Mathematical / Computational / Theoretical physics Books

806 products


  • Space-Time Algebra

    Birkhauser Verlag AG Space-Time Algebra

    15 in stock

    Book SynopsisThis small book started a profound revolution in the development of mathematical physics, one which has reached many working physicists already, and which stands poised to bring about far-reaching change in the future.At its heart is the use of Clifford algebra to unify otherwise disparate mathematical languages, particularly those of spinors, quaternions, tensors and differential forms. It provides a unified approach covering all these areas and thus leads to a very efficient ‘toolkit’ for use in physical problems including quantum mechanics, classical mechanics, electromagnetism and relativity (both special and general) – only one mathematical system needs to be learned and understood, and one can use it at levels which extend right through to current research topics in each of these areas. These same techniques, in the form of the ‘Geometric Algebra’, can be applied in many areas of engineering, robotics and computer science, with no changes necessary – it is the same underlying mathematics, and enables physicists to understand topics in engineering, and engineers to understand topics in physics (including aspects in frontier areas), in a way which no other single mathematical system could hope to make possible.There is another aspect to Geometric Algebra, which is less tangible, and goes beyond questions of mathematical power and range. This is the remarkable insight it gives to physical problems, and the way it constantly suggests new features of the physics itself, not just the mathematics. Examples of this are peppered throughout ‘Space-Time Algebra’, despite its short length, and some of them are effectively still research topics for the future.From the Foreward by Anthony LasenbyTable of ContentsPreface to the Second Edition.- Introduction.- Part I:Geometric Algebra.- 1.Intrepretation of Clifford Algebra.- 2.Definition of Clifford Algebra.- 3.Inner and Outer Products.- 4.Structure of Clifford Algebra.- 5.Reversion, Scalar Product.- 6.The Algebra of Space.- 7.The Algebra of Space-Time.- Part II:Electrodynamics.- 8.Maxwell's Equation.- 9.Stress-Energy Vectors.- 10.Invariants .- 11. Free Fields.- Part III:Dirac Fields.- 12.Spinors.- 13.Dirac's Equation.- 14.Conserved Currents.- 15.C, P, T.- Part IV:Lorentz Transformations.- 16.Reflections and Rotations.- 17.Coordinate Transformations.- 18.Timelike Rotations.- 19.Scalar Product.- Part V:Geometric Calculus.- 20.Differentiation.- 21.Coordinate Transformations.- 22.Integration.- 23.Global and Local Relativity.- 24.Gauge Transformation and Spinor Derivatives.- Conclusion.- Appendices.- A.Bases and Pseudoscalars.- B.Some Theorems.- C.Composition of Spacial Rotations.- D.Matrix Representation of the Pauli Algebra.

    15 in stock

    £94.99

  • Elementary Mechanics Using Python: A Modern Course Combining Analytical and Numerical Techniques

    Springer International Publishing AG Elementary Mechanics Using Python: A Modern Course Combining Analytical and Numerical Techniques

    15 in stock

    Book SynopsisThis book – specifically developed as a novel textbook on elementary classical mechanics – shows how analytical and numerical methods can be seamlessly integrated to solve physics problems. This approach allows students to solve more advanced and applied problems at an earlier stage and equips them to deal with real-world examples well beyond the typical special cases treated in standard textbooks.Another advantage of this approach is that students are brought closer to the way physics is actually discovered and applied, as they are introduced right from the start to a more exploratory way of understanding phenomena and of developing their physical concepts.While not a requirement, it is advantageous for the reader to have some prior knowledge of scientific programming with a scripting-type language. This edition of the book uses Python, and a chapter devoted to the basics of scientific programming with Python is included. A parallel edition using Matlab instead of Python is also available.Last but not least, each chapter is accompanied by an extensive set of course-tested exercises and solutions.Table of ContentsIntroduction.- Getting started with programming.- Units and measurement.- Motion in one dimension.- Forces in one dimension.- Motion in two and three dimensions.- Forces in two and three dimensions.- Constrained motion.- Forces and constrained motion.- Work.- Energy.- Momentum, impulse, and collisions.- Multiparticle systems.- Rotational motion.- Rotation of rigid bodies.- Dynamics of rigid bodies.- Proofs.- Solutions.- Index.

    15 in stock

    £42.74

  • Essential Partial Differential Equations: Analytical and Computational Aspects

    Springer International Publishing AG Essential Partial Differential Equations: Analytical and Computational Aspects

    1 in stock

    Book SynopsisThis volume provides an introduction to the analytical and numerical aspects of partial differential equations (PDEs). It unifies an analytical and computational approach for these; the qualitative behaviour of solutions being established using classical concepts: maximum principles and energy methods. Notable inclusions are the treatment of irregularly shaped boundaries, polar coordinates and the use of flux-limiters when approximating hyperbolic conservation laws. The numerical analysis of difference schemes is rigorously developed using discrete maximum principles and discrete Fourier analysis. A novel feature is the inclusion of a chapter containing projects, intended for either individual or group study, that cover a range of topics such as parabolic smoothing, travelling waves, isospectral matrices, and the approximation of multidimensional advection–diffusion problems.The underlying theory is illustrated by numerous examples and there are around 300 exercises, designed to promote and test understanding. They are starred according to level of difficulty. Solutions to odd-numbered exercises are available to all readers while even-numbered solutions are available to authorised instructors.Written in an informal yet rigorous style, Essential Partial Differential Equations is designed for mathematics undergraduates in their final or penultimate year of university study, but will be equally useful for students following other scientific and engineering disciplines in which PDEs are of practical importance. The only prerequisite is a familiarity with the basic concepts of calculus and linear algebra.Trade Review“The book is written in an engaging and lively style that will appeal to students. … aim of the Springer SUMS series is to take a ‘fresh and modern approach’ to core foundational material through to final year topics. This book delivers on that promise with great success. ... As a first text that is set at the appropriate level … which recognizes and incorporates numerical computation as an essential tool for learning and understanding, it looks hard to beat.” (Mark Blyth, SIAM Review, Vol. 59 (1), March, 2017)“UK mathematicians Griffiths (Univ. of Dundee) and Dold and Silvester (both, Univ. of Manchester) introduce undergraduates to partial differential equations (PDEs) from both the analytical and numerical points of view. … Summing Up: Recommended. Upper-division undergraduates through professionals/practitioners.” (D. P. Turner, Choice, Vol. 53 (11), July, 2016)“This introduction to partial differential equations is designed for upper level undergraduates in mathematics. … The writing is lively, the authors make appealing use of computational examples and visualization, and they are very successful at conveying and integrating physical intuition. … This is probably the best introductory book on PDEs that I have seen in some time. It is well worth a look.” (William J. Satzer, MAA Reviews, maa.org, April, 2016)“This textbook offers a nice introduction to analytical and numerical methods for partial differential equations. … The book is self-contained and the prerequisites is a standard course in calculus and linear algebra. The textbook appeals to undergraduate students in both scientific and engineering programs in which PDEs are of practical importance.” (Marius Ghergu, zbMATH 1330.35001, 2016)Table of ContentsSetting the scene.- Boundary and initial data.- The origin of PDEs.- Classification of PDEs.- Boundary value problems in R1.- Finite difference methods in R1.- Maximum principles and energy methods.- Separation of variables.- The method of characteristics.- Finite difference methods for elliptic PDEs.- Finite difference methods for parabolic PDEs.- Finite difference methods for hyperbolic PDEs.- Projects.

    1 in stock

    £26.99

  • Metastability: A Potential-Theoretic Approach

    Springer International Publishing AG Metastability: A Potential-Theoretic Approach

    15 in stock

    Book SynopsisThis monograph provides a concise presentation of a mathematical approach to metastability, a wide-spread phenomenon in the dynamics of non-linear systems - physical, chemical, biological or economic - subject to the action of temporal random forces typically referred to as noise, based on potential theory of reversible Markov processes. The authors shed new light on the metastability phenomenon as a sequence of visits of the path of the process to different metastable sets, and focuses on the precise analysis of the respective hitting probabilities and hitting times of these sets.The theory is illustrated with many examples, ranging from finite-state Markov chains, finite-dimensional diffusions and stochastic partial differential equations, via mean-field dynamics with and without disorder, to stochastic spin-flip and particle-hop dynamics and probabilistic cellular automata, unveiling the common universal features of these systems with respect to their metastable behaviour. The monograph will serve both as comprehensive introduction and as reference for graduate students and researchers interested in metastability.Trade Review“This monograph gives a complete and detailed account of the most recent techniques developed to obtain a precise mathematical description of the phenomenon of metastability. … The book is well organized and well written, it contains a large amount of fundamental ideas and techniques, and it is an important reference for any researcher interested in the study of long-time behavior of Markov processes and applications to statistical mechanics.” (Jean-Baptiste Bardet, Mathematical Reviews, April, 2017)“No doubt, this is a fundamental book written by well established scientists whose contribution to this area is widely recognized. The book is addressed to readers with serious mathematical background and interests in metastability of stochastic dynamical systems. The books is also an excellent references source.” (Jordan M. Stoyanov, zbMATH 1339.60002, 2016)Table of ContentsPart I Introduction.- 1.Background and motivation.- 2.Aims and scopes.- Part II Markov processes 3.Some basic notions from probability theory.- 4.Markov processes in discrete time.- 5.Markov processes in continuous time.- 6.Large deviations.- 7.Potential theory.- Part III Metastability.- 8.Key definitions and basic properties.- 9.Basic techniques.- Part IV Applications: Diffusions with small noise.- 10.Discrete reversible diffusions.- 11.Diffusion processes with gradient drift.- 12.Stochastic partial differential equations.- Part V Applications: Coarse-graining at positive temperatures.- 13.The Curie-Weiss model.- 14.The Curie-Weiss model with a random magnetic field: discrete distributions.- 15.The Curie-Weiss model with random magnetic field: continuous distributions.- Part VI Applications: Lattice systems in small volumes at low temperatures.- 16.Abstract set-up and metastability in the zero-temperature limit.- 17.Glauber dynamics.- 18.Kawasaki dynamics.- Part VII Applications: Lattice systems in large volumes at low temperatures.- 19.Glauber dynamics.- 20.Kawasaki dynamics.- Part VIII Applications: Lattice systems in small volumes at high densities.- 21.The zero-range process.- Part IX Challenges.- 22.Challenges within metastability.- 23.Challenges beyond metastability.- References.-Glossary.- Index.

    15 in stock

    £82.49

  • Basic Concepts in Computational Physics

    Springer International Publishing AG Basic Concepts in Computational Physics

    Out of stock

    Book SynopsisThis new edition is a concise introduction to the basic methods of computational physics. Readers will discover the benefits of numerical methods for solving complex mathematical problems and for the direct simulation of physical processes. The book is divided into two main parts: Deterministic methods and stochastic methods in computational physics. Based on concrete problems, the first part discusses numerical differentiation and integration, as well as the treatment of ordinary differential equations. This is extended by a brief introduction to the numerics of partial differential equations. The second part deals with the generation of random numbers, summarizes the basics of stochastics, and subsequently introduces Monte-Carlo (MC) methods. Specific emphasis is on MARKOV chain MC algorithms. The final two chapters discuss data analysis and stochastic optimization. All this is again motivated and augmented by applications from physics. In addition, the book offers a number of appendices to provide the reader with information on topics not discussed in the main text. Numerous problems with worked-out solutions, chapter introductions and summaries, together with a clear and application-oriented style support the reader. Ready to use C++ codes are provided online.Table of ContentsSome Basic Remarks.- Part I Deterministic Methods.- Numerical Differentiation.- Numerical Integration.- The KEPLER Problem.- Ordinary Differential Equations – Initial Value Problems.- The Double Pendulum.- Molecular Dynamics.- Numerics of Ordinary Differential Equations - Boundary Value Problems.- The One-Dimensional Stationary Heat Equation.- The One-Dimensional Stationary SCHRÖDINGER Equation.- Partial Differential Equations.- Part II Stochastic Methods.- Pseudo Random Number Generators.- Random Sampling Methods.- A Brief Introduction to Monte-Carlo Methods.- The ISING Model.- Some Basics of Stochastic Processes.- The Random Walk and Diffusion Theory.- MARKOV-Chain Monte Carlo and the POTTS Model.- Data Analysis.- Stochastic Optimization.- Appendix: The Two-Body Problem.- Solving Non-Linear Equations. The NEWTON Method.- Numerical Solution of Systems of Equations.- Fast Fourier Transform.- Basics of Probability Theory.- Phase Transitions.- Fractional Integrals and Derivatives in 1D.- Least Squares Fit.- Deterministic Optimization.

    Out of stock

    £40.49

  • Bogoliubov-de Gennes Method and Its Applications

    Springer International Publishing AG Bogoliubov-de Gennes Method and Its Applications

    1 in stock

    Book SynopsisThe purpose of this book is to provide an elementary yet systematic description of the Bogoliubov-de Gennes (BdG) equations, their unique symmetry properties and their relation to Green’s function theory. Specifically, it introduces readers to the supercell technique for the solutions of the BdG equations, as well as other related techniques for more rapidly solving the equations in practical applications.The BdG equations are derived from a microscopic model Hamiltonian with an effective pairing interaction and fully capture the local electronic structure through self-consistent solutions via exact diagonalization. This approach has been successfully generalized to study many aspects of conventional and unconventional superconductors with inhomogeneities – including defects, disorder or the presence of a magnetic field – and becomes an even more attractive choice when the first-principles information of a typical superconductor is incorporated via the construction of a low-energy tight-binding model. Further, the lattice BdG approach is essential when theoretical results for local electronic states around such defects are compared with the scanning tunneling microscopy measurements.Altogether, these lectures provide a timely primer for graduate students and non-specialist researchers, while also offering a useful reference guide for experts in the field.Trade Review“The lecture notes discuss the Bogoliubov-de-Gennes (BdG) method and its applications in superconductivity. … The book will be useful for gradient students and all those interested in moderate problems of superconductivity.” (Ivan A. Parinov, zbMATH 1361.82007, 2017)Table of ContentsPart I Bogoliubov-de Gennes Theory: Method.- Bogliubov-de Gennes Equations for Superconductors in the continuum model.- BdG Equations in Tight-Binding Model.- Part II Bogoliubov-de Gennes Theory: Applications.- Local Electronic Structure around a Single Impurity in Superconductors.- Disorder Effects on Electronic and Transport Properties in Superconductors.- Local Electronic Structure in Superconductors under a Magnetic Field.- Transport across Normal-Metal/Superconductor Junctions.- Topological and Quantum Size Effects in Superconductors at Reduced Length Scale.- References.- Additional Reading.

