Description

Book Synopsis
Soliton theory, the theory of nonlinear waves in lattices composed of particles interacting by nonlinear forces, is treated rigorously in this book. The presentation is coherent and self-contained, starting with pioneering work and extending to the most recent advances in the field. Special attention is focused on exact methods of solution of nonlinear problems and on the exact mathematical treatment of nonlinear lattice vibrations. This new edition updates the material to take account of important new advances.

Table of Contents
1. Introduction.- 1.1 The Fermi-Pasta-Ulam Problem.- 1.2 Hénon-Heiles Calculation.- 1.3 Discovery of Solitons.- 1.4 Dual Systems.- 2. The Lattice with Exponential Interaction.- 2.1 Finding of an Integrable Lattice.- 2.2 The Lattice with Exponential Interaction.- 2.3 Periodic Solutions.- 2.4 Solitary Waves.- 2.5 Two-Soliton Solutions.- 2.6 Hard-Sphere Limit.- 2.7 Continuum Approximation and Recurrence Time.- 2.8 Applications and Extensions.- 2.9 Poincaré Mapping.- 2.10 Conserved Quantities.- 3. The Spectrum and Construction of Solutions.- 3.1 Matrix Formalism.- 3.2 Infinite Lattice.- 3.3 Scattering and Bound States.- 3.4 The Gel’fand-Levitan Equation.- 3.5 The Initial Value Problem.- 3.6 Soliton Solutions.- 3.7 The Relationship Between the Conserved Quantities and the Transmission Coefficient.- 3.8 Extensions of the Equations of Motion and the Kac-Moerbeke System.- 3.9 The Bäcklund Transformation.- 3.10 A Finite Lattice.- 3.11 Continuum Approximation.- 4. Periodic Systems.- 4.1 Discrete Hill’s Equation.- 4.2 Auxiliary Spectrum.- 4.3 Relation Between ?j (k) and ?j (0).- 4.4 Related Integrals on the Riemann Surface.- 4.5 Solution to the Inverse Problem.- 4.6 Time Evolution.- 4.7 A Simple Example (A Cnoidal Wave).- 4.8 Periodic System of Three-Particles.- 5. Application of the Hamilton-Jacobi Theory.- 5.1 Canonically Conjugate Variables.- 5.2 Action Variables.- 6. Recent Advances in the Theory of Nonlinear Lattices.- 6.1 The KdV Equation as a Limit of the TL Equation.- 6.2 Interacting Soliton Equations.- 6.3 Integrability.- 6.4 Generalization of the TL Equation.- 6.5 Two-Dimensional TL.- 6.6 Bethe Ansatz.- 6.7 The Thermodynamic Limit.- 6.8 Hierarchy of Nonlinear Equations.- 6.9 Some Numerical Results.- Appendices.- Simplified Answers to Main Problems.- References.- List of Authors Cited in Text.

Theory of Nonlinear Lattices

Product form

£42.74

Includes FREE delivery

RRP £44.99 – you save £2.25 (5%)

Order before 4pm tomorrow for delivery by Fri 23 Jan 2026.

A Paperback by Morikazu Toda

15 in stock


    View other formats and editions of Theory of Nonlinear Lattices by Morikazu Toda

    Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
    Publication Date: 14/11/1988
    ISBN13: 9783540183273, 978-3540183273
    ISBN10: 3540183272

    Description

    Book Synopsis
    Soliton theory, the theory of nonlinear waves in lattices composed of particles interacting by nonlinear forces, is treated rigorously in this book. The presentation is coherent and self-contained, starting with pioneering work and extending to the most recent advances in the field. Special attention is focused on exact methods of solution of nonlinear problems and on the exact mathematical treatment of nonlinear lattice vibrations. This new edition updates the material to take account of important new advances.

    Table of Contents
    1. Introduction.- 1.1 The Fermi-Pasta-Ulam Problem.- 1.2 Hénon-Heiles Calculation.- 1.3 Discovery of Solitons.- 1.4 Dual Systems.- 2. The Lattice with Exponential Interaction.- 2.1 Finding of an Integrable Lattice.- 2.2 The Lattice with Exponential Interaction.- 2.3 Periodic Solutions.- 2.4 Solitary Waves.- 2.5 Two-Soliton Solutions.- 2.6 Hard-Sphere Limit.- 2.7 Continuum Approximation and Recurrence Time.- 2.8 Applications and Extensions.- 2.9 Poincaré Mapping.- 2.10 Conserved Quantities.- 3. The Spectrum and Construction of Solutions.- 3.1 Matrix Formalism.- 3.2 Infinite Lattice.- 3.3 Scattering and Bound States.- 3.4 The Gel’fand-Levitan Equation.- 3.5 The Initial Value Problem.- 3.6 Soliton Solutions.- 3.7 The Relationship Between the Conserved Quantities and the Transmission Coefficient.- 3.8 Extensions of the Equations of Motion and the Kac-Moerbeke System.- 3.9 The Bäcklund Transformation.- 3.10 A Finite Lattice.- 3.11 Continuum Approximation.- 4. Periodic Systems.- 4.1 Discrete Hill’s Equation.- 4.2 Auxiliary Spectrum.- 4.3 Relation Between ?j (k) and ?j (0).- 4.4 Related Integrals on the Riemann Surface.- 4.5 Solution to the Inverse Problem.- 4.6 Time Evolution.- 4.7 A Simple Example (A Cnoidal Wave).- 4.8 Periodic System of Three-Particles.- 5. Application of the Hamilton-Jacobi Theory.- 5.1 Canonically Conjugate Variables.- 5.2 Action Variables.- 6. Recent Advances in the Theory of Nonlinear Lattices.- 6.1 The KdV Equation as a Limit of the TL Equation.- 6.2 Interacting Soliton Equations.- 6.3 Integrability.- 6.4 Generalization of the TL Equation.- 6.5 Two-Dimensional TL.- 6.6 Bethe Ansatz.- 6.7 The Thermodynamic Limit.- 6.8 Hierarchy of Nonlinear Equations.- 6.9 Some Numerical Results.- Appendices.- Simplified Answers to Main Problems.- References.- List of Authors Cited in Text.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account