Mathematical and statistical software Books
Springer International Publishing AG Applied Statistics for Business and Management
Book SynopsisThis book illustrates the capabilities of Microsoft Excel to teach applied statistics effectively. It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical statistical problems in industry. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in statistics courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past.The 2nd edition of Applied Business Statistics for Business and Management capitalizes on these improvements by teaching students and practitioners how to apply Excel to statistical techniques necessary in their courses and workplace. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand business problems. Practice problems are provided at the end of each chapter with their solutions.Table of ContentsStatistics and Data.- Summarizing Data.- Descriptive Statistics and Graphing.- Normal World.- Survey Design.- Sampling.- Inference.- Probability.- Correlation.- Simple Linear Regression.- Multiple Regression.- Significance Tests.- Non Linear Regression.- Survey Reports.
£89.99
Springer International Publishing AG Spatio-temporal Trend Analysis of Rainfall using
Book SynopsisThis book aims to provide an advanced R software approach that can carry out rainfall trend analysis using Mann-Kendall and Sen’s slope estimator tests. The research study follows a systematic approach while utilizing R software as it can greatly facilitate the analysis of rainfall trends. About 30 stations located in the study area and 41 to 50 years’ time series were selected for the purpose of analysis. The data for the research was collected from the State Water Data Centre (SWDC) in Gujarat, Indian Meteorological Department (IMD) in Pune, DAAC (NASA), and ESRI. Cluster analysis has been performed to analyze the variability of the mean rainfall. The stations have been divided into 2 clusters with 17 and 13 stations in each cluster which significantly differ from each other. This book is aimed at researchers, scientists and government organizations working in the field of climate change. Table of ContentsChapter 1. Introduction.- Chapter 2. Literature survey.- Chapter 3. Study area and data collection.- Chapter 4. Methodology.- Chapter 5. Computations.- Chapter 6. Results and discussion.- Chapter 7. Conclusion.
£37.99
De Gruyter Computational Technologies: Advanced Topics
Book SynopsisThis book discusses questions of numerical solutions of applied problems on parallel computing systems. Nowadays, engineering and scientific computations are carried out on parallel computing systems, which provide parallel data processing on a few computing nodes. In the development of up-to-date applied software, this feature of computers must be taken into account for the maximum efficient usage of their resources. In constructing computational algorithms, we should separate relatively independent subproblems in order to solve them on a single computing node.
£40.95
De Gruyter Bootstrapping: An Integrated Approach with Python
Book SynopsisBootstrapping is a conceptually simple statistical technique to increase the quality of estimates, conduct robustness checks and compute standard errors for virtually any statistic. This book provides an intelligible and compact introduction for students, scientists and practitioners. It not only gives a clear explanation of the underlying concepts but also demonstrates the application of bootstrapping using Python and Stata.
£23.40
De Gruyter Differential Geometry, Differential Equations, and Special Functions
Book SynopsisThis volume, the third of a series, consists of applications of Mathematica® to a potpourri of more advanced topics. These include differential geometry of curves and surfaces, differential equations and special functions and complex analysis. Some of the newest features of Mathematica® are demonstrated and explained and some problems with the current implementation pointed out and possible future improvements suggested. Contains a large number of worked out examples. Explains some of the most recent mathematical features of Mathematica®. Considers topics discussed rarely or not at all in the context of Mathematica®. Can be used to supplement several different courses. Based on actual university courses.
£56.52
Springer International Publishing AG Applied Statistical Methods in Agriculture,
Book SynopsisThis textbook teaches crucial statistical methods to answer research questions using a unique range of statistical software programs, including MINITAB and R. This textbook is developed for undergraduate students in agriculture, nursing, biology and biomedical research. Graduate students will also find it to be a useful way to refresh their statistics skills and to reference software options. The unique combination of examples is approached using MINITAB and R for their individual strengths. Subjects covered include among others data description, probability distributions, experimental design, regression analysis, randomized design and biological assay. Unlike other biostatistics textbooks, this text also includes outliers, influential observations in regression and an introduction to survival analysis. Material is taken from the author's extensive teaching and research in Africa, USA and the UK. Sample problems, references and electronic supplementary material accompany each chapter.Table of ContentsTable of Contents attached as well. Introduction.- Frequency Distributions.- Numerical Description of Data.- Probability and Probability Distributions.- Estimation and Hypothesis Testing.- Regression Analysis.- Categorical Data Analysis.- Experimental Design.- The Completely Randomized Design.- The Randomized Complete Block Design.- Multiple Blocking Designs.- Analysis of Covariance.- Factorial Treatments Designs.- The Split-Plot Design.- Incomplete Block Design.- Quantal-Bioassay.- Repeated Measures Design.- Survival Analysis.
£80.99
Springer International Publishing AG Practical LaTeX
Book SynopsisPractical LaTeX covers the material that is needed for everyday LaTeX documents. This accessible manual is friendly, easy to read, and is designed to be as portable as LaTeX itself.A short chapter, Mission Impossible, introduces LaTeX documents and presentations. Read these 30 pages; you then should be able to compose your own work in LaTeX. The remainder of the book delves deeper into the topics outlined in Mission Impossible while avoiding technical subjects. Chapters on presentations and illustrations are a highlight, as is the introduction of LaTeX on an iPad.Students, faculty, and professionals in the worlds of mathematics and technology will benefit greatly from this new, practical introduction to LaTeX. George Grätzer, author of More Math into LaTeX (now in its 4th edition) and First Steps in LaTeX, has been a LaTeX guru for over a quarter of century.From the reviews of More Math into LaTeX:``There are several LaTeX guides, but this one wins hands down for the elegance of its approach and breadth of coverage.''—Amazon.com, Best of 2000, Editors Choice``A very helpful and useful tool for all scientists and engineers.''—Review of Astronomical Tools``A novice reader will be able to learn the most essential features of LaTeX sufficient to begin typesetting papers within a few hours of time…An experienced TeX user, on the other hand, will find a systematic and detailed discussion of all LaTeX features, supporting software, and many other advanced technical issues.''—Reports on Mathematical PhysicsTrade ReviewFrom the book reviews:“I’ve been looking for a friendly and accessible manual that I could recommend to students as a way to get over the initial learning curve, and this book seemed like it would fit the bill. … The emphasis is on skills necessary for writing and presenting in an academic setting, and in particular it is geared toward students in math, physics, and numerate disciplines. … Overall, it is a well-presented volume and pleasant to read.” (Sara Kalvala, Computing Reviews, December, 2014)“The book starts with a quick survey, and then explores a bit deeper how to typeset the text, the use of environments, (mathematical) formulas and arrays, and finally the global structure of the document (top matter, body, back matter). … this book might be interesting to read, not only for the beginner, but also for the experienced LaTeX user.” (Adhemar Bultheel, euro-math-soc.eu, December, 2014)“If I really, really have to learn LaTeX, this is the book I’ll go to in a flash. … Even at a first glance or at first browse it’s abundantly clear that this is a very good book for a TeXtyro like me … . It’s eminently practical and therefore eminently worthwhile.” (Michael Berg, MAA Reviews, November, 2014)Table of ContentsIntroduction.- 1. Getting LaTex.- 2. Typing Text.- 3. Text environments.- 4. Typing Formulas.- 5. Displayed Formulas.- 6. Articles.- 7. Making Presentations.- 8. Customization.- 9. The Symbol Tables.- Index.
£27.99
Springer International Publishing AG Regression Modeling Strategies: With Applications
Book SynopsisThis highly anticipated second edition features new chapters and sections, 225 new references, and comprehensive R software. In keeping with the previous edition, this book is about the art and science of data analysis and predictive modelling, which entails choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasises problem solving strategies that address the many issues arising when developing multi-variable models using real data and not standard textbook examples. Regression Modelling Strategies presents full-scale case studies of non-trivial data-sets instead of over-simplified illustrations of each method. These case studies use freely available R functions that make the multiple imputation, model building, validation and interpretation tasks described in the book relatively easy to do. Most of the methods in this text apply to all regression models, but special emphasis is given to multiple regression using generalised least squares for longitudinal data, the binary logistic model, models for ordinal responses, parametric survival regression models and the Cox semi parametric survival model. A new emphasis is given to the robust analysis of continuous dependent variables using ordinal regression.As in the first edition, this text is intended for Masters' or PhD. level graduate students who have had a general introductory probability and statistics course and who are well versed in ordinary multiple regression and intermediate algebra. The book will also serve as a reference for data analysts and statistical methodologists, as it contains an up-to-date survey and bibliography of modern statistical modelling techniques. Trade Review“The aim and scope of this edition to provide graduate students and professional and early career researchers with insights, understandings and working knowledge of regression modelling. … . The book is sequentially organized and well structured and many chapters are self-contained. It includes many useful topics and techniques for graduate .students and researchers alike. This book can be used as a textbook and equally as a reference book.” (Technometrics, Vol. 58 (2), February, 2016)Table of ContentsIntroduction.- General Aspects of Fitting Regression Models.- Missing Data.- Multivariable Modeling Strategies.- Describing, Resampling, Validating and Simplifying the Model.- R Software.- Modeling Longitudinal Responses using Generalized Least Squares.- Case Study in Data Reduction.- Overview of Maximum Likelihood Estimation.- Binary Logistic Regression.- Binary Logistic Regression Case Study 1.- Logistic Model Case Study 2: Survival of Titanic Passengers.- Ordinal Logistic Regression.- Case Study in Ordinal Regression, Data Reduction and Penalization.- Regression Models for Continuous Y and Case Study in Ordinal Regression.- Transform-Both-Sides Regression.- Introduction to Survival Analysis.- Parametric Survival Models.- Case Study in Parametric Survival Modeling and Model Approximation.- Cox Proportional Hazards Regression Model.- Case Study in Cox Regression.- Appendix.