    1 in stock

    £33.24

  • The Cellular Automaton Interpretation of Quantum Mechanics

    Springer International Publishing AG The Cellular Automaton Interpretation of Quantum Mechanics

    1 in stock

    Book SynopsisThis book presents the deterministic view of quantum mechanics developed by Nobel Laureate Gerard 't Hooft.Dissatisfied with the uncomfortable gaps in the way conventional quantum mechanics meshes with the classical world, 't Hooft has revived the old hidden variable ideas, but now in a much more systematic way than usual. In this, quantum mechanics is viewed as a tool rather than a theory.The author gives examples of models that are classical in essence, but can be analysed by the use of quantum techniques, and argues that even the Standard Model, together with gravitational interactions, might be viewed as a quantum mechanical approach to analysing a system that could be classical at its core. He shows how this approach, even though it is based on hidden variables, can be plausibly reconciled with Bell's theorem, and how the usual objections voiced against the idea of ‘superdeterminism' can be overcome, at least in principle. This framework elegantly explains - and automatically cures - the problems of the wave function collapse and the measurement problem. Even the existence of an “arrow of time" can perhaps be explained in a more elegant way than usual. As well as reviewing the author’s earlier work in the field, the book also contains many new observations and calculations. It provides stimulating reading for all physicists working on the foundations of quantum theory.Table of ContentsI The Cellular Automaton Interpretation as a general doctrine: Motivation for this work.- Deterministic models in quantum notation.- Interpreting quantum mechanics.- Deterministic quantum mechanics.- Concise description of the CA Interpretation.- Quantum gravity.- Information loss.- More problems.- Alleys to be further investigated and open questions.- Conclusions.- II Calculation Techniques: Introduction to part II.- More on cogwheels.- The continuum limit of cogwheels, harmonic rotators and oscillators.- Locality.- Fermions.- PQ theory.- Models in two space-time dimensions without interactions.- Symmetries.- The discretised Hamiltonian formalism in PQ theory.- Quantum Field Theory.- The cellular automaton.- The problem of quantum locality.- Conclusions of part II.- Some remarks on gravity in 2+1 dimensions.- A summary of our views on Conformal Gravity.- Abbreviations.

    1 in stock

    £40.49

  • Lectures on Matrix Field Theory

    Springer International Publishing AG Lectures on Matrix Field Theory

    1 in stock

    Book SynopsisThese lecture notes provide a systematic introduction to matrix models of quantum field theories with non-commutative and fuzzy geometries. The book initially focuses on the matrix formulation of non-commutative and fuzzy spaces, followed by a description of the non-perturbative treatment of the corresponding field theories. As an example, the phase structure of non-commutative phi-four theory is treated in great detail, with a separate chapter on the multitrace approach. The last chapter offers a general introduction to non-commutative gauge theories, while two appendices round out the text. Primarily written as a self-study guide for postgraduate students – with the aim of pedagogically introducing them to key analytical and numerical tools, as well as useful physical models in applications – these lecture notes will also benefit experienced researchers by providing a reference guide to the fundamentals of non-commutative field theory with an emphasis on matrix models and fuzzy geometries.Trade Review“The book collects almost all that has been achieved on the topic within the recent years, including all major results of many authors. As such, it is a nice reference work for graduate students and beginning researchers who want to pursue research in this area. Having all the results and different approaches collected in one place, together with the exhaustive list of references make this a valuable compendium to everyone working on noncommutative models of quantum field theory.” (Andrzej Sitarz, zbMATH 1371.81013, 2017)Table of ContentsPreface.- Introductory Remarks.- The Non-Commutative Moyal-Weyl Spaces Rd.- The Fuzzy Sphere.- Quantum Non-Commutative Phi-Four.- The Multitrace Approach.- Non-Commutative Gauge Theory.- Appendix A - The Landau States.- Appendix B - The Traces TrtAtB and TrtAtBtCtD.- Index.

    1 in stock

    £33.74

  • Foundations of Quantum Theory: From Classical

    Springer International Publishing AG Foundations of Quantum Theory: From Classical

    Out of stock

    Book SynopsisThis book studies the foundations of quantum theory through its relationship to classical physics. This idea goes back to the Copenhagen Interpretation (in the original version due to Bohr and Heisenberg), which the author relates to the mathematical formalism of operator algebras originally created by von Neumann. The book therefore includes comprehensive appendices on functional analysis and C*-algebras, as well as a briefer one on logic, category theory, and topos theory. Matters of foundational as well as mathematical interest that are covered in detail include symmetry (and its "spontaneous" breaking), the measurement problem, the Kochen-Specker, Free Will, and Bell Theorems, the Kadison-Singer conjecture, quantization, indistinguishable particles, the quantum theory of large systems, and quantum logic, the latter in connection with the topos approach to quantum theory.This book is Open Access under a CC BY licence. Trade Review“Quantum theory has frequent applications in the subjects of quantum information theory and quantum optics. The purpose of this book is to present the foundations of quantum theory in connection with classical physics, from the point of view of classical-quantum duality. … This good book is recommended for mathematicians, physicists, philosophers of physics, researchers and advanced students in this field.” (Michael M. Dediu, Mathematical Reviews, Decemeber, 2017)Table of ContentsIntroduction.- Part I Co(X) and B(H): Classical physics on a finite phase space.- Quantum mechanics on a finite-dimensional Hilbert space.- Classical physics on a general phase space.- Quantum physics on a general Hilbert space.- Symmetry in quantum mechanics.- Part II Between Co(X) and B(H): Classical models of quantum mechanics.- Limits: Small hbar.- Limits: large N.- Symmetry in algebraic quantum theory.- Spontaneous Symmetry Breaking.- The Measurement Problem.- Topos theory and quantum logic.- Appendix A: Finite-dimensional Hilbert spaces.- Appendix B: Basic functional analysis.- Appendix C: Operator algebras.- Appendix D: Lattices and logic.- Appendix E: Category theory and topos theory.- References.

    Out of stock

    £42.74

  • Vector-Valued Partial Differential Equations and Applications: Cetraro, Italy 2013

    Springer International Publishing AG Vector-Valued Partial Differential Equations and Applications: Cetraro, Italy 2013

    1 in stock

    Book SynopsisCollating different aspects of Vector-valued Partial Differential Equations and Applications, this volume is based on the 2013 CIME Course with the same name which took place at Cetraro, Italy, under the scientific direction of John Ball and Paolo Marcellini. It contains the following contributions: The pullback equation (Bernard Dacorogna), The stability of the isoperimetric inequality (Nicola Fusco), Mathematical problems in thin elastic sheets: scaling limits, packing, crumpling and singularities (Stefan Müller), and Aspects of PDEs related to fluid flows (Vladimir Sverák). These lectures are addressed to graduate students and researchers in the field.Table of ContentsPreface.- Bernard Dacorogna: The pullback equation.- Nicola Fusco: The stability of the isoperimetric inequality.- Stefan Müller: Mathematical problems in thin elastic sheets: scaling limits.-packing, crumpling and singularities.- Vladimir Sverák: Aspects of PDEs related to Fluid Flows.

    1 in stock

    £35.99

  • Wormholes, Warp Drives and Energy Conditions

    Springer International Publishing AG Wormholes, Warp Drives and Energy Conditions

    Out of stock

    Book SynopsisTop researchers in the field of gravitation present the state-of-the-art topics outlined in this book, ranging from the stability of rotating wormholes solutions supported by ghost scalar fields, modified gravity applied to wormholes, the study of novel semi-classical and nonlinear energy conditions, to the applications of quantum effects and the superluminal version of the warp drive in modified spacetime. Based on Einstein's field equations, this cutting-edge research area explores the more far-fetched theoretical outcomes of General Relativity and relates them to quantum field theory. This includes quantum energy inequalities, flux energy conditions, and wormhole curvature, and sheds light on not just the theoretical physics but also on the possible applications to warp drives and time travel.This book extensively explores the physical properties and characteristics of these 'exotic spacetimes,' describing in detail the general relativistic geometries that generate closed timelike curves.Table of ContentsPart 1: Traversable wormholes.- 1. Introduction (Francisco Lobo).- 2. Wormhole basics (Francisco Lobo).- 3. Rotating wormholes (Jutta Kunz).- 4. Astrophysical signatures of thin accretion disks in wormhole spacetimes (Tiberiu Harko, Zoltan Kovacs, Francisco Lobo).- 5. Wormholes in modified theories of gravity (Sergey Sushkov).- 6. Trapped ghosts as sources for wormholes (Kirill Bronnikov).- 7. Geons in modified gravity (Gonzalo Olmo, Diego Rubeira-Garcia).- Part 2: Energy conditions.- 1. Quantum inequalities (Christopher Fewster).- 2. Semi-classical and nonlinear energy conditions (Prado Martín-Moruno, Matt Visser).- Part 3: Warp drive.- 1. Warp drive basics (Miguel Alcubierre).- 2. Probing faster than light travel and Chronology Protection with superluminal warp drives (Carlos Barcelo, Stefano Liberati).- Part 4: Closed time-like curves.- 1. Time machine basics (Francisco Lobo).- Part 5: Conclusion (Francisco Lobo).

    Out of stock

    £142.49

  • Supersymmetric Grand Unified Theories: From Quarks to Strings via SUSY GUTs

    Springer International Publishing AG Supersymmetric Grand Unified Theories: From Quarks to Strings via SUSY GUTs

    1 in stock

    Book SynopsisThese course-tested lectures provide a technical introduction to Supersymmetric Grand Unified Theories (SUSY GUTs), as well as a personal view on the topic by one of the pioneers in the field. While the Standard Model of Particle Physics is incredibly successful in describing the known universe it is, nevertheless, an incomplete theory with many free parameters and open issues. An elegant solution to all of these quandaries is the proposed theory of SUSY GUTs. In a GUT, quarks and leptons are related in a simple way by the unifying symmetry and their electric charges are quantized, further the relative strength of the strong, weak and electromagnetic forces are predicted. SUSY GUTs additionally provide a framework for understanding particle masses and offer candidates for dark matter. Finally, with the extension of SUSY GUTs to string theory, a quantum-mechanically consistent unification of the four known forces (including gravity) is obtained. The book is organized in three sections: the first section contains a brief introduction to the Standard Model, supersymmetry and the Minimal Supersymmetric Standard Model. Then SUSY GUTs in four space-time dimensions are introduced and reviewed. In addition, the cosmological issues concerning SUSY GUTs are discussed. Then the requirements for embedding a 4D SUSY GUT into higher-dimensional theories including gravity (i.e. String Theory) are investigated. Accordingly, section two of the course is devoted to discussing the so-called Orbifold GUTs and how in turn they solve some of the technical problems of 4D SUSY GUTs. Orbifold GUTs introduce a new set of open issues, which are then resolved in the third section in which it is shown how to embed Orbifold GUTs into the E(8) x E(8) Heterotic String in 10 space-time dimensions.Trade Review“I enjoyed this book very much and found it useful for refreshing my views and learning something new about SUSY, namely about the GUT state of affairs. I recommend it to individual researchers and to libraries in research universities, physics departments, and HEP laboratories.” (Paulo Moniz, Mathematical Reviews, January, 2018)Table of ContentsThe Standard Model:background.- The Minimal Supersymmetric Standard Model (MSSM).- Supersymmetric GUTs in 4 space-time dimensions.- SUSY GUTs meets data: LHC, fermion masses and mixing angles, dark matter.- Problems of 4 D SUSY GUTs.- SUSY GUTs in 5 or 6 dimensions : Orbifold GUTs.- SUSY breaking in extra dimensions.- Orbifold GUTs meet data.- SUSY GUTs in string theory : background.- Heterotic orbifold constructions.- Guaranteeing the MSSM, proton decay and precise gauge coupling unification.- Smooth heterotic constructions.- Type II string models and F theory – lectures.- Stabilizing moduli and SUSY breaking.- Cosmology.- Conclusions and Outlook.

    1 in stock

    £66.49

  • Ginzburg-Landau Vortices

    Birkhauser Verlag AG Ginzburg-Landau Vortices

    Out of stock

    Book SynopsisThis book is concerned with the study in two dimensions of stationary solutions of uɛ of a complex valued Ginzburg-Landau equation involving a small parameter ɛ. Such problems are related to questions occurring in physics, e.g., phase transition phenomena in superconductors and superfluids. The parameter ɛ has a dimension of a length which is usually small. Thus, it is of great interest to study the asymptotics as ɛ tends to zero. One of the main results asserts that the limit u-star of minimizers uɛ exists. Moreover, u-star is smooth except at a finite number of points called defects or vortices in physics. The number of these defects is exactly the Brouwer degree – or winding number – of the boundary condition. Each singularity has degree one – or as physicists would say, vortices are quantized. The material presented in this book covers mostly original results by the authors. It assumes a moderate knowledge of nonlinear functional analysis, partial differential equations, and complex functions. This book is designed for researchers and graduate students alike, and can be used as a one-semester text. The present softcover reprint is designed to make this classic text available to a wider audience.Table of ContentsIntroduction.- Energy Estimates for S1-Valued Maps.- A Lower Bound for the Energy of S1-Valued Maps on Perforated Domains.- Some Basic Estimates for uɛ.- Toward Locating the Singularities: Bad Discs and Good Discs.- An Upper Bound for the Energy of uɛ away from the Singularities.- uɛ_n: u-star is Born! - u-star Coincides with THE Canonical Harmonic Map having Singularities (aj).- The Configuration (aj) Minimizes the Renormalization Energy W.- Some Additional Properties of uɛ.- Non-Minimizing Solutions of the Ginzburg-Landau Equation.- Open Problems.

    Out of stock

    £53.99

  • Mathematical Gauge Theory: With Applications to

    Springer International Publishing AG Mathematical Gauge Theory: With Applications to

    Out of stock

    Book SynopsisThe Standard Model is the foundation of modern particle and high energy physics. This book explains the mathematical background behind the Standard Model, translating ideas from physics into a mathematical language and vice versa. The first part of the book covers the mathematical theory of Lie groups and Lie algebras, fibre bundles, connections, curvature and spinors. The second part then gives a detailed exposition of how these concepts are applied in physics, concerning topics such as the Lagrangians of gauge and matter fields, spontaneous symmetry breaking, the Higgs boson and mass generation of gauge bosons and fermions. The book also contains a chapter on advanced and modern topics in particle physics, such as neutrino masses, CP violation and Grand Unification. This carefully written textbook is aimed at graduate students of mathematics and physics. It contains numerous examples and more than 150 exercises, making it suitable for self-study and use alongside lecture courses. Only a basic knowledge of differentiable manifolds and special relativity is required, summarized in the appendix.Trade Review“Assuming an introductory course on differential geometry and some basic knowledge of special relativity, both of which are summarized in the appendices, the book expounds the mathematical background behind the well-established standard model of modern particle and high energy physics… I believe that the book will be a standard textbook on the standard model for mathematics-oriented students.” (Hirokazu Nishimura, zbMATH 1390.81005)Table of ContentsPart I Mathematical foundations1 Lie groups and Lie algebras: Basic concepts1.1 Topological groups and Lie groups1.2 Linear groups and symmetry groups of vector spaces1.3 Homomorphisms of Lie groups1.4 Lie algebras1.5 From Lie groups to Lie algebras1.6 From Lie subalgebras to Lie subgroups1.7 The exponential map1.8 Cartan’s Theorem on closed subgroups1.9 Exercises for Chapter 12 Lie groups and Lie algebras: Representations and structure theory2.1 Representations2.2 Invariant metrics on Lie groups2.3 The Killing form2.4 Semisimple and compact Lie algebras2.5 Ad-invariant scalar products on compact Lie groups2.6 Homotopy groups of Lie groups2.7 Exercises for Chapter 23 Group actions3.1 Transformation groups3.2 Definition and first properties of group actions3.3 Examples of group actions3.4 Fundamental vector fields3.5 The Maurer–Cartan form and the differential of a smooth group action3.6 Left or right actions?3.7 Quotient spaces3.8 Homogeneous spaces3.9 Stiefel and Grassmann manifolds3.10 The exceptional Lie group G23.11 Godement’s Theorem on the manifold structure of quotient spaces3.12 Exercises for Chapter 34 Fibre bundles4.1 General fibre bundles4.2 Principal fibre bundles4.3 Formal bundle atlases4.4 Frame bundles4.5 Vector bundles4.6 The clutching construction4.7 Associated vector bundles4.8 Exercises for Chapter 45 Connections and curvature5.1 Distributions and connections5.2 Connection 1-forms5.3 Gauge transformations5.4 Local connection 1-forms and gauge transformations5.5 Curvature5.6 Local curvature 2-forms5.7 Generalized electric and magnetic fields on Minkowski spacetime of dimension 45.8 Parallel transport5.9 The covariant derivative on associated vector bundles5.10 Parallel transport and path-ordered exponentials5.11 Holonomy and Wilson loops5.12 The exterior covariant derivative5.13 Forms with values in Ad(P)5.14 A second and third version of the Bianchi identity5.15 Exercises for Chapter 56 Spinors6.1 The pseudo-orthogonal group O(s; t) of indefinite scalar products6.2 Clifford algebras6.3 The Clifford algebras for the standard symmetric bilinear forms6.4 The spinor representation6.5 The spin groups6.6 Majorana spinors6.7 Spin invariant scalar products6.8 Explicit formulas for Minkowski spacetime of dimension 46.9 Spin structures and spinor bundles6.10 The spin covariant derivative6.11 Twisted spinor bundles6.12 Twisted chiral spinors6.13 Exercises for Chapter 6Part II The Standard Model of elementary particle physics7 The classical Lagrangians of gauge theories7.1 Restrictions on the set of Lagrangians7.2 The Hodge star and the codifferential7.3 The Yang–Mills Lagrangian7.4 Mathematical and physical conventions for gauge theories7.5 The Klein–Gordon and Higgs Lagrangians7.6 The Dirac Lagrangian7.7 Yukawa couplings7.8 Dirac and Majorana mass terms7.9 Exercises for Chapter 78 The Higgs mechanism and the Standard Model8.1 The Higgs field and symmetry breaking8.2 Mass generation for gauge bosons8.3 Massive gauge bosons in the SU(2)U(1)-theory of the electroweak interaction8.4 The SU(3)-theory of the strong interaction (QCD)8.5 The particle content of the Standard Model8.6 Interactions between fermions and gauge bosons8.7 Interactions between Higgs bosons and gauge bosons8.8 Mass generation for fermions in the Standard Model8.9 The complete Lagrangian of the Standard Model8.10 Lepton and baryon numbers8.11 Exercises for Chapter 89 Modern developments and topics beyond the Standard Model9.1 Flavour and chiral symmetry9.2 Massive neutrinos9.3 C, P and CP violation9.4 Vacuum polarization and running coupling constants9.5 Grand Unified Theories9.6 A short introduction to the Minimal Supersymmetric Standard Model (MSSM)9.7 Exercises for Chapter 9Part III AppendixA Background on differentiable manifoldsA.1 ManifoldsA.2 Tensors and formsB Background on special relativity and quantum field theoryB.1 Basics of special relativityB.2 A short introduction to quantum field theoryReferencesIndex

