnable Cosmic Systems (RCS); Supersonic Flow about Blunted Bodies with Energy Addition; The General Models of Description of the Turbulent Flows; Studies as the Turbulent Flows of Fluid and Gas; The Possible Directions of Development of the Methods of Statistical Modeling of the Flows of Fluid and Gas.
£86.45