£89.99
Springer International Publishing AG More Math Into LaTeX
Book SynopsisFor over two decades, this comprehensive manual has been the standard introduction and complete reference for writing articles and books containing mathematical formulas. If the reader requires a streamlined approach to learning LaTeX for composing everyday documents, Grätzer’s © 2014 Practical LaTeX may also be a good choice.In this carefully revised fifth edition, the Short Course has been brought up to date and reflects a modern and practical approach to LaTeX usage. New chapters have been added on illustrations and how to use LaTeX on an iPad.Key features: An example-based, visual approach and a gentle introduction with the Short Course A detailed exposition of multiline math formulas with a Visual Guide A unified approach to TeX, LaTeX, and the AMS enhancements A quick introduction to creating presentations with formulas From earlier reviews:Grätzer’s book is a solution. —European Mathematical Society NewsletterThere are several LaTeX guides, but this one wins hands down for the elegance of its approach and breadth of coverage.—Amazon.com, Best of 2000, Editor’s choiceA novice reader will be able to learn the most essential features of LaTeX sufficient to begin typesetting papers within a few hours of time… An experienced TeX user, on the other hand, will find a systematic and detailed discussion of LaTeX features.—Report on Mathematical PhysicsA very helpful and useful tool for all scientists and engineers. —Review of Astronomical ToolsTrade Review“George Grätzer’s books have been nearly as successful and enduring as the amazing software they are devoted to. This well known manual provides a reliable and thorough introduction and comprehensive reference for everyone who does not want to depend on various resources available online.” (C. Baxa, Monatshefte für Mathematik, Vol. 192 (2), 2020)Table of ContentsForeword.-Preface to the fifth Edition.-Introduction.-I. Mission Impossible.-1. Short course.-2. And a few more things....-II. Text and Math.-3. Typing text.-4. Text environments.-5. Typing math.-6. More math.-7. Multiline math displays.-III. Document Structure.-8. Documents.-9. The AMS article document class.-10. Legacy documents.-IV. PDF Documents.-11. The PDF file format.-12. Presentations.-13. Illustrations.-V. Customization.-14. Commands and environments.-VI. Long Documents.-15. BibTeX.-16. MakeIndex.-17. Books in LaTeX.-A. Math symbol tables.-B. Text symbol tables.-C. Some background.-D. LaTeX and the internet.-E. Postscript fonts.-F. LaTeX localized.-G. LaTeX on the iPad.-H. Final thoughts.-Bibliography.-Index.
£61.74
Springer International Publishing AG Data Wrangling with R
Book SynopsisThis guide for practicing statisticians, data scientists, and R users and programmers will teach the essentials of preprocessing: data leveraging the R programming language to easily and quickly turn noisy data into usable pieces of information. Data wrangling, which is also commonly referred to as data munging, transformation, manipulation, janitor work, etc., can be a painstakingly laborious process. Roughly 80% of data analysis is spent on cleaning and preparing data; however, being a prerequisite to the rest of the data analysis workflow (visualization, analysis, reporting), it is essential that one become fluent and efficient in data wrangling techniques.This book will guide the user through the data wrangling process via a step-by-step tutorial approach and provide a solid foundation for working with data in R. The author's goal is to teach the user how to easily wrangle data in order to spend more time on understanding the content of the data. By the end of the book, the user will have learned: How to work with different types of data such as numerics, characters, regular expressions, factors, and dates The difference between different data structures and how to create, add additional components to, and subset each data structure How to acquire and parse data from locations previously inaccessible How to develop functions and use loop control structures to reduce code redundancy How to use pipe operators to simplify code and make it more readable How to reshape the layout of data and manipulate, summarize, and join data sets Table of Contents1. Preface 2. Introduction a. The Role of Data Wrangling i. Introduction to R 1. Open Source 2. Flexibility 3. Community ii. R Basics 1. Assignment & Evaluation 2. Vectorization 3. Getting help 4. Workspace 5. Working with packages 6. Style guide 3. Working with Different Types of Data in R a. Dealing with Numbers i. Integer vs. Double ii. Generating sequence of non-random numbers iii. Generating sequence of random numbers iv. Setting the seed for reproducible random numbers v. Comparing numeric values vi. Rounding numbers b. Dealing with Character Strings i. Character string basics ii. String manipulation with base R iii. String manipulation with stringr iv. Set operatons for character strings c. Dealing with Regular Expressions i. Regex Syntax ii. Regex Functions iii. Additional resources d. Dealing with Factors i. Creating, converting & inspecting factors ii. Ordering levels iii. Revalue levels iv. Dropping levels e. Dealing with Dates i. Getting current date & time ii. Converting strings to dates iii. Extract & manipulate parts of dates iv. Creating date sequences v. Calculations with dates vi. Dealing with time zones & daylight savings vii. Additional resources <4. Managing Data Structures in R a. Data Structure Basics i. Identifying the Structure ii. Attributes b. Managing Vectors i. Creating ii. Adding on to iii. Adding attributes iv. Subsetting c. Managing Lists i. Creating iii. Adding attributes iv. Subsetting d. Managing Matrices i. Creating ii. Adding on to iii. Adding attributes iv. Subsetting e. Managing Data Frames i. Creating ii. Adding on to iii. Adding attributes iv. Subsetting f. Dealing with Missing Values i. Testing for missing values ii. Recoding missing values iii. Excluding missing values 5. Importing, Scraping, and Exporting Data with R a. Importing Data i. Reading data from text files ii. Reading data from Excel files iii. Load data from saved R object file iv. Additional resources b. Scraping Data i. Importing tabular and Excel files stored online ii. Scraping HTML text iii. Scraping HTML table data iv. Working with APIs v. Additional Resources c. Exporting Data i. Writing data to text files ii. Writing data to Excel files iii. Saving data as an R object file iv. Additional resources 6. Creating Efficient & Readable Code in R a. Functions i. Function Components ii. Arguments iii. Scoping Rules iv. Lazy Evaluation v. Returning Multiple Outputs from a Function vi. Dealing with Invalid Parameters vii. Saving and Sourcing Functions viii. Additional Resources b. Loop Control Statements i. Basic control statements (i.e. if, for, while, etc.) ii. Apply family iii. Other useful “loop-like” functions iv. Additional Resources c. Simplify Your Code with %>% i. Pipe (%>%) Operator ii. Additional Functions iii. Additional Pipe Operators iv. Additional Resources 7. Shaping & Transforming Your Data with R a. Reshaping Your Data with tidyr i. Making wide data long ii. Making long data wide iii. Splitting a single column into multiple columns iv. Combining multiple columns into a single column v. Additional tidyr functions vi. Sequencing your tidyr operations vii. Additional resources b. Transforming Your Data with dplyr i. Selecting variables of interest ii. Filtering rows iii. Grouping data by categorical variables iv. Performing summary statistics on variables v. Arranging variables by value vi. Joining datasets vii. Creating new variables viii. Additional resources
£61.74
Springer International Publishing AG Learn ggplot2 Using Shiny App
Book SynopsisThis book and app is for practitioners, professionals, researchers, and students who want to learn how to make a plot within the R environment using ggplot2, step-by-step without coding.In widespread use in the statistical communities, R is a free software language and environment for statistical programming and graphics. Many users find R to have a steep learning curve but to be extremely useful once overcome. ggplot2 is an extremely popular package tailored for producing graphics within R but which requires coding and has a steep learning curve itself, and Shiny is an open source R package that provides a web framework for building web applications using R without requiring HTML, CSS, or JavaScript. This manual—"integrating" R, ggplot2, and Shiny—introduces a new Shiny app, Learn ggplot2, that allows users to make plots easily without coding. With the Learn ggplot2 Shiny app, users can make plots using ggplot2 without having to code each step, reducing typos and error messages and allowing users to become familiar with ggplot2 code. The app makes it easy to apply themes, make multiplots (combining several plots into one plot), and download plots as PNG, PDF, or PowerPoint files with editable vector graphics. Users can also make plots on any computer or smart phone.Learn ggplot2 Using Shiny App allows users to Make publication-ready plots in minutes without coding Download plots with desired width, height, and resolution Plot and download plots in png, pdf, and PowerPoint formats, with or without R code and with editable vector graphics Table of Contents
£56.24
Springer International Publishing AG Basic Elements of Computational Statistics
Book SynopsisThis textbook on computational statistics presents tools and concepts of univariate and multivariate statistical data analysis with a strong focus on applications and implementations in the statistical software R. It covers mathematical, statistical as well as programming problems in computational statistics and contains a wide variety of practical examples. In addition to the numerous R sniplets presented in the text, all computer programs (quantlets) and data sets to the book are available on GitHub and referred to in the book. This enables the reader to fully reproduce as well as modify and adjust all examples to their needs.The book is intended for advanced undergraduate and first-year graduate students as well as for data analysts new to the job who would like a tour of the various statistical tools in a data analysis workshop. The experienced reader with a good knowledge of statistics and programming might skip some sections on univariate models and enjoy the various mathematical roots of multivariate techniques.The Quantlet platform quantlet.de, quantlet.com, quantlet.org is an integrated QuantNet environment consisting of different types of statistics-related documents and program codes. Its goal is to promote reproducibility and offer a platform for sharing validated knowledge native to the social web. QuantNet and the corresponding Data-Driven Documents-based visualization allows readers to reproduce the tables, pictures and calculations inside this Springer book.Trade Review“This is an excellent book that belongs in the libraries of most of us who use statistical computing. I love this book for a number of reasons … .” (David E. Booth, Technometrics, Vol. 60 (3), 2018)“The book deals with different tools and concepts regarding statistical analysis. … The book is intended for advanced undergraduate and even MSc students, as well as PhD student, working with different statistical techniques.” (Florin Gorunescu, zbMATH 1392.62001, 2018)Table of ContentsThe Basics of R.- Numerical Techniques.- Combinatorics and Discrete Distributions.- Univariate Distributions.- Univariate Statistical Analysis.- Basic Nonparametric Methods.- Multivariate Distributions.- Multivariate Statistical Analysis.- Random Numbers in R.- Advanced Graphical Techniques in R.- Symbols and Notations.