    Out of stock

    £71.99

  • Introduction to Random Matrices: Theory and

    Springer International Publishing AG Introduction to Random Matrices: Theory and

    Out of stock

    Book SynopsisModern developments of Random Matrix Theory as well as pedagogical approaches to the standard core of the discipline are surprisingly hard to find in a well-organized, readable and user-friendly fashion. This slim and agile book, written in a pedagogical and hands-on style, without sacrificing formal rigor fills this gap. It brings Ph.D. students in Physics, as well as more senior practitioners, through the standard tools and results on random matrices, with an eye on most recent developments that are not usually covered in introductory texts. The focus is mainly on random matrices with real spectrum.The main guiding threads throughout the book are the Gaussian Ensembles. In particular, Wigner’s semicircle law is derived multiple times to illustrate several techniques (e.g., Coulomb gas approach, replica theory).Most chapters are accompanied by Matlab codes (stored in an online repository) to guide readers through the numerical check of most analytical results.Trade Review“The text is well written, and the authors’ informal conversational style sets the book up nicely for someone who is using it as a self-study guide in the area. The chapters are short, but there are numerous examples, and the most instructive calculations are represented in full. Particular attention is paid to the numerical verification of the most analytical results.” (Susanna Spektor, Mathematical Reviews, September, 2018)“Giacomo Livan, Marcel Novaes, and Pierpaolo Vivo have written a small but lively book on random matrices. … The book feels conversational. It has an informal tone, a sense of humor, and a pleasant mixture of exposition and detail. The pace is brisk, appropriate for a book aiming to be an introductory survey rather than a formal textbook.” (John D. Cook, MAA Reviews, July, 2018)“The emphasis is on concepts, computations and tricks of the trade, and the style is modern and informal, which the reader will no doubt enjoy. … This monograph should prove to become a very welcome companion to the serious and enthusiastic reader setting out to get to know this vast and very useful subject.” (Rabe von Randow, zbMATH 1386.15003, 2018)Table of ContentsPreface.- Getting Started.- Value the eigenvalue.- Classified Material.- The fluid semicircle.- Saddle-point-of-view.- Time for a change.- Meet Vandermonde.- Resolve(nt) the semicircle.- One pager on eigenvectors.- Finite N.- Meet Andréief.- Finite N is not finished.- Classical Ensembles:Wishart-Laguerre.- Meet Marčenko and Pastur.- Replicas.- Replicas for GOE.- Born to be free.

    Out of stock

    £52.24

  • A Mathematical Primer on Quantum Mechanics

    Springer International Publishing AG A Mathematical Primer on Quantum Mechanics

    Out of stock

    Book SynopsisThis book offers a rigorous yet elementary approach to quantum mechanics that will meet the needs of Master’s-level Mathematics students and is equally suitable for Physics students who are interested in gaining a deeper understanding of the mathematical structure of the theory. Throughout the coverage, which is limited to single-particle quantum mechanics, the focus is on formulating theory and developing applications in a mathematically precise manner. Following a review of selected key concepts in classical physics and the historical background, the basic elements of the theory of operators in Hilbert spaces are presented and used to formulate the rules of quantum mechanics. The discussion then turns to free particles, harmonic oscillators, delta potential, and hydrogen atoms, providing rigorous proofs of the corresponding dynamical properties. Starting from an analysis of these applications, readers are subsequently introduced to more advanced topics such as the classical limit, scattering theory, and spectral analysis of Schrödinger operators. The main content is complemented by numerous exercises that stimulate interactive learning and help readers check their progress. Trade Review“The presentation is well-structured and easy to follow, with ample examples and exercises. It can hence be used both as a basis for a course on this topic as well as for self study. It is a welcome addition to the textbook literature on this subject.” (G. Teschl, Monatshefte für Mathematik, Vol. 191 (3), 2020)“This book fills the gap between the elementary classical and quantum mechanics … and higher-level mathematics required to study more advanced books. Indeed, after reading this Primer a student would have enough motivation and basic understanding of the theory of (un)bounded linear operators to read … .I highly recommend it especially for physics students, who after reading this Primer should be fully prepared and motivated to study a more advanced references … .” (Arsen Melikyan, zbMATH 1394.81006, 2018)Table of ContentsPreface.- 1. Brief Review of Hamiltonian Mechanics and Electromagnetism.- 2. From Planck's Hypothesis to Bohr's Atom.- 3. Schrodinger Equation.- 4. Linear Operators in Hilbert Spaces.- 5. Rules of Quantum Mechanics.- 6. Free Particle.- 7. Harmonic Oscillator.- 8. Point Interaction.- 9. Hydrogen Atom.- 10. The Cloud Chamber Problem.- References.- Index.

    Out of stock

    £52.49

  • Computational Methods in Physics: Compendium for

    Springer International Publishing AG Computational Methods in Physics: Compendium for

    1 in stock

    Book SynopsisThis book is intended to help advanced undergraduate, graduate, and postdoctoral students in their daily work by offering them a compendium of numerical methods. The choice of methods pays significant attention to error estimates, stability and convergence issues, as well as optimization of program execution speeds. Numerous examples are given throughout the chapters, followed by comprehensive end-of-chapter problems with a more pronounced physics background, while less stress is given to the explanation of individual algorithms. The readers are encouraged to develop a certain amount of skepticism and scrutiny instead of blindly following readily available commercial tools. The second edition has been enriched by a chapter on inverse problems dealing with the solution of integral equations, inverse Sturm-Liouville problems, as well as retrospective and recovery problems for partial differential equations. The revised text now includes an introduction to sparse matrix methods, the solution of matrix equations, and pseudospectra of matrices; it discusses the sparse Fourier, non-uniform Fourier and discrete wavelet transformations, the basics of non-linear regression and the Kolmogorov-Smirnov test; it demonstrates the key concepts in solving stiff differential equations and the asymptotics of Sturm-Liouville eigenvalues and eigenfunctions. Among other updates, it also presents the techniques of state-space reconstruction, methods to calculate the matrix exponential, generate random permutations and compute stable derivatives.Table of ContentsSince this is a 2nd Edition, we are giving below the topics we wish to add/update/revise in roughly the same chapter sequence as we had in the existing 1st Edition of the book. In addition to a general revision of the text, we propose the following major modifications (the asterisks denote the amount of text added/modified and/or or the difficulty level of the topics being discussed): Chapter 2 - Subsection 2.1.2: add discussion on how to find all zeros by means of the Newton method (*) Chapter 3 - Expand Subsection 3.2.7 on solving the A*x = b equations with sparse matrices to a full Section (**) - Expand Subsection 3.4.5 on solving the eigenvalue problem A*x = lambda*x to a full Section (**) - Discuss the exponentiation of a matrix, exp(A) (*) - Add a Subsection on Pseudospectra (**) - in general, enhance the "sparse" aspect of the chapter Chapter 4 - Add a new Section on Sparse FFT (following present Sec. 4.2), add corresponding Exercise (**) - Expand Subsection 4.6.2 on the Discrete Wavelet Transform to a full Section, add Exercise (***) - Add a Section on image denoising (**) - Add Section on Radon transformation (**) Chapter 5 - Rewrite Sections 5.1-5.5 to better distinguish between general discussion of distributions and the techniques involving samples, and to bring the notation in line with the book "Probability for Physicists" (***) - Introduce Bayesian data analysis and inference (***) - Expand Subsection 5.5.8 on Non-linear Regression to a full Section, add Exercises (**) Chapter 6 - Expand Section 6.5 on Noise, add Exercise (**) - Add Section on Takens Theorem and its applications: phase space reconstruction and optimal size determination (**) - Add discussion on signal entropies (**) - Update discussion on autoregressive models (optimal order) (*) - Add discussion on signal directionality / causality (**) Chapter 7 - Expand Section 7.10 on Stiff Problems of ODE, add Exercise (**) Chapter 8 - Expand Subsection 8.7.4 on Singular SL Problems to a Section, add Exercise (**) - Motivated by Section 8.8, write a new chapter on Inverse Problems (***) Chapter 10 - Expand Section 10.8, add Exercise (**) Chapter 11 - Expand Sections 11.7 and 11.8, add Exercises (**) New Chapter on Inverse Methods (***) New short Chapter or Appendix on minimization (**) - with derivatives or without them - with constraints or without them - deterministic and quasi-deterministic (MC methods) New Appendix on spline methods: B-splines, Bezier splines (**)

    1 in stock

    £104.49

  • Basic Concepts in Computational Physics

    Springer International Publishing AG Basic Concepts in Computational Physics

    5 in stock

    Book SynopsisThis new edition is a concise introduction to the basic methods of computational physics. Readers will discover the benefits of numerical methods for solving complex mathematical problems and for the direct simulation of physical processes. The book is divided into two main parts: Deterministic methods and stochastic methods in computational physics. Based on concrete problems, the first part discusses numerical differentiation and integration, as well as the treatment of ordinary differential equations. This is extended by a brief introduction to the numerics of partial differential equations. The second part deals with the generation of random numbers, summarizes the basics of stochastics, and subsequently introduces Monte-Carlo (MC) methods. Specific emphasis is on MARKOV chain MC algorithms. The final two chapters discuss data analysis and stochastic optimization. All this is again motivated and augmented by applications from physics. In addition, the book offers a number of appendices to provide the reader with information on topics not discussed in the main text. Numerous problems with worked-out solutions, chapter introductions and summaries, together with a clear and application-oriented style support the reader. Ready to use C++ codes are provided online.Table of ContentsSome Basic Remarks.- Part I Deterministic Methods.- Numerical Differentiation.- Numerical Integration.- The KEPLER Problem.- Ordinary Differential Equations – Initial Value Problems.- The Double Pendulum.- Molecular Dynamics.- Numerics of Ordinary Differential Equations - Boundary Value Problems.- The One-Dimensional Stationary Heat Equation.- The One-Dimensional Stationary SCHRÖDINGER Equation.- Partial Differential Equations.- Part II Stochastic Methods.- Pseudo Random Number Generators.- Random Sampling Methods.- A Brief Introduction to Monte-Carlo Methods.- The ISING Model.- Some Basics of Stochastic Processes.- The Random Walk and Diffusion Theory.- MARKOV-Chain Monte Carlo and the POTTS Model.- Data Analysis.- Stochastic Optimization.- Appendix: The Two-Body Problem.- Solving Non-Linear Equations. The NEWTON Method.- Numerical Solution of Systems of Equations.- Fast Fourier Transform.- Basics of Probability Theory.- Phase Transitions.- Fractional Integrals and Derivatives in 1D.- Least Squares Fit.- Deterministic Optimization.

    5 in stock

    £42.74

  • Foundations of Quantum Theory: From Classical

    Springer International Publishing AG Foundations of Quantum Theory: From Classical

    1 in stock

    Book SynopsisThis book studies the foundations of quantum theory through its relationship to classical physics. This idea goes back to the Copenhagen Interpretation (in the original version due to Bohr and Heisenberg), which the author relates to the mathematical formalism of operator algebras originally created by von Neumann. The book therefore includes comprehensive appendices on functional analysis and C*-algebras, as well as a briefer one on logic, category theory, and topos theory. Matters of foundational as well as mathematical interest that are covered in detail include symmetry (and its "spontaneous" breaking), the measurement problem, the Kochen-Specker, Free Will, and Bell Theorems, the Kadison-Singer conjecture, quantization, indistinguishable particles, the quantum theory of large systems, and quantum logic, the latter in connection with the topos approach to quantum theory.This book is Open Access under a CC BY licence. Trade Review“Quantum theory has frequent applications in the subjects of quantum information theory and quantum optics. The purpose of this book is to present the foundations of quantum theory in connection with classical physics, from the point of view of classical-quantum duality. … This good book is recommended for mathematicians, physicists, philosophers of physics, researchers and advanced students in this field.” (Michael M. Dediu, Mathematical Reviews, Decemeber, 2017)Table of ContentsIntroduction.- Part I Co(X) and B(H): Classical physics on a finite phase space.- Quantum mechanics on a finite-dimensional Hilbert space.- Classical physics on a general phase space.- Quantum physics on a general Hilbert space.- Symmetry in quantum mechanics.- Part II Between Co(X) and B(H): Classical models of quantum mechanics.- Limits: Small hbar.- Limits: large N.- Symmetry in algebraic quantum theory.- Spontaneous Symmetry Breaking.- The Measurement Problem.- Topos theory and quantum logic.- Appendix A: Finite-dimensional Hilbert spaces.- Appendix B: Basic functional analysis.- Appendix C: Operator algebras.- Appendix D: Lattices and logic.- Appendix E: Category theory and topos theory.- References.

    1 in stock

    £40.49

  • Space Charge Physics for Particle Accelerators

    Springer International Publishing AG Space Charge Physics for Particle Accelerators

    Out of stock

    Book SynopsisUnderstanding and controlling the physics of space charge effects in linear and circular proton and ion accelerators are essential to their operation, and to future high-intensity facilities. This book presents the status quo of this field from a theoretical perspective, compares analytical approaches with multi-particle computer simulations and – where available – with experiments. It discusses fundamental concepts of phase space motion, matched beams and modes of perturbation, along with mathematical models of analysis – from envelope to Vlasov-Poisson equations. The main emphasis is on providing a systematic description of incoherent and coherent resonance phenomena; parametric instabilities and sum modes; mismatch and halo; error driven resonances; and emittance exchange due to anisotropy, as well as the role of Landau damping. Their distinctive features are elaborated in the context of numerous sample simulations, and their potential impacts on beam quality degradation and beam loss are discussed. The book is intended for advanced beginners in accelerator research, and for experts interested in the mechanisms of direct space charge interaction and their modeling.Table of ContentsDedication.- Preface.- Introduction.- Phase Space Dynamics in Theory and Simulation.- Vlasov and Envelope Analysis.- Matched Beams.- Modes of Space Charge Interaction.- Beam Mismatch and Halo.- Coherent Parametric Instabilities.- Magnet Error Driven Coherent Resonances.- Emittance Exchange in Anisotropic Beams.- Discussion of Space Charge in Accelerator Design.- Epilogue.- Glossary.

    Out of stock

    £67.49

  • Theory and Simulation of Random Phenomena:

    Springer International Publishing AG Theory and Simulation of Random Phenomena:

    1 in stock

    Book SynopsisThe purpose of this book is twofold: first, it sets out to equip the reader with a sound understanding of the foundations of probability theory and stochastic processes, offering step-by-step guidance from basic probability theory to advanced topics, such as stochastic differential equations, which typically are presented in textbooks that require a very strong mathematical background. Second, while leading the reader on this journey, it aims to impart the knowledge needed in order to develop algorithms that simulate realistic physical systems. Connections with several fields of pure and applied physics, from quantum mechanics to econophysics, are provided. Furthermore, the inclusion of fully solved exercises will enable the reader to learn quickly and to explore topics not covered in the main text. The book will appeal especially to graduate students wishing to learn how to simulate physical systems and to deepen their knowledge of the mathematical framework, which has very deep connections with modern quantum field theory.Table of Contents1 Review of Probability Theory.- 2 Applications to Mathematical Statistics.- 3 Conditional Probability and Conditional Expectation.- 4 Markov Chains.- 5 Sampling of Random Variables and Simulation.- 6 Brownian Motion.- 7 Introduction to Stochastic Calculus and Ito Integral.- 8 Introduction to Stochastic Differential Equations and Applications.- Bibliography.- Solutions.

    1 in stock

    £53.99

  • Computational Methods for Fluid Dynamics

    Springer International Publishing AG Computational Methods for Fluid Dynamics

    1 in stock

    Book SynopsisThis book is a guide to numerical methods for solving fluid dynamics problems. The most widely used discretization and solution methods, which are also found in most commercial CFD-programs, are described in detail. Some advanced topics, like moving grids, simulation of turbulence, computation of free-surface flows, multigrid methods and parallel computing, are also covered. Since CFD is a very broad field, we provide fundamental methods and ideas, with some illustrative examples, upon which more advanced techniques are built. Numerical accuracy and estimation of errors are important aspects and are discussed in many examples. Computer codes that include many of the methods described in the book can be obtained online. This 4th edition includes major revision of all chapters; some new methods are described and references to more recent publications with new approaches are included. Former Chapter 7 on solution of the Navier-Stokes equations has been split into two Chapters to allow for a more detailed description of several variants of the Fractional Step Method and a comparison with SIMPLE-like approaches. In Chapters 7 to 13, most examples have been replaced or recomputed, and hints regarding practical applications are made. Several new sections have been added, to cover, e.g., immersed-boundary methods, overset grids methods, fluid-structure interaction and conjugate heat transfer.Table of ContentsBasic Concepts of Fluid Flow.- Introduction to Numerical Methods.- Finite Difference Methods.- Finite Volume Methods.- Solution of Linear Equation Systems.-Methods for Unsteady Problems.- Solution of the Navier-Stokes Equations.- Complex Geometries.- Turbulent Flows.- Compressible Flows.- Efficiency, Accuracy and Grid Quality.- Special Topics.

    1 in stock

    £52.24

  • Fundamentals of van der Waals and Casimir

    Springer International Publishing AG Fundamentals of van der Waals and Casimir

    3 in stock

    Book SynopsisThis book presents a self-contained derivation of van der Waals and Casimir type dispersion forces, covering the interactions between two atoms but also between microscopic, mesoscopic, and macroscopic objects of various shapes and materials. It also presents detailed and general prescriptions for finding the normal modes and the interactions in layered systems of planar, spherical and cylindrical types, with two-dimensional sheets, such as graphene incorporated in the formalism. A detailed derivation of the van der Waals force and Casimir-Polder force between two polarizable atoms serves as the starting point for the discussion of forces: Dispersion forces, of van der Waals and Casimir type, act on bodies of all size, from atoms up to macroscopic objects. The smaller the object the more these forces dominate and as a result they play a key role in modern nanotechnology through effects such as stiction. They show up in almost all fields of science, including physics, chemistry, biology, medicine, and even cosmology. Written by a condensed matter physicist in the language of condensed matter physics, the book shows readers how to obtain the electromagnetic normal modes, which for metallic systems, is especially useful in the field of plasmonics.Table of ContentsIntroduction.- Part I - Background Material.- Electromagnetic.- Complex Analysis.- Statistical Physics.- Electromagnetic Normal Modes.- Different Approaches.- General Method to find the Normal Modes in Layered Structures.- Part II - Non-retarded Formalism: van der Waals.- Van der Waals Force.- Van der Waals Interaction in Planar Structures.- Van der Waals Interaction in Spherical Structures.- Van der Waals Interaction in Cylindrical Structures.- Part III - Fully Retarded Formalism: Casimir.- Casimir Interaction.- Dispersion Interaction in Planar Structures.- Dispersion Interaction in Spherical Structures.- Dispersion Interaction in Cylindrical Structures.- Summary and Outlook.

    3 in stock

    £98.99

  • Chaos und Systeme: Eine Einführung in Theorie und

    Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Chaos und Systeme: Eine Einführung in Theorie und

    1 in stock

    Book SynopsisDieses Buch ist eine besonders geeignete Einführung zum Thema Chaos und Simulation dynamischer Systeme für Studenten der Ingenieur- und der Naturwissenschaften. Die Untersuchung von einfachen Modellen aus der Populationsdynamik dient als Vehikel, einen schnellen und zielgerichteten Einstieg zu erzielen. Das nötige mathematische und simulationstechnische Werkzeug wird nach Bedarf eingeführt und gut verständlich erklärt. Unterstützt wird die Darstellung durch Programme auf beiliegender Diskette, die die Zusammenhänge verdeutlichen und zum Experimentieren anregen.Table of ContentsPopulationsdynamik - Räuber-Beute-Systeme - Simulation nichtlinearer Differentialgleichungen - Prozeßorientierte Simulation - Stabilität - Bifurkation - seltsame Attraktoren - Chaos - dissipative Systeme - fraktale Ddimension - Lorenzmodelle - Dynamik der Krankheitsepidemien

    1 in stock

    £31.34

  • Mechanik

    Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Mechanik

    1 in stock

    Book SynopsisMathematische Grundlagen - Kinematik - Dynamik - Statik starrer Systeme - Statik deformierbarer Systeme - Kinetik starrer Systeme - Kinetik deformierbarer Systeme - Prinzipien der Mechanik.Trade Review,,(...) Vor allem auch aufgrund der systematisch gegliederten Darstellung sowie der klar formulierten Aussagen kann dieses Buch allen Studenten, Naturwissenschaftlern und Ingenieuren sehr empfohlen werden, die sich in die Grundlagenwissenschaft 'Mechanik' einarbeiten wollen und/oder die diese als ein wertvolles Instrument zum Lösen technischer Probleme benötigen."VDI-Z 18/1986Table of ContentsMathematische Grundlagen - Kinematik - Dynamik - Statik starrer Systeme - Statik deformierbarer Systeme - Kinetik starrer Systeme - Kinetik deformierbarer Systeme - Prinzipien der Mechanik.

    1 in stock

    £47.49

  • Teubner-Taschenbuch der statistischen Physik

    Springer Fachmedien Wiesbaden Teubner-Taschenbuch der statistischen Physik

    1 in stock

    Book SynopsisAus moderner Sicht werden in diesem Teubner-Taschenbuch die Grundlagen und wichtige Anwendungen der statistischen Physik dargestellt. Auf eine gründliche Darstellung der Begriffsbildungen der statistischen Physik, auf die korrekte Herleitung grundlegender Gleichungen und auf die Durchführung wichtiger Beweise wird besonderer Wert gelegt. Das Buch eignet sich als Begleittext für Kurs- und Spezialvorlesungen, als Repetitorium zur Prüfungsvorbereitung und als Nachschlagewerk zur raschen Information für breite Leserkreise aus Mathematik, Naturwissenschaften und technischen Disziplinen, insbesondere für Studenten dieser Fachrichtungen.Table of ContentsKombinatorik - Wahrscheinlichkeitstheorie - Quantenmechanik und Wahrscheinlichkeit - Thermodynamik - Statistische Physik der Gleichgewichtssysteme - Statistische Physik der Systeme im Nichtgleichgewicht - Statistische Physik und Informationstheorie - Phasenraummethoden der Quantenstatistik - Fraktaltheorie und Perkolationstheorie - Theorie dynamischer Systeme, Chaostheorie, Ergodentheorie - Statistische Thermodynamik chemischer Systeme - Statistische Theorie biologischer Systeme - Synergetik, weitere Anwendungen der statistischen Physik

    1 in stock

    £49.49

  • Elektromagnetische Feldtheorie: Eine

    Springer Fachmedien Wiesbaden Elektromagnetische Feldtheorie: Eine

    1 in stock

    Book SynopsisZusammen mit einer kurzen Einführung in das System der Maxwellschen Gleichungen und einer Definition der Feldgrößen lehrt das Buch mit charakteristischen Beispielen die Lösungsmethodik der Feldtheorie. Schwerpunkte sind dabei statistische und stationäre elektrische und magnetische Felder, quasistationäre elektromagnetische Felder und elektromagnetische Wellen. Für das Verständnis besonders hilfreich ist die Darstellung von Feldlinienbildern. Dieses Lehrbuch bietet eine Sammlung ausgewählter anspruchsvoller Übungsaufgaben mit Lösungen, die es ermöglichen, die elektromagnetische Feldtheorie zu verstehen und sachgerecht anzuwenden.Trade Review"Das Buch enthält in untadeliger Darstellung etliche Aufgaben mit Ausarbeitung zu den klassischen Teilgebieten der Elektrodynamik, wobei die ausgezeichneten Feldbilder besonders hervorgehoben werden müssen. Den zitierten Wunsch des Autors hat sich dieser mit seinem Buch ohne Frage erfüllt." Impulse, 01/2003Table of ContentsDie Maxwellschen Gleichungen - Elektrostatische Felder - Das stationäre Strömungsfeld - Das magnetische Feld stationärer Ströme - Das quasistationäre elektromagnetische Feld: der Skineffekt - Elektromagnetische Wellen

    1 in stock

    £31.34

  • Distributionen und ihre Anwendung in der Physik

    Springer Fachmedien Wiesbaden Distributionen und ihre Anwendung in der Physik

    1 in stock

    Book SynopsisDas vorliegende Buch stellt eine Einführung in die Theorie der Distributionen (verallge­ meinerte Funktionen) und ihrer Anwendungen in der Physik dar. Der zum Verständnis der Theorie notwendige topologische Apparat wurde auf ein Minimum reduziert. Lediglich das erste Kapitel gibt eine Einführung in die Theorie der abzählbar normierten Räume. Es wird angenommen, daß der Leser vertraut mit den elementaren Begriffen der Funktionalanalysis (Hilbert- und Banachraum) ist. Das Buch enthält die bereits klassisch gewordenen Kapitel der Theorie der Distributionen, wie: Lokale Eigenschaften von Distributionen, Distributionen mit kompaktem Träger, temperierte Distributionen, Regularisierung divergenter Integrale, Fourier- und Fourier­ Laplace-Transformation, den Satz von Paley-Wiener-Schwartz, Distributionen als Rand­ werte analytischer Funktionen usw. In Kapitel 11 werden Distributionen untersucht, die auf Flächen konzentriert sind; insbesondere auf dem Lichtkegel konzentrierte Distri­ butionen. In den Kapiteln 8, 9, 10 werden verschiedene Anwendungen der Theorie der Distributionen in der relativistischen Physik (Feldtheorie) entwickelt. Kapitel 12 schließlich enthält Probleme der Theorie der Distributionen im Hilbertraum und ihre Anwendungen in der Quantenphysik (Vertauschungsrelationen, Fock-Raum, Quanten­ feldtheorie usw.). Das Buch wendet sich sowohl an Mathematiker, die auch die Anwendungen der Theorie der Distributionen in der Physik kennenlernen wollen; als auch an Physiker, die sich für die Theorie der Distributionen als Teilgebiet der mathematischen und theoretischen Physik interessieren. Das vorliegende Buch entstand aus Vorlesungen, die ich im Jahre 1970 als Humboldt­ Stipendiat an der Universität München gehalten habe. Mein besonderer Dank gilt daher an dieser Stelle Herrn Prof. Dr. W. Güttinger für die Unterstützung in meinen ersten Arbeitsjahren in Deutschland.Table of Contents1. Normierte und abzählbar normierte Räume.- 2. Die Testfunktionenräume.- 3. Die Distributionenräume.- 4. Lokale Eigenschaften von Distributionen.- 5. Einfache Beispiele von Distributionen.- 6. Das Rechnen mit Distributionen.- 7. Distributionen mit kompaktem Träger und die allgemeine Form der temperierten Distributionen.- 8. Funktionen mit algebraischen nichtintegrierbaren Singularitäten.- 9. Das Tensorprodukt und die Faltung von Distributionen.- 10. Die Fouriertransformation.- 11. Mit dem Lichtkegel verknüpfte Distributionen.- 12. Hilbertraum und Distributionen. Anwendungen in der Physik.- Literatur.

    1 in stock

    £31.34

  • Mathematik für Physiker: Grundkurs

    Springer Fachmedien Wiesbaden Mathematik für Physiker: Grundkurs

    1 in stock

    Book SynopsisBei unseren Mathematikvorlesungen für Physiker stellten wir immer wieder fest, daß es zwar eine Fülle vorzüglicher Einzeldarstellungen der verschiedenen ma­ thematischen Teilgebiete gibt, daß aber eine auf naturwissenschaftliche Frage­ stellungen zugeschnittene Zusammenfassung bisher fehlte. Mit diesem ersten Band einer geplanten dreibändigen Gesamtdarstellung wollen wir dem Physiker eine integrierte Darstellung der für ihn wichtigsten mathema­ tischen Grundlagen, wie sie üblicherweise im Grundstudium behandelt werden, an die Hand geben. Im zweiten und dritten Band behandeln wir gewöhnliche und partielle Differen­ tialgleichungen, Operatoren der Quantenmechanik, Variationsrechnung, Diffe­ rentialgeometrie und mathematische Grundlagen der Relativitätstheorie. Beim Aufbau des ersten Bandes war zu berücksichtigen, daß der Differential­ und Integralkalkül bis hin zur Schwingungsgleichung sowie die Vektorrechnung möglichst früh bereitgestellt werden müssen. Schon deswegen verbot sich eine Gliederung nach getrennten mathematischen Einzeldisziplinen. Darüberhinaus sind wir nach dem Prinzip verfahren, Lösungsmethoden gleich dort vorzustel­ len, wo die entsprechenden Hilfsmittel bereitstehen. Dies gilt insbesondere für Differentialgleichungen. Wegen der Fülle des zu behandelnden Stoffs fiel uns die gezielte Auswahl nicht leicht, und wir mußten schweren Herzens auf viele schöne Anwendungen, Bei­ spiele und historische Anmerkungen verzichten. Dennoch konnten wir den be­ absichtigten Rahmen von ca. 500 Seiten nicht ganz einhalten. Es sollen hier nicht Rezepte und fertige Lösungen vermittelt werden, wichtiger - und übrigens oft leichter zu merken - ist der Weg dorthin. Erst wer sich die dabei auftretenden Probleme bewußt gemacht hat, weiß die Lösung zu schätzen.Table of ContentsI Grundlagen.- II Vektorrechnung im ?n.- III Analysis einer Veränderlichen.- IV Lineare Algebra.- V Analysis mehrerer Variabler.- VI Vektoranalysis.- VII Einführung in die Funktionentheorie.- Namen und Lebensdaten.- Symbole und Abkürzungen.