£59.99
Springer International Publishing AG Probability and Statistics for Computer Science
Book SynopsisThis textbook is aimed at computer science undergraduates late in sophomore or early in junior year, supplying a comprehensive background in qualitative and quantitative data analysis, probability, random variables, and statistical methods, including machine learning.With careful treatment of topics that fill the curricular needs for the course, Probability and Statistics for Computer Science features:• A treatment of random variables and expectations dealing primarily with the discrete case.• A practical treatment of simulation, showing how many interesting probabilities and expectations can be extracted, with particular emphasis on Markov chains.• A clear but crisp account of simple point inference strategies (maximum likelihood; Bayesian inference) in simple contexts. This is extended to cover some confidence intervals, samples and populations for random sampling with replacement, and the simplest hypothesis testing.• A chapter dealing with classification, explaining why it’s useful; how to train SVM classifiers with stochastic gradient descent; and how to use implementations of more advanced methods such as random forests and nearest neighbors.• A chapter dealing with regression, explaining how to set up, use and understand linear regression and nearest neighbors regression in practical problems.• A chapter dealing with principal components analysis, developing intuition carefully, and including numerous practical examples. There is a brief description of multivariate scaling via principal coordinate analysis. • A chapter dealing with clustering via agglomerative methods and k-means, showing how to build vector quantized features for complex signals.Illustrated throughout, each main chapter includes many worked examples and other pedagogical elements such as boxed Procedures, Definitions, Useful Facts, and Remember This (short tips). Problems and Programming Exercises are at the end of each chapter, with a summary of what the reader should know. Instructor resources include a full set of model solutions for all problems, and an Instructor's Manual with accompanying presentation slides.Table of Contents1 Notation and conventions 9 1.0.1 Background Information........................................................................ 10 1.1 Acknowledgements................................................................................................. 11 I Describing Datasets ; 12 2 First Tools for Looking at Data 13 2.1 Datasets....................................................................................................................... 13 2.2 What’s Happening? - Plotting Data................................................................. 15 2.2.1 Bar< Charts.................................................................................................... 16 2.2.2 Histograms................................................................................................... 16 2.2.3 How to Make Histograms...................................................................... 17 2.2.4 Conditional Histograms.......................................................................... 19 2.3 Summarizing 1D Data............................................................................................ 19 2.3.1 The Mean...................................................................................................... 20 2.3.2 Standard Deviation................................................................................... 22 2.3.3 Computing Mean and Standard Deviation Online...................... 26 2.3.4 Variance......................................................................................................... 26 2.3.5 The Median.................................................................................................. 27 2.3.6 Interquartile Range.................................................................................. 29 2.3.7 Using Summaries Sensibly.................................................................... 30 2.4 Plots and Summaries............................................................................................. 31 2.4.1 Some Properties of Histograms.......................................................... 31 2.4.2 Standard Coordinates and Normal Data......................................... 34 2.4.3 Box Plots....................................................................................................... 38 2.5 Whose is bigger? Investigating Australian Pizzas...................................... 39 2.6 You should.................................................................................................................. 43 2.6.1 remember these definitions:................................................................. 43 2.6.2 remember these terms............................................................................ 43 2.6.3 remember these facts:............................................................................. 43 2.6.4 be able to...................................................................................................... 43 3 Looking at Relationships 47 3.1 Plotting 2D Data...................................................................................................... 47 3.1.1 3.1.2 Series.............................................................................................................. 51 3.1.3 Scatter Plots for Spatial Data.............................................................. 53 3.1.4 Exposing Relationships with Scatter Plots..................................... 54 3.2 Correlation.................................................................................................................. 57 3.2.1 The Correlation Coefficient................................................................... 60 3.2.2 Using Correlation to Predict................................................................ 64 3.2.3 Confusion caused by correlation......................................................... 68 1 <3.3 Sterile Males in Wild Horse Herds.................................................................. 68 3.4 You should.................................................................................................................. 72 3.4.1 remember these definitions:................................................................. 72 3.4.2 remember these terms............................................................................ 72 3.4.3 remember these facts: . . . . . 3.4.4 use these procedures: . . . . . . 3.4.5 be able to: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 . . . . . . . . . . . . . . . . . 72 . . . . . . . . . . . . . . . . . 72 II Probability 78 4 Basic ideas in probability 79 4.1 Experiments, Outcomes and Probability....................................................... 79 4.1.1 Outcomes and Probability...................................................................... 79 4.2 Events........................................................................................................................... 81 4.2.1 Computing Event Probabilities by Counting Outcomes............. 83 4.2.2 The Probability of Events...................................................................... 87 4.2.3 Computing Probabilities by Reasoning about Sets...................... 89 4.3 Independence............................................................................................................ 92 4.3.1 Example: Airline Overbooking............................................................ 96 4.4 Conditional ........................................................ 99 4.4.1 Evaluating Conditional Probabilities.............................................. 100 4.4.2 Detecting Rare Events is Hard......................................................... 104 4.4.3 Conditional Probability and Various Forms of Independence . 106 4.4.4 The Prosecutor’s Fallacy 108 4.4.5 Example: The Monty Hall Problem................................................ 110 4.5 Extra Worked Examples.................................................................................... 112 4.5.1 Outcomes and Probability................................................................... 112 4.5.2 Events.......................................................................................................... 114 4.5.3 Independence........................................................................................... 115 4.5.4 Conditional Probability......................................................................... 117 4.6 You should............................................................................................................... 121 4.6.1 remember these definitions:.............................................................. 121 4.6.2 remember these terms......................................................................... 121 4.6.3 remember and use these facts.......................................................... 121 4.6.4 remember these points:....................................................................... 121 4.6.5 be able to.................................................................................................... 121 5 Random Variables and Expectations 128 5.1 Random Variables................................................................................................. 128 5.1.1 Joint and Conditional Probability for Random Variables . . . 131 5.1.2 Just a Little Continuous Probability............................................... 134 5.2 Expectations and Expected Values................................................................ 137 5.2.1 Expected Values...................................................................................... 138 5.2.2 Mean, Variance and Covariance....................................................... 141 5.2.3 Expectations and Statistics................................................................. 145 5.3 The Weak Law of Large Numbers................................................................ 145 5.3.1 IID Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 5.3.2 Two Inequalities . . . . . . . . . . . . . . . . . . . . . . . .< . 146 5.3.3 Proving the Inequalities . . . . . . . . . . . . . . . . . . . . . 147 5.3.4 The Weak Law of Large Numbers.................................................. 149 5.4 Using the Weak Law of Large Numbers 151 5.4.1 Should you accept a bet?..................................................................... 151 5.4.2 Odds, Expectations and Bookmaking — a Cultural Diversion 152 5.4.3 Ending a Game Early 154 5.4.4 Making a Decision with Decision Trees and Expectations . . 154 5.4.5 Utility 156 5.5 You should................................................................................... 159 5.5.1 remember these definitions:.............................................................. 159 5.5.2 remember these terms......................................................................... 159 5.5.3 use and remember these facts.......................................................... 159 5.5.4 be able to.................................................................................................... 160 6 Useful Probability Distributions ; 167 6.1 Discrete Distributions 167 6.1.1 The Discrete Uniform Distribution................................................. 167 6.1.2 Bernoulli Random Variables............................................................... 168 6.1.3 The Geometric Distribution................................................................ 168 6.1.4 The Binomial Probability Distribution........................................... 169 6.1.5 Multinomial probabilities..................................................................... 171 6.1.6 The Poisson Distribution..................................................................... 172 6.2 Continuous Distributions ; 174 6.2.1 The Continuous Uniform Distribution........................................... 174 6.2.2 The Beta Distribution........................................................................... 174 6.2.3 The Gamma Distribution..................................................................... 176 6.2.4 The Exponential Distribution............................................................ 176 6.3 The Normal Distribution ; 178 6.3.1 The Standard Normal Distribution................................................. 178 6.3.2 The Normal Distribution..................................................................... 179 6.3.3 Properties of The Normal Distribution......................................... 180 6.4 Approximating Binomials with Large N 182 6.4.1 Large N....................................................................................................... 183 6.4.2 Getting Normal<........................................................................................ 185 6.4.3 Using a Normal Approximation to the Binomial Distribution 187 6.5 You should . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5.1 remember these definitions: . . . . . . . . . . . . . . . . 6.5.2 remember these terms: . . . . . . . . . . . . . . . . . . . 6.5.3 remember these facts: . . . . . . . . . . . . . . . . . . . 6.5.4 remember these points: . . . . . . . . . . . . . . . . . .< . . . 188 . . . 188 . . . 188 . . . 188 . . . 188 III Inference ; 196 7 Samples and Populations 197 7.1 The Sample Mean................................................................................................. 197 7.1.1 The Sample Mean is an Estimate of the Population Mean . . 197 7.1.2 The Variance of the Sample Mean.................................................. 198 7.1.3 When The Urn Model Works............................................................ 201 7.1.4 Distributions are Like Populations................................................. 202 7.2 Confidence Intervals............................................................................................ 203 7.2.1 Constructing Confidence Intervals.................................................. 203 7.2.2 Estimating the Variance of the Sample Mean............................ 204 7.2.3 The Probability Distribution of the Sample Mean..................... 206 <7.2.4 Confidence Intervals for Population Means................................. 208 7.2.5 Standard Error Estimates from Simulation................................. 212 7.3 You should............................................................................................................... 216 7.3.1 remember these definitions:.............................................................. 216 7.3.2 remember these terms......................................................................... 216 7.3.3 remember these facts:........................................................................... 216 7.3.4 use these procedures............................................................................. 216 7.3.5 be able to.................................................................................................... 216 8 The Significance of Evidence 221 8.1 Significance.............................................................................................................. 222 8.1.1 Evaluating Significance......................................................................... 223 8.1.2 P-values....................................................................................................... 225 8.2 Comparing the Mean of Two Populations.................................................. 230 8.2.1 Assuming Known Population Standard Deviations................... 231 8.2.2 Assuming Same, Unknown Population Standard Deviation . 233 8.2.3 Assuming Different, Unknown Population Standard Deviation 235 8.3 Other Useful Tests of Significance................................................................. 237 8.3.1 F-tests and Standard Deviations...................................................... 237 8.3.2 χ2 Tests of Model Fit............................................................................ 239 8.4 Dangerous Behavior............................................................................................. 244 8.5 You should............................................................................................................... 246 8.5.1 remember these definitions:.............................................................. 246 8.5.2 remember 8.5.3 remember these facts: . . . . . 8.5.4 use these procedures: . . . . . . 8.5.5 be able to: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 . . . . . . . . . . . . . . . . . 246 . . . . . . . . . . . . . . . . . 246 9 Experiments 251 9.1 A Simple Experiment: The Effect of a Treatment.................................. 251 9.1.1 Randomized Balanced Experiments............................................... 252 9.1.2 Decomposing Error in Predictions.................................................. 253 9.1.3 Estimating the Noise Variance......................................................... 253 9.1.4 The ANOVA Table.................................................................................. 255 9.1.5 Unbalanced Experiments.................................................................... 257 9.1.6 Significant Differences.......................................................................... 259 9.2 Two Factor Experiments.................................................................................... 