    1 in stock

    £35.99

  • Discrete Mathematics in Statistical Physics:

    Springer Fachmedien Wiesbaden Discrete Mathematics in Statistical Physics:

    Out of stock

    Book SynopsisThe book first describes connections between some basic problems and technics of combinatorics and statistical physics. The discrete mathematics and physics terminology are related to each other. Using the established connections, some exciting activities in one field are shown from a perspective of the other field. The purpose of the book is to emphasize these interactions as a strong and successful tool. In fact, this attitude has been a strong trend in both research communities recently. It also naturally leads to many open problems, some of which seem to be basic. Hopefully, this book will help making these exciting problems attractive to advanced students and researchers.Table of ContentsBasic concepts - Introduction to Graph Theory - Trees and electrical networks – Matroids - Geometric representations of graphs - Game of dualities - The zeta function and graph polynomials – Knots - 2D Ising and dimer models

    Out of stock

    £31.49

  • Einführung in die mathematischen Methoden der

    Springer Fachmedien Wiesbaden Einführung in die mathematischen Methoden der

    1 in stock

    Book SynopsisTable of Contents1. Mathematische Grundlagen.- 1.1. Der Begriff des Feldes und des Gradienten.- 1.1.1. Definition der Feldgröße.- 1.1.2. Änderung (Differentiation) der Feldgrößen.- 1.2. Integration der Feldgrößen.- 1.2.1. Kurvenintegrale.- 1.2.2. Flächenintegrale.- 1.3. Tensoren.- 1.3.1. Der Begriff des Tensorfeldes.- 1.3.2. Rechenregeln für Tensoren in kartesischen Koordinatensystemen.- 1.3.3. Der 5-Tensor und e-Tensor.- 1.4. Koordinatentransformationen.- 1.5. Einfachste Differentialoperatoren.- 1.5.1. Die Divergenz und der Satz von Gauß.- 1.5.2. Die Rotation und der Satz von Stokes.- 1.5.3. Sprungflächenoperatoren.- 1.5.4. Divergenz und Rotor in krummlinigen Koordinaten.- 1.6. Übungsbeispiele zu Kap. 1.- 2. Partielle Differentialgleichungen der Physik.- 2.1. Die Poissonsche Differentialgleichung.- 2.1.1. Beschreibung eines Feldes durch Quellen und Wirbel.- 2.1.2. Eindeutigkeit der Lösung. Randbedingungen.- 2.2. Die partielle Differentialgleichung von Schwingungsvorgängen.- 2.2.1. Die schwingende Saite.- 2.2.2. Die schwingende Membran und räumliche Schwingungen.- 2.3. Die Differentialgleichungen der Diffusion und Wärmeleitung.- 2.4. Einfachste Differentialgleichungen der Quantenmechanik.- 2.5. Übungsbeispiele zu Kap. 2.- 3. Lösungsansätze für partielle Differentialgleichungen.- 3.1. Trennung der Variablen.- 3.2. Die Laplacegleichung.- 3.2.1. Die Laplacegleichung für ein Rechteck.- 3.2.2. Die Laplacegleichung in Polarkoordinaten.- 3.3. Die schwingende Saite.- 3.3.1. Die beidseitig eingespannte schwingende Saite.- 3.3.2. Die d’Alembertsche Lösung der schwingenden Saite.- 3.4. Übungsbeispiele zu Kap. 3.- 4. Rand und Eigenwertaufgaben.- 4.1. Problemstellung.- 4.2. Sturm-Liouville-Differentialoperatoren.- 4.2.1. Selbstadjungierte Differentialoperatoren.- 4.2.2. Sturm-Liouville-Randwertaufgaben.- 4.2.3. Sturm-Liouville-Eigenwertaufgaben.- 4.2.4. Die Sturm-Liouville -Transformation.- 4.3. Der Entwicklungssatz.- 4.3.1. Eigenwerte und Eigenfunktionen.- 4.3.2. Der Entwicklungssatz für beschränkte Intervalle.- 4.4. Die Lösung der Anfangsrandwertaufgabe.- 4.5. Die inhomogene Randwertaufgabe.- 4.6. Nadelartige Funktionen.- 4.7. Ergänzungen und Bemerkungen.- 4.8. Übungsbeispiele zu Kap. 4.- 5. Singuläre Differentialgleichungen.- 5.1. Der Begriff der singulären Differentialgleichung. Differentialgleichungen der Fuchsschen Klasse.- 5.2. Die hypergeometrische Differentialgleichung.- 5.3. Die konfluente hypergeometrische Differentialgleichung.- 5.4. Übungsbeispiele zu Kap. 5.- 6. Spezielle Funktionen.- 6.1. Kugelfunktionen.- 6.1.1. Die Laplacegleichung in Kugelkoordinaten.- 6.1.2. Die Legendreschen Polynome und ihre erzeugende Funktion.- 6.1.3. Die Formel vom Rodrigues.- 6.1.4. Die Integraldarstellung von Laplace.- 6.1.5. Die zugeordneten Legendreschen Funktionen.- 6.1.6. Kugelflächenfunktionen als Eigenfunktionen.- 6.1.7. Das Additionstheorem der Kugelflächenfunktionen.- 6.1.8. Der Entwicklungssatz nach Kugelflächenfunktionen.- 6.1.9. Die Randwertaufgaben der Potentialtheorie.- 6.2. Zylinderfunktionen.- 6.2.1. Die Laplacegleichung in Zylinderkoordinaten.- 6.2.2. Besselfunktionen.- 6.2.3. Besselfunktionen als Eigenfunktionen.- 6.2.4. Integraldarstellung und erzeugende Funktion der Besselfunktion Jn (?).- 6.2.5. Das Additionstheorem der Besselfunktionen mit ganzzahligem Zeiger.- 6.2.6. Die Wellengleichung. Sphärische Besselfunktionen.- 6.2.7. Entwicklung einer ebenen Welle nach Kugelwellen.- 6.2.8. Asymptotische Darstellungen für sphärische Besselfunktionen.- 6.3. Hermitesche und Laguerresche Polynome.- 6.3.1. Der harmonische Oszillator (Hermitesche Polynome).- 6.3.2. Die erzeugende Funktion der Hermiteschen Polynome.- 6.3.3. Die Schrödingergleichung für das Wasserstoffatom (Laguerresche Polynome).- 6.4. Übungsbeispiele zu Kap. 6.- 7. Verallgemeinerte Funktionen.- 7.1. Problemstellung.- 7.2. Testfunktionen.- 7.3. Verallgemeinerte Funktionen.- 7.4. Die Diracsche Deltafunktion.- 7.5. Die Derivierte einer verallgemeinerten Funktion.- 7.6. Produkte von verallgemeinerten Funktionen. Das Funktional ?(g(x)).- 7.7. Die uneigentliche Funktion ?(1/r).- 7.8. Ergänzungen und Bemerkungen.- 7.9. Übungsbeispiele zu Kap. 7.- 8. Die Methode der Greenschen Funktionen für partielle Differentialgleichungen.- 8.1. Die klassische Lösung der Poissongleichung.- 8.2. Greensche Funktionen und die Deltafunktion.- 8.3. Die Greensche Funktion der Poissongleichung.- 8.3.1. Der eindimensionale Fall.- 8.3.2. Der dreidimensionale Fall mit natürlichen Randbedingungen.- 8.4. Die Greensche Funktion der Wärmeleitung (Diffusion).- 8.4.1. Die Wärmeleitung im unendlich langen Stab.- 8.4.2. Anfangs- und Randbedingungen der homogenen Wärmeleitungsgleichung.- 8.4.3. Die Wärmeleitung im Raum.- 8.5. Die Greenschen Funktionen der Wellengleichung und ihrer Verallgemeinerungen.- 8.5.1. Allgemeine Randbedingungen.- 8.5.2. Greensche Funktionen im unendlichen Raum.- 8.6. Übungsbeispiele zu Kap. 8.- A. Funktionentheorie.- B. Die Gammafunktion.- Literatur.- Sachwortverzeichnis.

    1 in stock

    £53.99

  • Statistische Thermodynamik

    Springer Fachmedien Wiesbaden Statistische Thermodynamik

    Out of stock

    Book SynopsisTable of ContentsI. Allgemeine Einführung.- II. Die Methode der wahrscheinlichsten Verteilung.- III. Diskussion des Nernstschen Wärmesatzes.- IV. Beispiele zum zweiten Kapitel.- a) Der freie Massenpunkt (ideales einatomiges Gas).- b) Der Plancksche Oszillator.- c) Der Fermi-Oszillator.- V. Schwankungen.- VI. Die Mittelwertmethode.- VII. Das n-Teilchen-Problem.- VIII. Auswertung der Formeln. Grenzfälle.- Die Entropiekonstante.- Das Versagen der klassischen Theorie. Das Gibbssche Paradoxon.- Eine Abschweifung: Vernichtung von Materie?.- Abschweifung über die Unbestimmtheitsrelation.- Eigentliche Gasentartung.- Starke Entartung.- a) Starke Fermi-Dirac-Entartung.- b) Starke Bose-Einstein-Entartung.- IX. Das Strahlungsproblem.

    Out of stock

    £49.49

  • Categories in Continuum Physics: Lectures Given at a Workshop Held at SUNY, Buffalo 1982

    Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Categories in Continuum Physics: Lectures Given at a Workshop Held at SUNY, Buffalo 1982

    15 in stock

    Table of ContentsContinuum mechanics and geometric integration theory.- Structure of continuum physics.- On differentiable spaces.- Cartesian closed categories and analysis of smooth maps.- to synthetic differential geometry, and a synthetic theory of dislocations.- Synthetic reasoning and variable sets.- Recent research on the foundations of thermodynamics.- Global and local versions of the second law of thermodynamics.- Thermodynamics and the hahn-banach theorem.- What is the length of a potato?.

    15 in stock

    £24.99

  • Theory of Nonlinear Lattices

    Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Theory of Nonlinear Lattices

    15 in stock

    Book SynopsisSoliton theory, the theory of nonlinear waves in lattices composed of particles interacting by nonlinear forces, is treated rigorously in this book. The presentation is coherent and self-contained, starting with pioneering work and extending to the most recent advances in the field. Special attention is focused on exact methods of solution of nonlinear problems and on the exact mathematical treatment of nonlinear lattice vibrations. This new edition updates the material to take account of important new advances.Table of Contents1. Introduction.- 1.1 The Fermi-Pasta-Ulam Problem.- 1.2 Hénon-Heiles Calculation.- 1.3 Discovery of Solitons.- 1.4 Dual Systems.- 2. The Lattice with Exponential Interaction.- 2.1 Finding of an Integrable Lattice.- 2.2 The Lattice with Exponential Interaction.- 2.3 Periodic Solutions.- 2.4 Solitary Waves.- 2.5 Two-Soliton Solutions.- 2.6 Hard-Sphere Limit.- 2.7 Continuum Approximation and Recurrence Time.- 2.8 Applications and Extensions.- 2.9 Poincaré Mapping.- 2.10 Conserved Quantities.- 3. The Spectrum and Construction of Solutions.- 3.1 Matrix Formalism.- 3.2 Infinite Lattice.- 3.3 Scattering and Bound States.- 3.4 The Gel’fand-Levitan Equation.- 3.5 The Initial Value Problem.- 3.6 Soliton Solutions.- 3.7 The Relationship Between the Conserved Quantities and the Transmission Coefficient.- 3.8 Extensions of the Equations of Motion and the Kac-Moerbeke System.- 3.9 The Bäcklund Transformation.- 3.10 A Finite Lattice.- 3.11 Continuum Approximation.- 4. Periodic Systems.- 4.1 Discrete Hill’s Equation.- 4.2 Auxiliary Spectrum.- 4.3 Relation Between ?j (k) and ?j (0).- 4.4 Related Integrals on the Riemann Surface.- 4.5 Solution to the Inverse Problem.- 4.6 Time Evolution.- 4.7 A Simple Example (A Cnoidal Wave).- 4.8 Periodic System of Three-Particles.- 5. Application of the Hamilton-Jacobi Theory.- 5.1 Canonically Conjugate Variables.- 5.2 Action Variables.- 6. Recent Advances in the Theory of Nonlinear Lattices.- 6.1 The KdV Equation as a Limit of the TL Equation.- 6.2 Interacting Soliton Equations.- 6.3 Integrability.- 6.4 Generalization of the TL Equation.- 6.5 Two-Dimensional TL.- 6.6 Bethe Ansatz.- 6.7 The Thermodynamic Limit.- 6.8 Hierarchy of Nonlinear Equations.- 6.9 Some Numerical Results.- Appendices.- Simplified Answers to Main Problems.- References.- List of Authors Cited in Text.

    15 in stock

    £42.74

  • Field Theory Handbook: Including Coordinate Systems, Differential Equations and Their Solutions

    Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Field Theory Handbook: Including Coordinate Systems, Differential Equations and Their Solutions

    15 in stock

    Book SynopsisLet us first state exactly what this book is and what it is not. It is a compendium of equations for the physicist and the engineer working with electrostatics, magne­ tostatics, electric currents, electromagnetic fields, heat flow, gravitation, diffusion, optics, or acoustics. It tabulates the properties of 40 coordinate systems, states the Laplace and Helmholtz equations in each coordinate system, and gives the separation equations and their solutions. But it is not a textbook and it does not cover relativistic and quantum phenomena. The history of classical physics may be regarded as an interplay between two ideas, the concept of action-at-a-distance and the concept of a field. Newton's equation of universal gravitation, for instance, implies action-at-a-distance. The same form of equation was employed by COULOMB to express the force between charged particles. AMPERE and GAUSS extended this idea to the phenomenological action between currents. In 1867, LUDVIG LORENZ formulated electrodynamics as retarded action-at-a-distance. At almost the same time, MAXWELL presented the alternative formulation in terms of fields. In most cases, the field approach has shown itself to be the more powerful.Table of ContentsI. Eleven coordinate systems.- II. Transformations in the complex plane.- III. Cylindrical systems.- IV. Rotational systems.- V. The vector Helmholtz equation.- VI. Differential equations.- VII. Functions.- Appendix. Symbols.- Author Index.

    15 in stock

    £113.99

  • Quantum-Classical Analogies

    Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Quantum-Classical Analogies

    1 in stock

    Book SynopsisIt is unanimously accepted that the quantum and the classical descriptions of the physical reality are very different, although any quantum process is "mysteriously" transformed through measurement into an observable classical event. Beyond the conceptual differences, quantum and classical physics have a lot in common. And, more important, there are classical and quantum phenomena that are similar although they occur in completely different contexts. For example, the Schrödinger equation has the same mathematical form as the Helmholtz equation, there is an uncertainty relation in optics very similar to that in quantum mechanics, and so on; the list of examples is very long. Quantum-classical analogies have been used in recent years to study many quantum laws or phenomena at the macroscopic scale, to design and simulate mesoscopic devices at the macroscopic scale, to implement quantum computer algorithms with classical means, etc. On the other hand, the new forms of light – localized light, frozen light – seem to have more in common with solid state physics than with classical optics. So these analogies are a valuable tool in the quest to understand quantum phenomena and in the search for new (quantum or classical) applications, especially in the area of quantum devices and computing.Trade ReviewFrom the reviews: "The main role of quantum classical analogies presented in ten distinct chapters is to shed some light on the genuine significance of the quantum and classical worlds. … The book addresses a large category of readers, especially graduates and PhD students … . The book is also useful for researchers working in advanced topics … . It can be used as an additional source for a course on quantum mechanics … . The hard cover book is nicely edited … ." (Roland Carchon, Physicalia, Vol. 57 (3), 2005) "The authors … devote their new book to the striking analogies between classical and quantum physics. … the authors wish to show that the classical and quantum worlds share many common concepts despite striking differences. … The wealth of analogies … discovered and presented in ten distinct chapters sheds some light on the genuine significance of both the quantum world and its classical counterpart. The book addresses students and researchers alike specialising in the study of quantum devices, atom optics or quantum optics." (Gert Roepstorff, Zentralblatt MATH, Vol. 1093 (19), 2006) "Analogies are a powerful cognitive tool that allow us to make inferences and learn new aspects from the comparison of two things by highlighting their similarities. … It is important to mention that the book is intended to be a catalogue of phenomena shared between classical and quantum physics … . the references given are an invaluable asset. … This book is therefore a very good choice for those interested in bridging ideas from classical physics into the quantum world or vice versa." (Dr. J. Rogel-Salazar, Contemporary Physics, Vol. 46 (6), 2005) "This book develops and explores in a systematic manner a large number of analogs between quantum and classical theories. … It follows closely the recent experimental developments, and for each chapter there is a large number of current references. … It will be very valuable for a large category of readers ranging from graduate and Ph. D. students to researchers working in these areas, and on to teachers looking for nontrivial modern applications and developments in both quantum and classical physics." (Vitor R. Vieira, Mathematical Reviews, Issue 2007 c)Table of Contents1 Introduction.- 2 Analogies Between Ballistic Electrons and Electromagnetic Waves.- 3 Electron/Electromagnetic Multiple Scattering and Localization.- 4 Acoustic Analogies for Quantum Mechanics.- 5 Optical Analogs for Multilevel Quantum Systems.- 6 Particle Optics.- 7 Quantum/Classical Nonlinear Phenomena.- 8 Quantum/Classical Phase Space Analogies.- 9 Analogies Between Quantum and Classical Computing.- 10 Other Quantum/Classical Analogies.- References.

    1 in stock

    £80.99

  • Astronomie mit dem Personal Computer

    Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Astronomie mit dem Personal Computer

    15 in stock

    Book SynopsisAstronomie mit dem PC vermittelt dem Leser eine fundierte Einführung in die Welt der himmelsmechanischen Berechnungen, die für die astronomische Beobachtungspraxis von besonderer Bedeutung sind.Von den theoretischen Grundlagen der Astronomie und Numerik bis zur Erstellung schneller und präziser Anwendungsprogramme vermittelt das Buch die notwendigen Kenntnisse und Softwarelösungen für die Bestimmung und Vorhersage von:- Positionen der Sonne, des Mondes und der Planeten- Auf- und Untergangszeiten- physischen Ephemeriden der Sonne und der großen Planeten- Kometen- und Kleinplanetenpositionen (mit Störungen)- Mondphasen- Zentrallinie und lokalen Umständen von Sonnenfinsternissen - Sternbedeckungen durch den Mond- Bahnelementen aus drei Beobachtungen (auch mehrere Lösungen)- Koordinaten aus Himmelsaufnahmen. Die Verwendung der weitverbreiteten objektorientierten Programmiersprache CC++ ermöglicht die effiziente Realisierung eigener Anwendungen auf der Basis einer leistungsfähigen Modul-Bibliothek. Die Begleit-CD enthält neben den vollständigen, ausgiebig dokumentierten und kommentierten Quelltexten auch die ausführbaren Programme - damit können Leser ohne Programmierkenntnisse alle im Buch beschriebenen Programme ebenfalls nutzen. Zusätzlich befinden sich zwei Sternkataloge (Position und Proper Motion Katalog und Zodialkatalog) sowie die Lowell-Datenbank aktueller Kleinplaneten-Bahnelemente auf der CD, die den Nutzwert der entsprechenden Programme weiter erhöhen. Die vorliegende 4. Auflage stellt, neben einigen Überarbeitungen der Texte und Bilder, die ausführbaren Programme für die Betriebssysteme Windows 98/2000/XP und LINUX sowie die akualisierten Kataloge und Datenbanken zur Verfügung.Table of ContentsEinführung.- Koordinatensysteme.- Auf- und Untergangsrechnung.- Kometenbahnen.- Störungsrechnung.- Planetenbahnen.- Physische Planetenephemeriden.- Die Mondbahn.- Sonnenfinsternisse.- Sternbedeckungen.- Bahnbestimmung.- Astrometrie.

    15 in stock

    £52.24

  • Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction

    Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction

    15 in stock

    Book SynopsisHigh resolution upwind and centered methods are a mature generation of computational techniques. They are applicable to a wide range of engineering and scientific disciplines, Computational Fluid Dynamics (CFD) being the most prominent up to now. This textbook gives a comprehensive, coherent and practical presentation of this class of techniques. For its third edition the book has been thoroughly revised to contain new material.Table of ContentsThe Equations of Fluid Dynamics.- Notions on Hyperbolic Partial Differential Equations.- Some Properties of the Euler Equations.- The Riemann Problem for the Euler Equations.- Notions on Numerical Methods.- The Method of Godunov for Non#x2014;linear Systems.- Random Choice and Related Methods.- Flux Vector Splitting Methods.- Approximate#x2014;State Riemann Solvers.- The HLL and HLLC Riemann Solvers.- The Riemann Solver of Roe.- The Riemann Solver of Osher.- High#x2013;Order and TVD Methods for Scalar Equations.- High#x2013;Order and TVD Schemes for Non#x2013;Linear Systems.- Splitting Schemes for PDEs with Source Terms.- Methods for Multi#x2013;Dimensional PDEs.- Multidimensional Test Problems.- FORCE Fluxes in Multiple Space Dimensions.- The Generalized Riemann Problem.- The ADER Approach.- Concluding Remarks.

    15 in stock

    £237.49

  • Analysis 1

    Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Analysis 1

    1 in stock

    Book SynopsisDas vorliegende Lehrbuch ist als Leitfaden für eine zwei- oder dreisemestrige Analysis-Vorlesung gedacht und richtete sich an Studierende der Mathematik und Physik sowie an mathematisch interessierte Studierende der Informatik und der exakten Wissenschaften. Ausführliche Beweise und Erläuterungen sowie zahlreiche Beispiele und interessante Übungsaufgaben eignen es sehr gut für das mathematische Selbststudium. Ein klarer und übersichtlicher Aufbau und eine geschickte Gliederung des Stoffes ermöglichen, das erste Studium auf Kernbereiche zu beschränken. Dem Dozenten werden vielfältige Möglichkeiten geboten, je nach Art der Vorlesung verschiedene Schwerpunkte zu setzen und geeignete Wege zur Darstellung des Stoffes zu wählen. Geometrische Intuition und historische Motivation in Verbindung mit einer maßvollen Abstraktion kennzeichnen diese moderne Einführung in die Analysis.Trade ReviewAus den Rezensionen zur 2. Auflage: "… Genauigkeit und Verständlichkeit schliessen sich nicht aus, wie das Buch von Stefan Hildebrand eindrücklich zeigt. Der Stoff wird übersichtlich, detailliert und genau präsentiert. … Das vorliegende Werk präsentiert … in hervorragender Weise - quasi als Referenzwerk. … Ich hätte mir als Studierender gewünscht ein solches Buch zu besitzen. Ich würde es deshalb auch allen (ehemaligen) Schülerinnen und Schüler, die sich ernsthaft für Mathematik interessieren, empfehlen." (Reto Schuppli, in: Bulletin des Verein Schweizer Mathematik- und Physiklehrer, 2006, S. 21) Aus den Rezensionen zur 2. Auflage: "… eindrucksvoll ... Meisterhaft gelingt hier die Synthese vielschichtiger, vielfältiger, … klaren, übersichtlichen, gut strukturiertem Aufbau … einem überzeugenden, von üblichen Lehrbüchern grundsätzlich abweichenden Konzept. …aus didaktischer Sicht sehr wertvoll … Beispiele und wertvolle Übungsaufgaben, bei maßvoller Abstraktion, besonders auf geometrische Intuition und historische Motivation Wert gelegt wird, eignet sich dieses Buch sehr gut zum … Selbststudium und bietet dem Dozenten eine Fülle von Anregungen für eine zumindest zweisemestrige Vorlesung." (H. Rindler, in: Monatshefte für Mathematik, 2006, Vol. 149, S. 85) "… Hildebrandts Werk ist ein empfehlenswertes Werk … Der kenntnisreiche Autor zeigt, dass er auch Geschmack hat! … Die Auswahl des Stoffes ... ist subjektiv gefärbt, aber in sich stimmig. … Ein sehr gefälliges und empfehlenswertes Buch: Für die Studenten als Begleitlektüre oder zum Selbststudium, und für die Dozenten … als Grundlage … von Grundvorlesungen!" (H. Prodinger, in: IMN - Internationale Mathematische Nachrichten, 2007, Vol. 205, S. 42)Table of ContentsDie Grundlagen der Analysis.- Der Begriff der Stetigkeit.- Grundbegriffe der Differential- und Integralrechnung.- Differentialgleichungen und Fourierreihen.

    1 in stock

    £38.48

  • Open Quantum Systems I: The Hamiltonian Approach

    Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Open Quantum Systems I: The Hamiltonian Approach

    15 in stock

    Book SynopsisUnderstanding dissipative dynamics of open quantum systems remains a challenge in mathematical physics. This problem is relevant in various areas of fundamental and applied physics. Significant progress in the understanding of such systems has been made recently. These books present the mathematical theories involved in the modeling of such phenomena. They describe physically relevant models, develop their mathematical analysis and derive their physical implications.Table of Contentsto the Theory of Linear Operators.- to Quantum Statistical Mechanics.- Elements of Operator Algebras and Modular Theory.- Quantum Dynamical Systems.- The Ideal Quantum Gas.- Topics in Spectral Theory.

    15 in stock

    £52.24

  • Group Theory: Application to the Physics of

    Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Group Theory: Application to the Physics of

    1 in stock

    Book SynopsisThis concise, class-tested book was refined over the authors’ 30 years as instructors at MIT and the University Federal of Minas Gerais (UFMG) in Brazil. The approach centers on the conviction that teaching group theory along with applications helps students to learn, understand and use it for their own needs. Thus, the theoretical background is confined to introductory chapters. Subsequent chapters develop new theory alongside applications so that students can retain new concepts, build on concepts already learned, and see interrelations between topics. Essential problem sets between chapters aid retention of new material and consolidate material learned in previous chapters.Trade ReviewFrom the reviews:"It was developed for a graduate course taught mostly by Millie Dresselhaus at MIT for more than 30 years, with many revisions of lecture notes. Very much a graduate text or specialist monograph, the book covers a wealth of applications across solid-state physics. … The book can be warmly recommended to students and researchers in solid-state physics, either to serve as a text for an advanced lecture course or for individual study … ." (Volker Heine, Physics Today, November, 2008)"This textbook is based on the authors’ pedagogical experience during their 30 years at MIT. … the book develops all of the relevant mathematics (linear algebra) and the necessary physics (quantum mechanics), it is eminently suitable to a wide audience in physics, chemistry and materials science." (Barry R. Masters, Optics and Photonics News, July/August, 2009)“This is an excellent text … . originates from lectures by Charles Kittel and J. H. van Vleck in the 1950s and much of the material was presented in courses by the authors over the last three decades. The material is meant for Electrical Engineering and Physics students at the graduate level … . has exercises at the end of each chapter and an extensive set of appendices. The exposition is clear and detailed. This is a very good book for its target audience.” (W. Miller Jr., Zentralblatt MATH, Vol. 1175, 2010)“The goal of the book under review is to teach group theory in close connection to applications. … Every chapter of the book finishes with several selected problems. Specific to this book is the feature that every abstract theoretical group concept is introduced and applied in a concrete physical way. This is why the book is very useful for anyone interested in applications of group theory to the wide range of condensed matter phenomena.”­­­ (Oktay K. Pashaev, Mathematical Reviews, Issue 2010 i)“It is highly welcomed because of its well-thought structuring and the plenty of non-trivial examples. The authors develop those parts of the theory of groups which are interesting for physicists, from chapter to chapter offering nearly at any step one or more informative application.” (G. Kowol, Monatshefte für Mathematik, Vol. 157 (2), June, 2009)Table of ContentsBasic Mathematics.- Basic Mathematical Background: Introduction.- Representation Theory and Basic Theorems.- Character of a Representation.- Basis Functions.- Introductory Application to Quantum Systems.- Splitting of Atomic Orbitals in a Crystal Potential.- Application to Selection Rules and Direct Products.- Molecular Systems.- Electronic States of Molecules and Directed Valence.- Molecular Vibrations, Infrared, and Raman Activity.- Application to Periodic Lattices.- Space Groups in Real Space.- Space Groups in Reciprocal Space and Representations.- Electron and Phonon Dispersion Relation.- Applications to Lattice Vibrations.- Electronic Energy Levels in a Cubic Crystals.- Energy Band Models Based on Symmetry.- Spin–Orbit Interaction in Solids and Double Groups.- Application of Double Groups to Energy Bands with Spin.- Other Symmetries.- Time Reversal Symmetry.- Permutation Groups and Many-Electron States.- Symmetry Properties of Tensors.

    1 in stock

    £56.99

  • Ordinary Differential Equations

    Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Ordinary Differential Equations

    1 in stock

    Book SynopsisFew books on Ordinary Differential Equations (ODEs) have the elegant geometric insight of this one, which puts emphasis on the qualitative and geometric properties of ODEs and their solutions, rather than on routine presentation of algorithms. From the reviews: "Professor Arnold has expanded his classic book to include new material on exponential growth, predator-prey, the pendulum, impulse response, symmetry groups and group actions, perturbation and bifurcation." --SIAM REVIEWTrade ReviewFrom the reviews: "Professor Arnold has expanded his classic book to include new material on exponential growth, predator-prey, the pendulum, impulse response, symmetry groups and group actions, perturbation and bifurcation … . The new edition is highly recommended as a general reference for the essential theory of ordinary differential equations and as a textbook for an introductory course for serious undergraduate or graduate students. … In the US system, it is an excellent text for an introductory graduate course." (Carmen Chicone, SIAM Review, Vol. 49 (2), 2007) "Vladimir Arnold’s is a master, not just of the technical realm of differential equations but of pedagogy and exposition as well. … The writing throughout is crisp and clear. … Arnold’s says that the book is based on a year-long sequence of lectures for second-year mathematics majors in Moscow. In the U.S., this material is probably most appropriate for advanced undergraduates or first-year graduate students." (William J. Satzer, MathDL, August, 2007)Table of ContentsBasic Concepts.- Basic Theorems.- Linear Systems.- Proofs of the Main Theorems.- Differential Equations on Manifolds.