261 9.2.1 Decomposing the Error........................................................................ 264 9.2.2 Interaction Between Effects................................................................ 265 9.2.3 The Effects of a Treatment................................................................. 266 9.2.4 Setting up an ANOVA Table.............................................................. 267 9.3 You should............................................................................................................... 272 9.3.1 remember these definitions:.............................................................. 272 9.3.2 remember these terms......................................................................... 272 9.3.3 remember these facts:........................................................................... 272 9.3.4 use these procedures............................................................................. 272 9.3.5 be able to.................................................................................................... 272 9.3.6 Two-Way Experiments.......................................................................... 274 10 Inferring Probability Models from Data 275 10.1 Estimating Model Parameters with Maximum Likelihood.................. 275 10.1.1 The Maximum Likelihood Principle............................................... 277 10.1.2 Binomial, Geometric and Multinomial Distributions................ 278 10.1.3 Poisson and Normal Distributions................................................... 281 10.1.4 Confidence Intervals for Model Parameters................................ 286 10.1.5 Cautions about Maximum Likelihood............................................ 288 10.2 Incorporating Priors with Bayesian Inference.......................................... 289 10.2.1 Conjugacy................................................................................................... 292 10.2.2 MAP Inference......................................................................................... 294 10.2.3 Cautions about Bayesian Inference................................................. 296 10.3 Bayesian Inference for Normal Distributions............................................ 296 10.3.1 Example: Measuring Depth of a Borehole................................... 296 10.3.2 Normal Prior and Normal Likelihood Yield Normal Posterior 297 10.3.3 Filtering...................................................................................................... 300 10.4 You should............................................................................................................... 303 10.4.1 remember these definitions:.............................................................. 303 10.4.2 remember these terms......................................................................... 303 10.4.3 remember these facts:........................................................................... 304 10.4.4 use these procedures............................................................................. 304 10.4.5 be able to.................................................................................................... 304 <IV Tools 312 11 Extracting Important Relationships in High Dimensions 313 11.1 Summaries and Simple Plots........................................................................... 313 11.1.1 The Mean................................................................................................... 314 11.1.2 Stem Plots and Scatterplot Matrices.............................................. 315 11.1.3 Covariance.................................................................................................. 317 11.1.4 The Covariance Matrix......................................................................... 319 11.2 Using Mean and Covariance to Understand High Dimensional Data . 321 11.2.1 Mean and Covariance under Affine Transformations............... 322 11.2.2 . . 324 . . 325 . . 326 . . 327 . . 329 . 332 . . 334 . . 335 . . 335 . . 338 . . 339 . . 341 . . < 345 . . 345 . . 345 . . 345 . . 345 . . 345 349 . . 349 . . 350 . . 350 . . 351 . . 351 . . 353 . . 355 . . 357 . . 358 . . 359 . . <360 .< . 361 < Eigenvectors and Diagonalization . . . . . . . . . . . . . . 11.2.3 Diagonalizing Covariance by Rotating Blobs . . . . . . . . 11.2.4 Approximating Blobs . . . . . . . . . . . . . . . . . . . . 11.2.5 Example: Transforming the Height-Weight Blob . . . . . 11.3 Principal Components Analysis . . . . . . . . . . . . . . . . . . . 11.3.1 Example: Representing Colors with Principal Components 11.3.2 Example: Representing Faces with Principal Components 11.4 Multi-Dimensional Scaling . . . . . . . . . . . . . . . . . . . . . . 11.4.1 Choosing Low D Points using High D Distances . . . . . . 11.4.2 Factoring a Dot-Product Matrix . . . . . . . . . . . . . . 11.4.3 Example: Mapping with Multidimensional Scaling . . . . 11.5 Example: Understanding Height and Weight . . . . . . . . . . . 11.6 You should . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.6.1 remember these definitions: . . . . . . . . . . . . . . . . . 11.6.2 remember these terms: . . . . . . . . . . . . . . . . . . . . 11.6.3 remember these facts: . . . . . . . . . . . . . . . . . . . . 11.6.4 use these procedures: . . . . . . . . . . . . . . . . . . . . . 11.6.5 be able to: . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Learning to Classify 12.1 Classification: The Big Ideas . . . . . . . . . . . . . . . . . . . . 12.1.1 The Error Rate . . . . . . . . . . . . . . . . . . . . . . . . 12.1.2 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1.3 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . 12.1.4 Is the Classifier Working Well? . . . . . . . . . . . . . . . 12.2 Classifying with Nearest Neighbors . . . . . . . . . . . . . . . . . 12.3 Classifying with Naive Bayes . . . . . . . . . . . . . . . . . . . . 12.3.1 Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . 12.4 The Support 12.4.1 Choosing a Classifier with the Hinge Loss . . . . . . . . . 12.4.2 Finding a Minimum: General Points . . . . . . . . . . . . 12.4.3 Finding a Minimum: Stochastic Gradient Descent . . . . 12.4.4 Example: Training an SVM with Stochastic Gradient Descent 363 12.4.5 Multi-Class Classification with SVMs.............................................. 366 12.5 Classifying with Random Forests................................................................... 367 12.5.1 Building a Decision Tree..................................................................... 367 12.5.2 Choosing a Split with Information Gain........................................ 370 12.5.3 Forests......................................................................................................... 373 12.5.4 Building and Evaluating a Decision Forest.................................. 374 12.5.5 Classifying Data Items with a Decision Forest........................... 375 12.6 You should............................................................................................................... 378 12.6.1 remember these definitions:.............................................................. 378 12.6.2 remember these terms......................................................................... 378 12.6.3 remember these facts:........................................................................... 379 12.6.4 use these procedures............................................................................. 379 12.6.5 be able to.................................................................................................... 379 < 13.1 The Curse of Dimension..................................................................................... 384 13.1.1 The Curse: Data isn’t Where You Think it is............................. 384 13.1.2 Minor Banes of Dimension.................................................................. 386 13.2 The Multivariate Normal Distribution......................................................... 387 13.2.1 Affine Transformations and Gaussians.......................................... 387 13.2.2 Plotting a 2D Gaussian: Covariance Ellipses.............................. 388 13.3 Agglomerative and Divisive Clustering........................................................ 389 13.3.1 Clustering and Distance....................................................................... 391 13.4 The K-Means Algorithm and Variants......................................................... 392 13.4.1 How to choose K...................................................................................... 395 13.4.2 Soft Assignment....................................................................................... 397 13.4.3 General Comments on K-Means....................................................... 400 13.4.4 K-Mediods.................................................................................................. 400 13.5 Application Example: Clustering Documents........................................... 401 13.5.1 A Topic Model.......................................................................................... 402 13.6 Describing Repetition with Vector Quantization...................................... 403 13.6.1 Vector Quantization............................................................................... 404 13.6.2 Example: Groceries in Portugal....................................................... 406 13.6.3 Efficient Clustering and Hierarchical K Means.......................... 409 13.6.4 Example: Activity from Accelerometer Data............................... 409 13.7 You should............................................................................................................... 413 13.7.1 remember these definitions:.............................................................. 413 13.7.2 remember these terms......................................................................... 413 13.7.3 remember these facts:........................................................................... 413 13.7.4 use these procedures............................................................................. 413 14 Regression 417 14.1.1 Regression to Make Predictions....................................................... 417 14.1.2 Regression to Spot Trends.................................................................. 419 14.1 Linear Regression and Least Squares.......................................................... 421 14.1.1 Linear Regression................................................................................... 421 14.1.2 Choosing β.................................................................................................. 422 14.1.3 Solving the Least Squares Problem................................................ 423 14.1.4 Residuals..................................................................................................... 424 14.1.5 R-squared.................................................................................................... 424 14.2 Producing Good Linear Regressions............................................................. 427 14.2.1 Transforming Variables........................................................................ 428 14.2.2 Problem Data Points have Significant Impact............................ 431 14.2.3 Functions of One Explanatory Variable........................................ 433 14.2.4 Regularizing Linear Regressions...................................................... 435 14.3 Exploiting Your Neighbors 14.3.1 Using your Neighbors to Predict More than a Number............ 441 14.3.2 Example: Filling Large Holes with Whole Images.................... 441 14.4 You should . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.4.1 remember these definitions: . . . . . . . . . . . . . . 14.4.2 remember these terms: . . . . . . . . . . . . . . . . . . . . . . 444 . . . . . 444 . . . . . 444 14.4.3 remember these facts:........................................................................... 444 14.4.4 remember these procedures:............................................................. 444 15 Markov Chains and Hidden Markov Models 454 15.1 Markov Chains........................................................................................................ 454 15.1.1 Transition Probability Matrices........................................................ 457 15.1.2 Stationary Distributions....................................................................... 459 15.1.3 Example: Markov Chain Models of Text...................................... 462 15.2 Estimating Properties of Markov Chains.................................................... 465 15.2.1 Simulation.................................................................................................. 465 15.2.2 Simulation Results as Random Variables..................................... 467 15.2.3 Simulating Markov Chains.................................................................. 469 15.3 Example: Ranking the Web by Simulating a Markov Chain................ 472 15.4 Hidden Markov Models and Dynamic Programming............................. 473 15.4.1 Hidden Markov Models........................................................................ 474 15.4.2 Picturing Inference with a Trellis.................................................... 474 15.4.3 Dynamic Programming for HMM’s: Formalities....................... 478 15.4.4 Example: Simple Communication Errors..................................... 478 15.5 You should............................................................................................................... 481 15.5.1 remember these definitions:.............................................................. 481 15.5.2 remember these terms......................................................................... 481 15.5.3 remember these facts:........................................................................... 481 15.5.4 be able to.................................................................................................... 481 V Some Mathematical Background 484 16 Resources 485 16.1 Useful Material about Matrices....................................................................... 485 16.1.1 The Singular Value Decomposition................................................. 486 16.1.2 Approximating A Symmetric Matrix............................................... 487 16.2 Some Special Functions..................................................................................... 489 16.3 Finding Nearest Neighbors............................................................................... 490 16.4 Entropy and Information Gain........................................................................ 493
£40.49
Springer International Publishing AG Modern Psychometrics with R
Book SynopsisThis textbook describes the broadening methodology spectrum of psychological measurement in order to meet the statistical needs of a modern psychologist. The way statistics is used, and maybe even perceived, in psychology has drastically changed over the last few years; computationally as well as methodologically. R has taken the field of psychology by storm, to the point that it can now safely be considered the lingua franca for statistical data analysis in psychology. The goal of this book is to give the reader a starting point when analyzing data using a particular method, including advanced versions, and to hopefully motivate him or her to delve deeper into additional literature on the method. Beginning with one of the oldest psychometric model formulations, the true score model, Mair devotes the early chapters to exploring confirmatory factor analysis, modern test theory, and a sequence of multivariate exploratory method. Subsequent chapters present special techniques useful for modern psychological applications including correlation networks, sophisticated parametric clustering techniques, longitudinal measurements on a single participant, and functional magnetic resonance imaging (fMRI) data. In addition to using real-life data sets to demonstrate each method, the book also reports each method in three parts-- first describing when and why to apply it, then how to compute the method in R, and finally how to present, visualize, and interpret the results. Requiring a basic knowledge of statistical methods and R software, but written in a casual tone, this text is ideal for graduate students in psychology. Relevant courses include methods of scaling, latent variable modeling, psychometrics for graduate students in Psychology, and multivariate methods in the social sciences.Trade Review“The book gives an exhaustive overview of statistical methods that may be used when analyzing results of research in psychology. Main accent is on the use of R software during analysis of data. The main goal of the book is to provide the reader with main methods used for data analysis and how those methods may be executed using software package R.” (Jonas Šiaulys, zbMath 1414.62006, 2019)Table of ContentsClassical Test Theory.-Factor Analysis.- Path Analysis and Structural Equation Models.- Item Response Theory.- Preference Modeling.- Principal Component Analysis and Extensions.- Correspondence Analysis.- Gifi Methods.- Multidimensional Scaling.- Biplots.- Networks.- Parametric Cluster Analysis and Mixture Regression.- Modeling Trajectories and Time Series.- Analysis of fMRI Data.