    1 in stock

    £58.49

  • Bryce DeWitt's Lectures on Gravitation: Edited by Steven M. Christensen

    Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Bryce DeWitt's Lectures on Gravitation: Edited by Steven M. Christensen

    15 in stock

    Book SynopsisBryce DeWitt, a student of Nobel Laureate Julian Schwinger, was himself one of the towering figures in 20th century physics, particularly renowned for his seminal contributions to quantum field theory, numerical relativity and quantum gravity. In late 1971 DeWitt gave a course on gravitation at Stanford University, leaving almost 400 pages of detailed handwritten notes. Written with clarity and authority, and edited by his former student Steven Christensen, these timeless lecture notes, containing material or expositions not found in any other textbooks, are a gem to be discovered or re-discovered by anyone seriously interested in the study of gravitational physics.Trade ReviewFrom the reviews:“DeWitt’s lectures cover interesting and detailed material which is rarely found in other text books. It is a book for the advanced reader.” (Norbert Dragon, General Relativity and Gravitation, Vol. 44, 2012)Table of ContentsReview of the Uses of Invariants in Special Relativity.- Accelerated Motion in Special Relativity.- Realization of Continuous Groups.- Riemannian Manifolds.- The Free Particle Geodesics.- Weak Field Approximation. Newton`s Theory.- Ensembles of Particles.- Production of Gravitational Fields by Matter.- Conservation Laws.- Phenomenological Description of a Conservative Continuous Medium.- Solubility of the Einstein and Matter Equations.- Energy, Momentum and Stress in the Gravitational Field.- Measurement of Asymptotic Field.- The Electromagnetic Field.- Gravitational Waves.- Spinning Bodies.- Weak Field Gravitational Wave.- Stationary Spherically (or Rotationally) Symmetric Metric.- Kerr Metric Subcalculations.- Friedmann Cosmology.- Dynamical Equations and Diffeomorphisms.

    15 in stock

    £61.74

  • Lectures on Partial Differential Equations

    Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Lectures on Partial Differential Equations

    15 in stock

    Book SynopsisChoice Outstanding Title! (January 2006) This richly illustrated text covers the Cauchy and Neumann problems for the classical linear equations of mathematical physics. A large number of problems are sprinkled throughout the book, and a full set of problems from examinations given in Moscow are included at the end. Some of these problems are quite challenging! What makes the book unique is Arnold's particular talent at holding a topic up for examination from a new and fresh perspective. He likes to blow away the fog of generality that obscures so much mathematical writing and reveal the essentially simple intuitive ideas underlying the subject. No other mathematical writer does this quite so well as Arnold.Trade ReviewFrom the reviews of the German edition: "This book provides an introductory text (in German) to basic partial differential equations, based on the author's lectures at Moscow University. […] Most of the standard themes are treated (see list below), but some unusual topics are covered as well. For instance, in chapter 10 double layer potentials are considered, and chapters 11 and 13 deal (among others) with Maxwell's theorem on the multipole expansion of spherical functions. The style of the book is quite non-technical (it contains almost no estimates), taking a mainly geometric viewpoint. [...]" Markus Kunze, Zentralblatt für Mathematik 1076.35001 From the reviews: "[...] This excellent and stimulating textbook gives a beautiful first view on some basic aspects of the theory of partial differential equations and can be warmly recommended to any graduate student in mathematics and physics." M.Günther, Zeitschrift für Angewandte Analysis und Ihre Anwendungen, Vol. 24, Issue 4, 2005 "…..Arnold .. has long held a reputation as one of the world's leaders in dynamics and geometry. His Lectures survey big ideas; accordingly, he largely suppresses both the functional analytic formalism and the delicate estimates so characteristic of the subject. He takes the viewpoint that the most important PDEs arise in physics and the most important mathematical ideas contributing to their solution derive from physical principles. Amold concentrates on the simplest equations of a given type and shows how the key ideas play out. For example, he attacks the general theory of one first-order equation, first via wave-particle duality, then via Hamiltonian dynamics. .... The author's stature and the book's lucidity make this an essential acquisition for all College libraries. …." D.V.Feldman, CHOICE, January 2005 Vol. 42 No. 05 "... Professor Arnold's Lectures on Partial Differential Equations is an ambitious, intensely personal effort to reconnect the subject with some of its roots in modeling physical processes. He does so in a lively lecture-style format, resulting in a book that would complement almost any course in PDEs. ... As can be gleaned from the previous paragraph, we bouth found the book by V.I.Arnold most stimulating and thought provoking, leading to statements such as, "It has been years since I enjoyed a book so much" by RBG and "I cannot point to any other book in mathematics written with the same intensity" by EAT. ... ... what follows [...] is a beautiful book on PDEs, interwoven with the exposition of deep physical, geometrical, and topological insights that contribute to both the understanding and history of PDEs. Prof. Arnold's book ... connects with the roots of the field and brings in concepts from geometry, continuum mechanics, and analysis. It can be used together with any book on PDEs and students will welcome its directness and freshness. We know of no other book like it on the market and highly recommend it for individual reading and as an accompaniment to any course in PDEs. ..." R.B. Guenther, E.A.Thomann, SIAM Review, Vol. 47, No. 1, 2005 "This book contains the transcripts of twelve lectures on partial differential equations … . The presentation gives a vivid sense of what was actually said and discussed in the lecture course, and in this fashion the book differs markedly from many text books with similar titles. … The author uses physical intuition to derive the various mathematical theories, and is thus able to explain the ideas … in a fashion which is clear and helpful to both novice and expert." M. Groves, ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 85 (4), 2005 "[...] In brief, this book contains beautifully structured lectures on classical theory of linear partial differential equations of mathematical physics. Professor Arnold stresses the importance of physical intuitions and offers in his lecture a deep geometric insight into these equations. The book is highly recommended to anybody interested in partial differential equations as well as those involved in lecturing on these topics. I encourage readers of this book to take note of the Preface which contains very interesting comments on the role of Bourbaki's group in mathematics, a theme which resurfaces many times in these lectures." J.Chabrowski, Gazette, Australian Mathematical Society, Vol. 31, Issue 5, 2004 "... As a result the author has aimed to impart to students with pre-knowledge of only a basic kind (linear algebra, basic analysis, ordinary differential equations, ...) the essence of the theory and applications of the subject of partial differential equations. Of course the subject is fundamental in mathematics and in physics and the author is an evangelist for keeping the subject mainstream for mathematicians and for physicists. He has attempted, he writes, to adhere to the principle of minimal generality, according to which every idea should first be clearly understood in the simplest situation! This is successfully done, so that this book should prove attractive in length and in scope to its target readership. ... In this new excellent text are included a large number of interesting problems; at the end of the book there is a full set of problems from examinations given in Moscow. ..." F.H.Berkshire, Imperial College London, Contemporary Physics 2004, Vol. 45, Issue 6 "Like all Vladimir Arnold’s books, this one is full of geometric insight. Arnold illustrates every principle with a figure. This book aims to cover the most basic parts of the subject … . A large number of problems are sprinkled throughout the book, and a full set of problems from examinations given in Moscow are included at the end. Some of these problems are quite challenging!" L’Enseignement Mathematique, Vol. 50 (1-2), 2004 "Dieses Buch betont geometrische Einsicht und physikalische Intuition. Die Prinzipien werden an Bildern erläutert, und das Buch enthält mehr Text als Formeln und Sätze. […]. Neben einer großen Anzahl von Übungsaufgaben, die im Buch verstreut sind, finden sich interessante Prüfungsbeispiele der Moskauer Universität." J. Hertling, Internationale Mathematische Nachrichten, 2004, Issue 197, p. 47-48 "The book is based on a short course of lectures delivered to the third year mathematics students of the Independent University of Moscow … . The book can serve as a nonstandard, geometrically motivated introduction to PDEs for students … . It is, probably, worth mentioning that the introduction contains some general philosophical views of the author on the subject of PDEs and modern mathematics as a whole and will be of interest to a broad mathematical audience." (Victor Shubov, MathDL, January, 2001) "Like other books of Arnold, this is a very original introduction to the subject. It is … based on a course delivered to third-year students of mathematics. The aim of this book is to teach the fundamental ideas of partial differential equations and mathematical physics. … Not only students but also professional mathematicians from other fields of mathematics can learn the basic and simple ideas of partial differential equations from this unique book." (Tibor Krisztin, Acta Scientiarum Mathematicarum, Vol. 74, 2008)Table of Contents1. The General Theory for One First-Order Equation.- 2. The General Theory for One First-Order Equation (Continued).- 3. Huygens’ Principle in the Theory of Wave Propagation.- 4. The Vibrating String (d’Alembert’s Method).- 5. The Fourier Method (for the Vibrating String).- 6. The Theory of Oscillations. The Variational Principle.- 7. The Theory of Oscillations. The Variational Principle (Continued).- 8. Properties of Harmonic Functions.- 9. The Fundamental Solution for the Laplacian. Potentials.- 10. The Double-Layer Potential.- 11. Spherical Functions. Maxwell’s Theorem. The Removable Singularities Theorem.- 12. Boundary-Value Problems for Laplace’s Equation. Theory of Linear Equations and Systems.- A. The Topological Content of Maxwell’s Theorem on the Multifield Representation of Spherical Functions.- A.1. The Basic Spaces and Groups.- A.2. Some Theorems of Real Algebraic Geometry.- A.3. From Algebraic Geometry to Spherical Functions.- A.4. Explicit Formulas.- A.6. The History of Maxwell’s Theorem.- Literature.- B. Problems.- B.1. Material from the Seminars.- B.2. Written Examination Problems.

    15 in stock

    £52.24

  • Quantum Mechanics: Symbolism of Atomic Measurements

    Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Quantum Mechanics: Symbolism of Atomic Measurements

    15 in stock

    Book SynopsisA unique legacy, these lecture notes of Schwinger’s course held at the University of California at Los Angeles were carefully edited by his former collaborator Berthold-Georg Englert and constitute both a self-contained textbook on quantum mechanics and an indispensable source of reference on this fundamental subject by one of the foremost thinkers of twentieth century physics.Trade ReviewFrom the reviews: "Quantum Mechanics: Symbolism of Atomic Measurements is not just another textbook on quantum mechanics. Rather, it contains truly novel elements of both content and style. In particular, Schwinger begins his treatment not with de Broglie waves or the Schrödinger equation but rather with the measurement process. His idea is to derive, or at least make plausible, the formalism of state vectors, bras and kets, by reference to quantum measurements such as the Stern-Gerlach experiment. This [...] is simply the basis of a new way of teaching quantum mechanics. This opening chapter should be of interest to all scholars of quantum theory and might form a new topic of research for philosophers of quantum mechanics." (Contemporary Physics, 44/2, 2003) "There are dozen of excellent textbooks on the market. But this one really is different." (T. Kibble, The Times Higher Education Supplement, 2001) "The material covered is superficially similar to that of a typical graduate quantum mechanics course [...] However, each chapter has beautiful and unusual treatments of familiar topics. [...] This book would make an outstanding supplement and reference for a graduate quantum mechanics course. Theoretical physicists will delight in this wonderful book, which should be available in the library system of any institution with a research or graduate program in physics. Graduate students through professionals." (CHOICE, Dec. 2001) "The book is a tour-de-force. Once the groundwork is laid, he goes into subjects with the mathematical virtuosity for which he was famous – not advanced mathematics, but the incredible use of simple mathematics. … there are gems throughout the book. … it is a wonderful book for a professor to own, like Feyman’s lectures, because there is so much to learn from it. … The book was lovingly edited from some UCLA lecture notes, by Berthold-Georg Englert, a longtime student and assistant of Schwinger’s … ." (Daniel Greenberger, American Journal of Physics, Vol 71 (9), 2003) "Editor Englert has performed a service for physicists everywhere by making available this book, which is based on Schwinger’s unpublished UCLA lecture notes. … each chapter has beautiful and unusual treatments of familiar topics. … There are excellent problems at the end of each chapter. This book would make an outstanding supplement and reference for a graduate quantum mechanics course. Theoretical physicists will delight in this wonderful book, which should be available in the library system of any institution with a research or graduate program … ." (M. C. Ogilvie, CHOICE, December, 2001) "The book commences with an absorbing prologue in which Schwinger talks us through the development of quantum mechanic and quantum field theory in an easy conversational style. … The book is packed with exercises for the reader to attempt. … Anyone who works religiously through these exercises will acquire a thoroughly adequate command of quantum mechanics." (W. Cox, Mathematical Reviews, Issue 2002 h) "Quantum mechanics: Symbolism of Atomic Measurements is not just another textbook on quantum mechanics. Rather, it contains truly novel elements of both content and style. … This opening chapter should be of interest to all scholars of quantum theory and might form a new topic of research for philosophers of quantum mechanics. Throughout the text, new material is presented at a breathless pace. All the usual elements of the subject are there, but Schwinger’s presentation reveals surprises in even the most familiar of these." (S. M. Barnett, Contemporary Physics, Vol. 44 (2), 2003) "In the beginning, the editor has added an important material in the form of a prologue … . This is one of the best treatments of the philosophy of quantum mechanics, which I have come across. … One of the major features of the book is the incorporation of a large number of problems … . the contents of the problems are well integrated in the text and have become part of it. This has caused a rich and tight structure of the logical arguments." (S. S. Bhattacharyya, Indian Journal of Physics, Vol. 76B (3), 2002) "This unique textbook is based upon the lecture notes that Julian Schwinger wrote up for the students of the quantum mechanics course … . this book would probably make an ideal quantum mechanics reference … . There are a large number of problems included at the end of each chapter, which comprise an excellent resource for any lecturer … . this textbook is a unique resource, which provides an insight into the thoughts and deliberations of one of this century’s giants of quantum mechanics." (P. C. Dastoor, The Physicist, Vol. 38 (5), 2001) "There are dozens of excellent textbooks on the market. But this one really is different. … there is a carefully argued historical and philosophical prologue that sets the scene, centred on the two key features of quantum physics – atomicity and its probabilistic character; this alone would make the book worthwhile. The emphasis on discrete variables is a very modern approach… . To a theoretical physicist, this book is a delight and a wonderful resource. … This is a book I shall treasure." (Tom Kibble, Times Higher Education Supplement, September, 2001)Table of ContentsPrologue.- A. Fall Quarter: Quantum Kinematics.- 1 Measurement Algebra.- 2 Continuous q, p Degree of Freedom.- 3 Angular Momentum.- 4 Galilean Invariance.- B. Winter Quarter: Quantum Dynamics.- 5 Quantum Action Principle.- 6 Elementary Applications.- 7 Harmonic Oscillators.- 8 Hydrogenic Atoms.- C. Spring Quarter: Interacting Particles.- 9 Two-Particle Coulomb Problem.- 10 Identical Particles.- 11 Many-Electron Atoms.- 12 Electromagnetic Radiation.

    15 in stock

    £85.49

  • Theory of Operator Algebras I

    Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Theory of Operator Algebras I

    15 in stock

    Book SynopsisSince its inception by von Neumann 70 years ago, the theory of operator algebras has become a rapidly developing area of importance for the understanding of many areas of mathematics and theoretical physics. Accessible to the non-specialist, this first part of a three-volume treatise provides a clear, carefully written survey that emphasizes the theory's analytical and topological aspects.Trade Review"... These three bulky volumes [EMS 124, 125, 127], written by one of the most prominent researchers of the area, provide an introduction to this repidly developing theory. ... These books can be warmly recommended to every graduate student who wants to become acquainted with this exciting branch of matematics. Furthermore, they should be on the bookshelf of every researcher of the area." (László Kérchy, Acta Scientiarum Mathematicarum, Vol. 69, 2003)Table of ContentsFundaments of Banach Algebras and C*-Algebras.- Topologies and Density Theorems in Operator Algebras.- Conjugate Spaces.- Tensor Products of Operator Algebras and Direct Integrals.- Types of von Neumann Algebras and Traces.- Appendix: Polish Spaces and Standard Borel Spaces.

    15 in stock

    £151.99

  • Quantum Mathematical Physics: Atoms, Molecules and Large Systems

    Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Quantum Mathematical Physics: Atoms, Molecules and Large Systems

    15 in stock

    Book SynopsisThis book is a new edition of Volumes 3 and 4 of Walter Thirring’s famous textbook on mathematical physics. The first part is devoted to quantum mechanics and especially to its applications to scattering theory, atoms and molecules. The second part deals with quantum statistical mechanics examining fundamental concepts like entropy, ergodicity and thermodynamic functions.Trade ReviewFrom the reviews of the second edition: "Just as the general theory of relativity leads to many new mathematical advances and applications, the same is true of quantum mechanics. It is these mathematical advances that are the topic of this extensive volume, a volume which also delineates how these advances made possible the difficult transition from understanding hydrogen to understanding complex atoms, molecules, and ‘large systems’. As such this volume will serve as an excellent source book for the mathematical basis of the many recent advances in quantum mechanics. It will also serve as an excellent text book for an advanced course in either quantum physics or applied mathematics." (Physicalia, 25/3, 2003) "This work is written uncompromisingly for the mathematical physicist … . Thirring writes concisely but with a clarity that makes the book easy to read. … There are extensive bibliographies, with references mostly to articles in journals … . There are copious problems and–even better-all the solutions. … the volume would make a valuable addition to the library of … a mathematical physicist." (Prof. A.I. Solomon, Contemporary Physics, Vol. 46 (4), 2005) "This volume will serve as an excellent source book for the mathematical basis of the many recent advances in quantum mechanics. It will also serve as an excellent textbook … . Each chapter is chock full of mathematical derivations and proofs but perhaps the most interesting part of each proof is the following section entitled ‘Remarks’ sections which are full of interesting details, ideas, drawbacks, comments, and references. … As is usually the case with Springer-Verlag, this book has been beautifully produced … ." (Fernande Grandjean and Gary J. Long, Physicalia, Vol. 25 (3), 2003)Table of ContentsI Quantum Mechanics of Atoms and Molecules.- 1 Introduction.- 2 The Mathematical Formulation of Quantum Mechanics.- 3 Quantum Dynamics.- 4 Atomic Systems.- II Quantum Mechanics of Large Systems.- 1 Systems with Many Particles.- 2 Thermostatics.- 3 Thermodynamics.- 4 Physical Systems.- Bibliography to Part I.- Bibliography to Part II.

    15 in stock

    £104.49

  • Spectral Methods in Fluid Dynamics

    Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Spectral Methods in Fluid Dynamics

    15 in stock

    Book SynopsisThis is a book about spectral methods for partial differential equations: when to use them, how to implement them, and what can be learned from their of spectral methods has evolved rigorous theory. The computational side vigorously since the early 1970s, especially in computationally intensive of the more spectacular applications are applications in fluid dynamics. Some of the power of these discussed here, first in general terms as examples of the methods have been methods and later in great detail after the specifics covered. This book pays special attention to those algorithmic details which are essential to successful implementation of spectral methods. The focus is on algorithms for fluid dynamical problems in transition, turbulence, and aero­ dynamics. This book does not address specific applications in meteorology, partly because of the lack of experience of the authors in this field and partly because of the coverage provided by Haltiner and Williams (1980). The success of spectral methods in practical computations has led to an increasing interest in their theoretical aspects, especially since the mid-1970s. Although the theory does not yet cover the complete spectrum of applications, the analytical techniques which have been developed in recent years have facilitated the examination of an increasing number of problems of practical interest. In this book we present a unified theory of the mathematical analysis of spectral methods and apply it to many of the algorithms in current use.Table of Contents1. Introduction.- 1.1. Historical Background.- 1.2. Some Examples of Spectral Methods.- 1.2.1. A Fourier Galerkin Method for the Wave Equation.- 1.2.2. A Chebyshev Collocation Method for the Heat Equation.- 1.2.3. A Legendre Tau Method for the Poisson Equation.- 1.2.4. Basic Aspects of Galerkin, Tau and Collocation Methods.- 1.3. The Equations of Fluid Dynamics.- 1.3.1. Compressible Navier-Stokes.- 1.3.2. Compressible Euler.- 1.3.3. Compressible Potential.- 1.3.4. Incompressible Flow.- 1.3.5. Boundary Layer.- 1.4. Spectral Accuracy for a Two-Dimensional Fluid Calculation.- 1.5. Three-Dimensional Applications in Fluids.- 2. Spectral Approximation.- 2.1. The Fourier System.- 2.1.1. The Continuous Fourier Expansion.- 2.1.2. The Discrete Fourier Expansion.- 2.1.3. Differentiation.- 2.1.4. The Gibbs Phenomenon.- 2.2. Orthogonal Polynomials in ( — 1, 1).- 2.2.1. Sturm—Liouville Problems.- 2.2.2. Orthogonal Systems of Polynomials.- 2.2.3. Gauss-Type Quadratures and Discrete Polynomial Transforms.- 2.3. Legendre Polynomials.- 2.3.1. Basic Formulas.- 2.3.2. Differentiation.- 2.4. Chebyshev Polynomials.- 2.4.1. Basic Formulas.- 2.4.2. Differentiation.- 2.5. Generalizations.- 2.5.1. Jacobi Polynomials.- 2.5.2. Mapping.- 2.5.3. Semi-Infinite Intervals.- 2.5.4. Infinite Intervals.- 3. Fundamentals of Spectral Methods for PDEs.- 3.1. Spectral Projection of the Burgers Equation.- 3.1.1. Fourier Galerkin.- 3.1.2. Fourier Collocation.- 3.1.3. Chebyshev Tau.- 3.1.4. Chebyshev Collocation.- 3.2. Convolution Sums.- 3.2.1. Pseudospectral Transform Methods.- 3 2 2 Aliasing Removal by Padding or Truncation.- 3.2.3. Aliasing Removal by Phase Shifts.- 3.2.4. Convolution Sums in Chebyshev Methods.- 3.2.5. Relation Between Collocation and Pseudospectral Methods.- 3.3. Boundary Conditions.- 3.4. Coordinate Singularities.- 3.4.1. Polar Coordinates.- 3.4.2. Spherical Polar Coordinates.- 3.5. Two-Dimensional Mapping.- 4. Temporal Discretization.- 4.1. Introduction.- 4.2. The Eigenvalues of Basic Spectral Operators.- 4.2.1. The First-Derivative Operator.- 4.2.2. The Second-Derivative Operator.- 4.3. Some Standard Schemes.- 4.3.1. Multistep Schemes.- 4.3.2. Runge—Kutta Methods.- 4.4. Special Purpose Schemes.- 4.4.1. High Resolution Temporal Schemes.- 4.4.2. Special Integration Techniques.- 4.4.3. Lerat Schemes.- 4.5. Conservation Forms.- 4.6. Aliasing.- 5. Solution Techniques for Implicit Spectral Equations.- 5.1. Direct Methods.- 5.1.1. Fourier Approximations.- 5.1.2. Chebyshev Tau Approximations.- 5.1.3. Schur-Decomposition and Matrix-Diagonalization.- 5.2. Fundamentals of Iterative Methods.- 5.2.1. Richardson Iteration.- 5.2.2. Preconditioning.- 5.2.3. Non-Periodic Problems.- 5.2.4. Finite-Element Preconditioning.- 5.3. Conventional Iterative Methods.- 5.3.1. Descent Methods for Symmetric, Positive-Definite Systems.- 5.3.2. Descent Methods for Non-Symmetric Problems.- 5.3.3. Chebyshev Acceleration.- 5.4. Multidimensional Preconditioning.- 5.4.1. Finite-Difference Solvers.- 5.4.2. Modified Finite-Difference Preconditioners.- 5.5. Spectral Multigrid Methods.- 5.5.1. Model Problem Discussion.- 5.5.2. Two-Dimensional Problems.- 5.5.3. Interpolation Operators.- 5.5.4. Coarse-Grid Operators.- 5.5.5. Relaxation Schemes.- 5.6. A Semi-Implicit Method for the Navier—Stokes Equations.- 6. Simple Incompressible Flows.- 6.1. Burgers Equation.- 6.2. Shear Flow Past a Circle.- 6.3. Boundary-Layer Flows.- 6.4. Linear Stability.- 7. Some Algorithms for Unsteady Navier—Stokes Equations.- 7.1. Introduction.- 7.2. Homogeneous Flows.- 7.2.1. A Spectral Galerkin Solution Technique.- 7.2.2. Treatment of the Nonlinear Terms.- 7.2.3. Refinements.- 7.2.4. Pseudospectral and Collocation Methods.- 7.3. Inhomogeneous Flows.- 7.3.1. Coupled Methods.- 7.3.2. Splitting Methods.- 7.3.3. Galerkin Methods.- 7.3.4. Other Confined Flows.- 7.3.5. Unbounded Flows.- 7.3.6. Aliasing in Transition Calculations.- 7.4. Flows with Multiple Inhomogeneous Directions.- 7.4.1. Choice of Mesh.- 7.4.2. Coupled Methods.- 7.4.3. Splitting Methods.- 7.4.4. Other Methods.- 7.5. Mixed Spectral/Finite-Difference Methods.- 8. Compressible Flow.- 8.1. Introduction.- 8.2. Boundary Conditions for Hyperbolic Problems.- 8.3. Basic Results for Scalar Nonsmooth Problems.- 8.4. Homogeneous Turbulence.- 8.5. Shock-Capturing.- 8.5.1. Potential Flow.- 8.5.2. Ringleb Flow.- 8.5.3. Astrophysical Nozzle.- 8.6. Shock-Fitting.- 8.7. Reacting Flows.- 9. Global Approximation Results.- 9.1. Fourier Approximation.- 9.1.1. Inverse Inequalities for Trigonometric Polynomials.- 9.1.2. Estimates for the Truncation and Best Approximation Errors.- 9.1.3. Estimates for the Interpolation Error.- 9.2. Sturm—Liouville Expansions.- 9.2.1. Regular Sturm—Liouville Problems.- 9.2.2. Singular Sturm—Liouville Problems.- 9.3. Discrete Norms.- 9.4. Legendre Approximations.- 9.4.1. Inverse Inequalities for Algebraic Polynomials.- 9.4.2. Estimates for the Truncation and Best Approximation Errors.- 9.4.3. Estimates for the Interpolation Error.- 9.5. Chebyshev Approximations.- 9.5.1. Inverse Inequalities for Polynomials.- 9.5.2. Estimates for the Truncation and Best Approximation Errors.- 9.5.3. Estimates for the Interpolation Error.- 9.5.4. Proofs of Some Approximation Results.- 9.6. Other Polynomial Approximations.- 9.6.1. Jacobi Polynomials.- 9.6.2. Laguerre and Hermite Polynomials.- 9.7. Approximation Results in Several Dimensions.- 9.7.1. Fourier Approximations.- 9.7.2. Legendre Approximations.- 9.7.3. Chebyshev Approximations.- 9.7.4. Blended Fourier and Chebyshev Approximations.- 10. Theory of Stability and Convergence for Spectral Methods.- 10.1. The Three Examples Revisited.- 10.1.1. A Fourier Galerkin Method for the Wave Equation.- 10.1.2. A Chebyshev Collocation Method for the Heat Equation.- 10.1.3. A Legendre Tau Method for the Poisson Equation.- 10.2. Towards a General Theory.- 10.3. General Formulation of Spectral Approximations to Linear Steady Problems.- 10.4. Galerkin, Collocation and Tau Methods.- 10.4.1. Galerkin Methods.- 10.4.2. Tau Methods.- 10.4.3. Collocation Methods.- 10.5. General Formulation of Spectral Approximations to Linear Evolution Equations.- 10.5.1. Conditions for Stability and Convergence: The Parabolic Case.- 10.5.2. Conditions for Stability and Convergence: The Hyperbolic Case.- 10.6. The Error Equation.- 11. Steady, Smooth Problems.- 11.1. The Poisson Equation.- 11.1.1. Legendre Methods.- 11.1.2. Chebyshev Methods.- 11.1.3. Other Boundary Value Problems.- 11.2. Advection-Diffusion Equation.- 11.2.1. Linear Advection-Diffusion Equation.- 11.2.2. Steady Burgers Equation.- 11.3. Navier—Stokes Equations.- 11.3.1. Compatibility Conditions Between Velocity and Pressure.- 11.3.2. Direct Discretization of the Continuity Equation: The “inf-sup” Condition.- 11.3.3. Discretizations of the Continuity Equation by an Influence-Matrix Technique: The Kleiser—Schumann Method.- 11.3.4. Navier—Stokes Equations in Streamfunction Formulation.- 11.4. The Eigenvalues of Some Spectral Operators.- 11.4.1. The Discrete Eigenvalues for Lu = ? uxx.- 11.4.2. The Discrete Eigenvalues for Lu = ? vuxx + bux.- 11.4.3. The Discrete Eigenvalues for Lu = ux.- 12. Transient, Smooth Problems.- 12.1. Linear Hyperbolic Equations.- 12.1.1. Periodic Boundary Conditions.- 12.1.2. Non-Periodic Boundary Conditions.- 12.1.3. Hyperbolic Systems.- 12.1.4. Spectral Accuracy for Non-Smooth Solutions.- 12.2. Heat Equation.- 12.2.1. Semi-Discrete Approximation.- 12.2.2. Fully Discrete Approximation.- 12.3. Advection-Diffusion Equation.- 12.3.1. Semi-Discrete Approximation.- 12.3.2. Fully Discrete Approximation.- 13. Domain Decomposition Methods.- 13.1. Introduction.- 13.2. Patching Methods.- 13.2.1. Notation.- 13.2.2. Discretization.- 13.2.3. Solution Techniques.- 13.2.4. Examples.- 13.3. Variational Methods.- 13.3.1. Formulation.- 13.3.2. The Spectral-Element Method.- 13.4. The Alternating Schwarz Method.- 13.5. Mathematical Aspects of Domain Decomposition Methods.- 13.5.1. Patching Methods.- 13.5.2. Equivalence Between Patching and Variational Methods.- 13.6. Some Stability and Convergence Results.- 13.6.1. Patching Methods.- 13.6.2. Variational Methods.- Appendices.- A. Basic Mathematical Concepts.- B. Fast Fourier Transforms.- C. Jacobi—Gauss—Lobatto Roots.- References.

    15 in stock

    £71.24

© 2026 Book Curl

    • American Express
    • Apple Pay
    • Diners Club
    • Discover
    • Google Pay
    • Maestro
    • Mastercard
    • PayPal
    • Shop Pay
    • Union Pay
    • Visa

    Login

    Forgot your password?

    Don't have an account yet?
    Create account