£52.24
Springer Fachmedien Wiesbaden Finanzmathematik mit MATLAB
Book SynopsisDieses Lehrbuch enthält in kompakter, übersichtlicher Form die wichtigsten finanzmathematischen Fragestellungen und die dazu passenden Prozeduren von MATLAB (Erklärung der Ein- und Ausgabegrößen, mathematische Darstellung des entsprechenden finanztechnischen Vorgangs, Parameterwahlmöglichkeiten). Damit werden sowohl die numerische als auch die grafische Realisierung von Aufgaben- und Problemstellungen der Finanzmathematik in effektiver Weise ermöglicht. Table of ContentsEinführung in MATLAB - Datumfunktionen - Abschreibungen - Analyse von Cash Flows - Rentenrechnung - Tilgungsrechnung - Analyse festverzinslicher Wertpapiere (Anleihen / Bonds) - Portfolio-Optimierung - Analyse von Finanzderivaten (Optionen) - Finanz-Zeitreihen (Volatilitätsanalyse) - Verzeichnis der MATLAB-Prozeduren
£23.74
Springer Fachmedien Wiesbaden Das Maple Arbeitsbuch
Book SynopsisComputeralgebra-Pakete finden immer mehr Verbreitung und werden auch in höherem Maße schon in der Mathematik-Ausbildung von Studenten an Fachhochschulen und Universitäten verwendet. Analog zum Lehrbuch derselben Autoren zu Mathematica lernt der Leser das Programmpaket nicht als Selbstzweck, sondern als Werkzeug zum Lösen seiner mathematischen Probleme kennen. Darüber hinaus erfährt er, wo Maple an seine Grenzen gelangt und mit welchen Kniffen man seine Fähigkeiten voll ausnutzen kann.Table of Contents1 Einführung.- 1.1 Voraussetzungen, Installation.- 1.2 Kurzer Durchgang durch die Möglichkeiten.- 1.2.1 Einführung.- 1.2.2 Analysis.- 1.2.3 Vektoranalysis.- 1.2.4 Graphik.- 1.2.5 Algebra.- 1.3 Bildschirmorientiertes Arbeiten mit MapleV.- 1.4 Darstellung von Zahlen, Vektoren, Matrizen, Funktionen.- 1.4.1 Zahlen und Operationen.- 1.4.2 Zur numerischen Genauigkeit.- 1.4.3 Übungen.- 2 Differentialrechnung.- 2.1 Differentialrechnung einer Veränderlichen.- 2.1.1 Ableiten.- 2.1.2 Höhere Ableitungen.- 2.1.3 Anwendungen.- 2.2 Differentialrechnung mehrerer Veränderlicher.- 2.2.1 Partielle Ableitungen.- 2.2.2 Die totale Ableitung und ihre Anwendungen.- 2.2.3 Höhere Ableitungen.- 2.2.4 Extrema mit Nebenbedingungen: Lagrange-Multiplikatoren.- 2.3 Grenzwerte: limit.- 2.3.1 Potenzreihen und Residuen: Series und Residue.- 2.4 Interpolation.- 2.5 Vektoranalysis.- 2.5.1 Raumkurven.- 2.5.2 Koordinatensysteme.- 2.5.3 Gradient, Divergenz, Rotation und der Laplace-Operator.- 2.5.4 Übungen.- 3 Integralrechnung.- 3.1 Integralrechnung einer Veränderlichen.- 3.1.1 Unbestimmte Integrale.- 3.1.2 Bestimmte Integrale.- 3.1.3 Uneigentliche Integrale.- 3.1.4 Numerische Integration.- 3.1.5 Probleme beim Integrieren.- 3.2 Integralrechnung mehrerer Veränderlicher.- 3.3 Fourierreihen und Fouriertransformation.- 3.3.1 Fourierreihen periodischer Funktionen.- 3.3.2 Fourierentwicklung periodisch fortgesetzter Funktionen.- 3.3.3 Diskrete Fouriertransformation.- 3.3.4 Fouriertransformation.- 3.4 Übungen.- 4 Differentialgleichungen.- 4.1 Gewöhnliche Differentialgleichungen.- 4.1.1 Richtungsfelder.- 4.1.2 Lösen von einfachen Differentialgleichungen.- 4.1.3 Lineare Differentialgleichungen.- 4.1.4 Grenzen von dsolve bei Differentialgleichungen erster Ordnung.- 4.1.5 Nichtlineare Differentialgleichungen höherer Ordnung.- 4.1.6 Lineare Differentialgleichungen höherer Ordnung.- 4.1.7 Vektorielle Differentialgleichungen.- 4.1.8 Lösen von Differentialgleichungen durch Taylorreihen.- 4.1.9 Lösen von Differentialgleichungen mit der Laplace-Transformation.- 4.1.10 Numerisches Lösen von Differentialgleichungen.- 4.1.11 Das Zeichnen von Scharen von Lösungskurven.- 4.1.12 Das Zeichnen von Lösungen.- 4.2 Partielle Differentialgleichungen.- 4.2.1 Zeichnen von Lösungsflächen partieller Differentialgleichungen.- 4.2.2 Betrachtung der Lösungsstrukturen von partiellen Differentialgleichungen.- 5 Algebra.- 5.1 Nullstellen von Gleichungen.- 5.1.1 Der allgemeine Fall.- 5.1.2 Das Rechnen mit Polynomen.- 5.1.3 Rationale Funktionen und ihre Partialbruchzerlegung.- 5.1.4 Lösungen mod n und andere Spezialfälle.- 5.1.5 Numerische Bestimmung von Nullstellen.- 5.2 Matrizen und die Lösung linearer Gleichungssysteme.- 5.2.1 Die verschiedenen Möglichkeiten, ein lineares Gleichungssystem zu lösen.- 5.3 Determinanten, Eigenwerte und Eigenvektoren.- 5.3.1 Determinanten über den reellen und komplexen Zahlen.- 5.3.2 Eigenwerte und Eigenvektoren: die Befehle eigenvals und eigenvects.- 5.4 Das Rechnen mit Matrizen modulo einer Primzahl und andere Sonderfälle.- 5.4.1 Matrizen modulo einer Primzahl.- 5.4.2 Funktionen als Matrizenelemente.- 5.5 Numerische Lösungen.- 5.6 Nichtlineare Gleichungssysteme.- 5.7 Übungen.- 6 Statistik und Kombinatorik.- 6.1 Deskriptive Statistik.- 6.1.1 Einleitung.- 6.1.2 Sortieren von Daten.- 6.1.3 Bestimmung von Lage-und Streuungsparametern.- 6.2 Induktive Statistik.- 6.2.1 Stetige Verteilungen.- 6.2.2 Konfidenzintervalle.- 6.2.3 Das Konzept der statistischen Matrix.- 6.2.4 Lineare Regression.- 6.3 Kombinatorik.- 6.3.1 Lösen von kombinatorischen Problemen mit Binomialkoeffizienten.- 7 Graphik.- 7.1 Kurven und Flächen im ?2.- 7.1.1 Ausgabe von Funktionsgraphen mit Plot und Listplot.- 7.1.2 Logarithmische Skalierungen und Polarkoordinaten.- 7.1.3 Ausgabe parametrisierter ebener Kurven.- 7.1.4 Ausgabe implizit gegebener Kurven.- 7.2 Kurven und Flächen im ?3.- 7.2.1 Raumkurven.- 7.2.2 Niveauliniendarstellung.- 7.2.3 Dichtigkeitsdarstellung.- 7.2.4 Projektion in die Ebene.- 7.2.5 Erzeugung von Objekten, die nicht Funktionsgraphen sind.- 7.3 Animation.- 7.3.1 Ebene Objekte.- 7.3.2 Dreidimensionale Objekte.- 7.3.3 Übungen.- 8 MapleV als Programmiersprache.- 8.1 Fertige Pakete.- 8.1.1 Die verschiedenen Pakete.- 8.2 Realisierung von Programmstrukturen.- 8.2.1 MapleV und Programmiersprachen.- 8.2.2 Programmstrukturen in MapleV.- 8.2.3 So schreiben Sie Ihr eigenes Paket.- 8.2.4 Übungen.- Sachwortverzeichnis.
£34.19
Springer Fachmedien Wiesbaden Differentialgleichungen mit Mathematica
Book SynopsisDifferentialgleichungen spielen in den Naturwissenschaften und der Technik eine bedeutende Rolle, da viele Modelle mit ihrer Hilfe formuliert werden. Für die exakte Lösung dieser Gleichungen gibt es ausgefeilte mathematische Methoden, die in dem Computeralgebra-System Mathematica verfügbar sind. Das Buch enthält einerseits eine Einführung in die Theorie der gewöhnlichen und partiellen Differentialgleichungen und beschreibt andererseits, wie sich Mathematica zur Lösung dieser Gleichungen einsetzen läßt. Die theoretischen Ergebnisse werden in algorithmischer Form angegeben und mit vielen Beispielen ergänzt, die auch die graphischen Fähigkeiten von Mathematica ausnutzen.Table of ContentsDifferentialgleichungen erster Ordnung - Differentialgleichungssysteme erster Ordnung - Lineare Differentialgleichungen mit konstanten Koeffizienten - Partielle Differentialgleichungen erster Ordnung - Lineare Partielle Differentialgleichungen zweiter Ordnung
£38.69
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Das Statistiklabor: R leicht gemacht
Book SynopsisDas Arbeitsbuch führt in die Nutzung der Software Statistiklabor ein. Die Funktionalität wird im ersten Teil detailliert beschrieben, der zweite Teil illustriert Standardauswertungen. Die Software kann kostenfrei unter www.statistiklabor.de heruntergeladen werden. Sie bietet eine interaktive Arbeitsumgebung, um statistische Funktionen und Darstellungsmöglichkeiten leicht und intuitiv bearbeiten zu können, und erlaubt einen wesentlich einfacheren Zugang zu der umfangreichen Funktionalität der Statistik-Programmierumgebung R.Table of ContentsEine erste Beispielauswertung.- Die Oberfläche.- Ein- und Ausgabe.- Statistische Objekte.- Der Kalkulator.- Einiges zu R.- R-Grafik.- Spezielle Aspekte des Labors.- Beschreibung von Daten.- Wahrscheinlichkeitsrechnung.- Stichproben und Punktschätzungen.- Tests und Konfidenzintervalle.- Regression.- Tabellarische Überblicke.- Referenzen von R-Funktionen.- Liste typischer Auswertungen
£24.99
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG A Tiny Handbook of R
Book SynopsisThis Brief provides a roadmap for the R language and programming environment with signposts to further resources and documentation.Table of ContentsIntroduction to R.- Data Structures.- Tables and Graphs.- Hypothesis Tests.- Linear Models.
£47.49
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Analyzing Compositional Data with R
Book SynopsisThis book presents the statistical analysis of compositional data sets, i.e., data in percentages, proportions, concentrations, etc. The subject is covered from its grounding principles to the practical use in descriptive exploratory analysis, robust linear models and advanced multivariate statistical methods, including zeros and missing values, and paying special attention to data visualization and model display issues. Many illustrated examples and code chunks guide the reader into their modeling and interpretation. And, though the book primarily serves as a reference guide for the R package “compositions,” it is also a general introductory text on Compositional Data Analysis. Awareness of their special characteristics spread in the Geosciences in the early sixties, but a strategy for properly dealing with them was not available until the works of Aitchison in the eighties. Since then, research has expanded our understanding of their theoretical principles and the potentials and limitations of their interpretation. This is the first comprehensive textbook addressing these issues, as well as their practical implications with regard to software.The book is intended for scientists interested in statistically analyzing their compositional data. The subject enjoys relatively broad awareness in the geosciences and environmental sciences, but the spectrum of recent applications also covers areas like medicine, official statistics, and economics. Readers should be familiar with basic univariate and multivariate statistics. Knowledge of R is recommended but not required, as the book is self-contained.Trade ReviewFrom the reviews:“This book offers not only the theoretical background to analyse and interpret compositional data, but also the R support and guidance for the compositions package. The book is organised in 7 chapters. … The book is built in an accessible manner for undergraduates and postgraduates alike and offers an all in one overview of the analysis of compositional data in R.” (Irina Ioana Mohorianu, zbMATH, Vol. 1276, 2014)Table of ContentsIntroduction.- Fundamental Concepts of Compositional Data Analysis.- Distributions for Random Compositions.- Descriptive Analysis of Compositional Data.- Linear Models for Compositions.- Multivariate Statistics.- Zeroes, Missings and Outliers.- References.- Index.
£39.99
Springer Fachmedien Wiesbaden Statistik und Excel: Elementarer Umgang mit Daten
Book SynopsisWie können große und kleine Datenmengen aus Beobachtungen, Messungen, Befragungen, Untersuchungen, Analysen etc. verwaltet, aufbereitet, komprimiert, mit Kennzahlen erklärt und wirksam grafisch dargestellt werden? Wie kann man dazu Hypothesen prüfen, Zusammenhänge aufdecken, Abhängigkeiten finden? Dieses Buch zeigt Ihnen, wie die grundlegenden Methoden der Statistik recht einfach mit Excel umsetzbar sind. Es wurden in einheitlicher, sehr verständlicher Methodik die grundlegenden statistischen Verfahren sowohl der beschreibenden als auch der beurteilenden Statistik zusammengestellt. Umfangreiche Beispiele, didaktisch aufbereitet und stets ausführlich mit Excel umgesetzt, bieten eine umfassende Hilfe für den Umgang mit Datenmengen.Alle Beispiele stehen online für individuelle Übungen bereit. Trade Review“... Die Wahl geeigneter Beispiele und viele Abbildungen ... machen das Buch zu einer Empfehlung für alle, die einen verständlichen Grundkurs Statistik mit Excel suchen ...” (Karl Schäfer, in: Amazon.de, 19. Juli 2016)Table of ContentsWas man über Microsoft Excel wissen sollte.- Excel und große Datenmengen.- Beschreibende Statistik – Auskünfte über eine Datenreihe.- Beschreibende Statistik – Auskünfte über mehrere Datenreihen.- Zufall, Wahrscheinlichkeit, Verteilungsfunktionen.- Beurteilende Statistik – Prüfen von Verteilungen.- Beurteilende Statistik – Parameterprüfung mit einer Stichprobe.- Beurteilende Statistik – Parametervergleiche zweier verbundener Stichproben.- Beurteilende Statistik – Parametervergleiche zweier nicht verbundener Stichproben.- Einfache Varianzanalyse nicht verbundener Stichproben - Schätzungen.
£44.99
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Selected Applications of Convex Optimization
Book SynopsisThis book focuses on the applications of convex optimization and highlights several topics, including support vector machines, parameter estimation, norm approximation and regularization, semi-definite programming problems, convex relaxation, and geometric problems. All derivation processes are presented in detail to aid in comprehension. The book offers concrete guidance, helping readers recognize and formulate convex optimization problems they might encounter in practice.Trade Review“Selected Applications of Convex Optimization is a brief book, only 140 pages, and includes exercises with each chapter. It would be a good supplemental text for an optimization or machine learning course.” (John D. Cook, MAA Reviews, maa.org, December, 2015)Table of ContentsPreliminary Knowledge.- Support Vector Machines.- Parameter Estimations.- Norm Approximation and Regulariztion.- Semi-Definite Programing and Linear Matrix Inequalities.- Convex Relaxation.- Geometric Problems.
£42.74
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Einführung in die nichtparametrische Statistik
Book SynopsisChristine Duller gibt in diesem Buch eine leicht verständliche Einführung in die nichtparametrische Statistik. Dabei beschreibt sie nicht nur die statistischen Verfahren, sondern setzt diese auch in SAS und R um. Beide Programmiersprachen stellt die Autorin kurz vor, sodass keine Vorkenntnisse notwendig sind. Das Buch eignet sich besonders für Studierende der Wirtschafts- und Sozialwissenschaften und alle Interessierten, die (nur) über Grundkenntnisse der Statistik verfügen, aber auch als Nachschlagewerk für einfache statistische Analysen.Table of ContentsStatistische Grundbegriffe.- Geordnete Statistiken und Rangstatistiken.- Einstichprobenprobleme.- Unabhängigkeit und Korrelation.- Zweistichprobenprobleme für unabhängige Stichproben.- Zweistichprobenprobleme für verbundene Stichproben.- c-Stichproben-Problem. Nichtparametrische Dichteschätzung.- Lösungen zu den Übungsaufgaben.- Tabellen.- Sachverzeichnis.
£22.49
Springer Fachmedien Wiesbaden Data Analysis with RStudio: An Easygoing Introduction
Book SynopsisThe objective of this text is to introduce RStudio to practitioners and students and enable them to use R in their everyday work. It is not a statistical textbook, the purpose is to transmit the joy of analyzing data with RStudio. Practitioners and students learn how RStudio can be installed and used, they learn to import data, write scripts and save working results. Furthermore, they learn to employ descriptive statistics and create graphics with RStudio. Additionally, it is shown how RStudio can be used to test hypotheses, run an analysis of variance and regressions. To deepen the learned content, tasks are included with the solutions provided at the end of the textbook. This textbook has been recommended and developed for university courses in Germany, Austria and Switzerland.Trade Review“This book can be used for self-study by those in business administration, engineering, and the social, health, or biological science fields, to become competent in statistical programming. … it can be used as supplementary material for statistics-related courses. … Each chapter ends with a summary of R commands and appropriate exercises. Moreover, the appendix presents detailed code solutions to facilitate faster code-learning among readers. … this book can evoke readers’ interests in analyzing data and reduce the learning difficulty.” (Mei-Hsien Lee, Biometrics, Vol. 77 (4), December, 2021)“I enjoyed reading this book. The authors were good at creating a complete tool for beginners to start along the path of essential statistical analysis in R. I recommend this book, for its content, writing, and organization, to undergraduate or graduate students of disciplines other than statistics but also to professionals (non-statisticians) who would like to acquire or improve their analysis skills and understand the depth of R functionality, especially nowadays that R use is very popular among data analysts.” (Georgios Nikolopoulos, ISCB News, iscb.info, Vol. 72, December, 2021)Table of ContentsComment.- 1 R and RStudio.- 2 Data analysis basics with RStudio.- 3 Data tourism (simulated).- 4 Describing data with RStudio.- 5 Testing normal distribution with RStudio.- 6 Testing hypotheses with RStudio,- 7 Linear regression with RStudio.- 8 Further reading.- 9 Appendix: 1 Questionnaire, 2 Data "tourism.xlsx" including legend, 3 How to deal with missing data, 4 Solutions for the task.
£23.74
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Statistics Applied With Excel: Data Analysis Is
Book SynopsisThis book shows you how to analyze data sets systematically and to use Excel 2019 to extract information from data almost effortlessly. Both are (not) an art!The statistical methods are presented and discussed using a single data set. This makes it clear how the methods build on each other and gradually more and more information can be extracted from the data. The Excel functions used are explained in detail - the procedure can be easily transferred to other data sets. Various didactic elements facilitate orientation and working with the book: At the checkpoints, the most important aspects from each chapter are briefly summarized. In the freak knowledge section, more advanced aspects are addressed to whet the appetite for more. All examples are calculated with hand and Excel. Numerous applications and solutions as well as further data sets are available on the author's internet platform. This book is a translation of the original German 2nd edition Statistik angewandt mit Excel by Franz Kronthaler, published by Springer-Verlag GmbH Germany, part of Springer Nature in 2021. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.Table of ContentsPart 1 - Basic knowledge and tools to apply statistics.- Statistics is fun.- Excel: A brief introduction and the statistical possibilities.- Part 2 - Describe, nothing but describe.- Mean values: How people and objects behave on average.- Scatter: The deviation from average behavior.- Graphs: The possibility to represent data visually.- Correlation: Of the correlation.- Ratio and index numbers: The chance to generate new things from old knowledge.- Part 3 - From Few to All.- Of Data and the Truth.- Hypotheses: Just a specification of the question.- Normal distribution and other test distributions.- Hypothesis testing: What is Valid?.- Part 4 - Procedures for Testing Hypotheses.- The Mean Test.- The Test for Difference of Means in Independent Samples.- The Test for Difference of Means in Dependent Samples.- The Analysis of Variance for Testing for Group Differences in More than Two Groups.- The Test for Correlation in Metric, Ordinal, and Nominal Data.- Further Test Procedures for Nominal Variables.- Summary Part IV - Overview of testing procedures.- Part 5 - Regression analysis.- The linear single regression.- The multiple regression analysis.- Part 6 - What's next.- Brief report on a research question.- Further statistical procedures.- Interesting and further statistics books.- Another data set to practice on - Intern of a company.- Appendix.
£61.74
Springer Fachmedien Wiesbaden Softwarepraktikum - Analysis und Lineare Algebra:
Book SynopsisComputeralgebra- Systeme wie MAPLE gehören heute zum Alltag aller, die Mathematik in Schule, Wirtschaft und Hochschule anwenden. Gleichzeitig bieten sie die Möglichkeit, in ganz anderer Weise Beispiele zu untersuchen und zu veranschaulichen, als dies mit Bleistift und Papier möglich ist. Neben einer Einführung in MAPLE hat dieses Buch zum Ziel, durch die Behandlung von Beispielen den Stoff des ersten Studienjahres, wie er in den Vorlesungen zur Analysis und Linearen Algebra behandelt wird, zu vertiefen und zu veranschaulichen. Es besteht aus Aufgaben mit Erläuterungen, anhand derer der Leser den Stoff eigenständig durcharbeiten soll. Mathematische Anwendersysteme als berufsbildende Kompetenz in der Bachelor-Ausbildung: Das Buch eignet sich für ein Modul aufbauend auf den Grundvorlesungen Analysis und Lineare Algebra. Materialien zu diesem Buch für das E-Learning System OKUSON werden für Dozenten unter OnlinePLUS bereitgestellt.Table of ContentsEinführung in MAPLE - Erste Beispiele und Aufgaben - Elementare Operationen mit Matrizen und Vektoren - Das Gauß-Verfahren und die Cramersche Regel - Diagonalisierbarkeit komplexer Matrizen - Matrizen mit positiven Einträgen - Reelle Funktionen einer Variablen - Taylor-Entwicklung - Reelle Funktionen von mehreren Variablen - Quadratische Gleichungen und Quadriken - Hermite-Polynome und Fourier-Reihen - Normalformen - Gewöhnliche Differentialgleichungen - Lösungen
£21.84
S Chand & Co Ltd Computer Based Numerical and Statistical Method
Book Synopsis
£11.24
Biofolia First Guide to Statistical Computations in R
Book SynopsisR is a statistical computer program used and developed by statisticians around the world. It is probably the leading statistical program, at least among statisticians, and it is freely available. This book is intended for the newcomer who wants to do statistical analysis with R and needs a guide to get started. The book focuses on statistical data problems that are often encountered within the biosceinces. It puts special emphasis on linear models and analysis of repeated measurements data, but also deals with binary data and survival data, among others. Problems are presented and solutions -- along with the corresponding OR code and output -- are provided. The guide is divided into two parts: the first part on R basics and the second part on the statistical analyses using R. Various datasets are used for illustration and they are all available in the R package Guide1data.
£20.70
Amsterdam University Press Fact or Fluke?: A Critical Look at Statistical
Book SynopsisStatistics is more topical than ever. Numerous decisions depend on statistical considerations: just think of the Corona crisis or decisions about approving new drugs or other products. If researchers announce they have proved some fact using statistical tests, can we then always be sure that their claim is correct? How, and more importantly why, does statistics work? What can we expect from statistics and what not? 'Fact or Fluke?' is not a textbook that explains statistical tests to the reader; instead, it discusses what comes before those tests: the philosophy behind the statistics. Should one carry out tests, or are there other ways to look at statistics? Ronald Meester and Klaas Slooten use a variety of examples – from court cases to theoretical physics – to present different views on statistics and provide arguments for what they think is the best point of view. This book is meant for anyone who is in some way concerned with, or interested in, statistical evidence: scientific researchers, students, teachers, mathematicians, philosophers, lawyers, managers, and no doubt many others.
£22.99
World Scientific Publishing Co Pte Ltd Stars And Space With Matlab Apps (With Companion
Book SynopsisRecent advances in the understanding of star formation and evolution have been impressive and aspects of that knowledge are explored in this volume. The black hole stellar endpoints are studied and geodesic motion is explored. The emission of gravitational waves is featured due to their very recent experimental discovery.The second aspect of the text is space exploration which began 62 years ago with the Sputnik Earth satellite followed by the landing on the Moon just 50 years ago. Since then Mars has been explored remotely as well as flybys of the outer planets and probes which have escaped the solar system. The text explores many aspects of rocket travel. Finally possibilities for interstellar travel are discussed.All these topics are treated in a unified way using the Matlab App to combine text, figures, formulae and numeric input and output. In this way the reader may vary parameters and see the results in real time. That experience aids in building up an intuitive feel for the many specific problems given in this text.
£85.50
World Scientific Publishing Co Pte Ltd Stars And Space With Matlab Apps (With Companion
Book SynopsisRecent advances in the understanding of star formation and evolution have been impressive and aspects of that knowledge are explored in this volume. The black hole stellar endpoints are studied and geodesic motion is explored. The emission of gravitational waves is featured due to their very recent experimental discovery.The second aspect of the text is space exploration which began 62 years ago with the Sputnik Earth satellite followed by the landing on the Moon just 50 years ago. Since then Mars has been explored remotely as well as flybys of the outer planets and probes which have escaped the solar system. The text explores many aspects of rocket travel. Finally possibilities for interstellar travel are discussed.All these topics are treated in a unified way using the Matlab App to combine text, figures, formulae and numeric input and output. In this way the reader may vary parameters and see the results in real time. That experience aids in building up an intuitive feel for the many specific problems given in this text.
£42.75
World Scientific Publishing Co Pte Ltd Practical Numerical Mathematics With Matlab: A
Book SynopsisThis workbook and solutions manual is intended for advanced undergraduate or beginning graduate students as a supplement to a traditional course in numerical mathematics and as preparation for independent research involving numerical mathematics. The solutions manual provides complete MATLAB code and numerical results for each of the exercises in the workbook and will be especially useful for those students without previous MATLAB programming experience. It is also valuable for classroom instructors to help pinpoint the author's intent in each exercise and to provide a model for graders. Upon completion of this material, students will have a working knowledge of MATLAB programming, they will have themselves programmed algorithms encountered in classwork and textbooks, and they will know how to check and verify their own programs against hand calculations and by reference to theoretical results, special polynomial solutions and other specialized solutions. No previous programming experience with MATLAB is necessary.
£108.00
World Scientific Publishing Co Pte Ltd Practical Numerical Mathematics With Matlab: A
Book SynopsisThis workbook and solutions manual is intended for advanced undergraduate or beginning graduate students as a supplement to a traditional course in numerical mathematics and as preparation for independent research involving numerical mathematics. The solutions manual provides complete MATLAB code and numerical results for each of the exercises in the workbook and will be especially useful for those students without previous MATLAB programming experience. It is also valuable for classroom instructors to help pinpoint the author's intent in each exercise and to provide a model for graders. Upon completion of this material, students will have a working knowledge of MATLAB programming, they will have themselves programmed algorithms encountered in classwork and textbooks, and they will know how to check and verify their own programs against hand calculations and by reference to theoretical results, special polynomial solutions and other specialized solutions. No previous programming experience with MATLAB is necessary.
£61.75
Springer Verlag, Singapore Time Series Analysis Using SAS Enterprise Guide
Book SynopsisThis is the first book to present time series analysis using the SAS Enterprise Guide software. It includes some starting background and theory to various time series analysis techniques, and demonstrates the data analysis process and the final results via step-by-step extensive illustrations of the SAS Enterprise Guide software. This book is a practical guide to time series analyses in SAS Enterprise Guide, and is valuable resource that benefits a wide variety of sectors. Table of Contents1 Introduction 1.1 Overview1.2 SAS Enterprise Guide2 Basic Statistics and Regression Models2.1 Calculating new variables2.2 Normality test2.3 Simple linear regression2.4 Multiple linear regression 3 Time Series3.1 Smoothing methods3.2 ARIMA model3.3 Regression model with AR errors4 Panel Models4.1 Fixed effect4.2 Random effectReferences
£49.49
Springer Verlag, Singapore Statistical Signal Processing: Frequency Estimation
Book SynopsisThis book introduces readers to various signal processing models that have been used in analyzing periodic data, and discusses the statistical and computational methods involved. Signal processing can broadly be considered to be the recovery of information from physical observations. The received signals are usually disturbed by thermal, electrical, atmospheric or intentional interferences, and due to their random nature, statistical techniques play an important role in their analysis. Statistics is also used in the formulation of appropriate models to describe the behavior of systems, the development of appropriate techniques for estimation of model parameters and the assessment of the model performances. Analyzing different real-world data sets to illustrate how different models can be used in practice, and highlighting open problems for future research, the book is a valuable resource for senior undergraduate and graduate students specializing in mathematics or statistics.Table of ContentsIntroduction.- Preliminaries.- Methods of Estimation - Iterative.- Methods of Estimation - Non-iterative.- Asymptotic Results (of Sinusoidal model).- Order estimation.- Fundamental Frequency Model and its generalization.- Data Analysis.- Two dimensional and multidimensional models.- Chirp Signal Model.- Random Amplitudes.- Related Models.- Appendices.
£67.49
Springer Verlag, Singapore Advanced Sampling Methods
Book SynopsisThis book discusses all major topics on survey sampling and estimation. It covers traditional as well as advanced sampling methods related to the spatial populations. The book presents real-world applications of major sampling methods and illustrates them with the R software. As a large sample size is not cost-efficient, this book introduces a new method by using the domain knowledge of the negative correlation between the variable of interest and the auxiliary variable in order to control the size of a sample. In addition, the book focuses on adaptive cluster sampling, rank-set sampling and their applications in real life. Advance methods discussed in the book have tremendous applications in ecology, environmental science, health science, forestry, bio-sciences, and humanities. This book is targeted as a text for undergraduate and graduate students of statistics, as well as researchers in various disciplines.Table of Contents-1. Introduction.- 2. Simple Random Sampling.- 3. Stratied Random Sampling.- 4. Cluster Sampling.- 5. Double Sampling.- 6. Probability Proportional to Size Sampling.- 7. Systematic Sampling.- 8. Resampling Techniques.- 9. Adaptive Cluster Sampling.- 10. Two-Stage Adaptive Cluster Sampling.- 11. Adaptive Cluster Double Sampling.- 12. Inverse Adaptive Cluster Sampling.- 13. Two Stage Inverse Adaptive Cluster Sampling.- 14. Stratified Inverse Adaptive Cluster Sampling.- 15. Negative Adaptive Cluster Sampling.- 16. Negative Adaptive Cluster Double Sampling.- 17. Two- Stage Negative Adaptive Cluster Sampling.- 18. Balanced and Unbalanced Ranked Set Sampling.- 19. Ranked Set Sampling in Other Parameter Estimation and Non-Parametric Inference.- 20. Important Versions of Ranked Set Sampling.- 21. Sampling Errors.
£66.49
Springer Verlag, Singapore Bayesian Statistical Modeling with Stan, R, and
Book SynopsisThis book provides a highly practical introduction to Bayesian statistical modeling with Stan, which has become the most popular probabilistic programming language.The book is divided into four parts. The first part reviews the theoretical background of modeling and Bayesian inference and presents a modeling workflow that makes modeling more engineering than art. The second part discusses the use of Stan, CmdStanR, and CmdStanPy from the very beginning to basic regression analyses. The third part then introduces a number of probability distributions, nonlinear models, and hierarchical (multilevel) models, which are essential to mastering statistical modeling. It also describes a wide range of frequently used modeling techniques, such as censoring, outliers, missing data, speed-up, and parameter constraints, and discusses how to lead convergence of MCMC. Lastly, the fourth part examines advanced topics for real-world data: longitudinal data analysis, state space models, spatial data analysis, Gaussian processes, Bayesian optimization, dimensionality reduction, model selection, and information criteria, demonstrating that Stan can solve any one of these problems in as little as 30 lines.Using numerous easy-to-understand examples, the book explains key concepts, which continue to be useful when using future versions of Stan and when using other statistical modeling tools. The examples do not require domain knowledge and can be generalized to many fields. The book presents full explanations of code and math formulas, enabling readers to extend models for their own problems. All the code and data are on GitHub.Table of ContentsPrefacePart I: Introduction Chapter 1: Overview of Statistical Modeling and StanChapter 2: Review of Bayesian InferenceChapter 3: Before Starting Statistical ModelingPart II: Introduction of StanChapter 4: Start with Stan, RStan and PyStanChapter 5: Elementary Regression and Model CheckPart III: Essential Components and Techniques for ExpertsChapter 6: Introduction of Distributions from Modeling ViewpointsChapter 7: Issues of RegressionChapter 8: Nonlinear ModelChapter 9: Hierarchical ModelChapter 10: Advanced GrammarsChapter 11: How to Lead ConvergenceChapter 12: Discrete ParametersChapter 13: Usage of MCMC SamplesPart IV: Advanced Topics for Real-world DataChapter 14: Longitudinal Data Analysis with State Space Model Chapter 15: Spatial Data Analysis with Markov Field ModelChapter 16: Survival AnalysisChapter 17: Causal InferenceChapter 18: Model selectionAppendix: Differences between Stan and BUGSReferenceIndex
£104.49
Springer Verlag, Singapore Design and Development of Model Predictive
Book SynopsisThis book provides a design and development perspective MPC for micro-grid control, emphasizing step-by-step conversion of a nonlinear MPC to linear MPC preserving critical aspects of nonlinear MPC. The book discusses centralized and decentralized MPC control algorithms for a generic modern-day micro-grid consisting of vital essential constituents. It starts with the nonlinear MPC formulation for micro-grids. It also moves towards the linear time-invariant and linear time-variant approximations of the MPC for micro-grid control. The contents also discuss how the application of orthonormal special functions can improve computational complexity of MPC algorithms. It also highlights various auxiliary requirements like state estimator, disturbance compensator for robustness, selective harmonic eliminator for eliminating harmonics in the micro-grid, etc. These additional requirements are crucial for the successful online implementation of the MPC. In the end, the book shows how a well-designed MPC is superior in performance compared to the conventional micro-grid primary controllers discussed above. The key topics discussed in this book include – the detailed modeling of micro-grid components; operational modes in micro-grid and their control objectives; conventional micro-grid primary controllers; the importance of MPC as a micro-grid primary controller; understanding of MPC operation; nonlinear MPC formulation; linear approximations of MPC; application of special functions in the MPC formulation; and other online requirements for the MPC implementation. The examples in the book are available both from a calculation point of view and as MATLAB codes. This helps the students get acquainted with the subject first and then allows them to implement the subject they learn in software for further understanding and research.Table of ContentsChapter 1. Micro-grid Introduction and Overview.- Chapter 2. An Overview of Micro-grid Control.- Chapter 3. Mathematical Modelling of a Micro-grid.- Chapter 4. Introduction to Model Predictive Control.- Chapter 5. LTI-MPC for the Micro-grid Control.- Chapter 6. LTV-MPC with Extended “TAIL”.- Chapter 7. Special functions in the MPC formulation.- Chapter 8. Auxiliary Requirements for Real-time Implementation.- Chapter 9. Conclusion and Future Scope.
£98.99
Springer Verlag, Singapore Getting Started in Mathematical Life Sciences:
Book SynopsisThis book helps the reader make use of the mathematical models of biological phenomena starting from the basics of programming and computer simulation. Computer simulations based on a mathematical model enable us to find a novel biological mechanism and predict an unknown biological phenomenon. Mathematical biology could further expand the progress of modern life sciences. Although many biologists are interested in mathematical biology, they do not have experience in mathematics and computer science. An educational course that combines biology, mathematics, and computer science is very rare to date. Published books for mathematical biology usually explain the theories of established mathematical models, but they do not provide a practical explanation for how to solve the differential equations included in the models, or to establish such a model that fits with a phenomenon of interest. MATLAB is an ideal programming platform for the beginners of computer science. This book starts from the very basics about how to write a programming code for MATLAB (or Octave), explains how to solve ordinary and partial differential equations, and how to apply mathematical models to various biological phenomena such as diabetes, infectious diseases, and heartbeats. Some of them are original models, newly developed for this book. Because MATLAB codes are embedded and explained throughout the book, it will be easy to catch up with the text. In the final chapter, the book focuses on the mathematical model of the proneural wave, a phenomenon that guarantees the sequential differentiation of neurons in the brain. This model was published as a paper from the author’s lab (Sato et al., PNAS 113, E5153, 2016), and was intensively explained in the book chapter “Notch Signaling in Embryology and Cancer”, published by Springer in 2020. This book provides the reader who has a biological background with invaluable opportunities to learn and practice mathematical biology.Table of Contents1. Preparation.- 2. Introduction to MATLAB programming .- 3. Simulating time variations in life phenomena.- 4. Simulating temporal and spatial changes in biological phenomena.
£44.99
World Scientific Publishing Co Pte Ltd Hands-on Matrix Algebra Using R: Active And
Book SynopsisThis is the first book of its kind which teaches matrix algebra, allowing the student to learn the material by actually working with matrix objects in modern computer environment of R. Instead of a calculator, R is a vastly more powerful free software and graphics system.The book provides a comprehensive overview of matrix theory without being bogged down in proofs or tedium. The reader can check each matrix result with numerical examples of exactly what they mean and understand their implications. The book does not shy away from advanced topics, especially the ones with practical applications.Table of ContentsR Preliminaries; Elementary Geometry and Algebra Using R; Vector Spaces; Matrix Basics and R Software; Determinant and Singularity; The Rank and Trace of a Matrix; Matrix Inverse and Solution of Linear Equations.
£87.40
World Scientific Publishing Co Pte Ltd Hands-on Matrix Algebra Using R: Active And
Book SynopsisThis is the first book of its kind which teaches matrix algebra, allowing the student to learn the material by actually working with matrix objects in modern computer environment of R. Instead of a calculator, R is a vastly more powerful free software and graphics system.The book provides a comprehensive overview of matrix theory without being bogged down in proofs or tedium. The reader can check each matrix result with numerical examples of exactly what they mean and understand their implications. The book does not shy away from advanced topics, especially the ones with practical applications.Table of ContentsR Preliminaries; Elementary Geometry and Algebra Using R; Vector Spaces; Matrix Basics and R Software; Determinant and Singularity; The Rank and Trace of a Matrix; Matrix Inverse and Solution of Linear Equations.
£43.70
World Scientific Publishing Co Pte Ltd Guide To Pamir, The: Theory And Use Of
Book SynopsisPAMIR (Parameterized Adaptive Multidimensional Integration Routines) is a suite of Fortran programs for multidimensional numerical integration over hypercubes, simplexes, and hyper-rectangles in general dimension p, intended for use by physicists, applied mathematicians, computer scientists, and engineers. The programs, which are available on the internet at www.pamir-integrate.com and are free for non-profit research use, are capable of following localized peaks and valleys of the integrand. Each program comes with a Message-Passing Interface (MPI) parallel version for cluster use as well as serial versions.The first chapter presents introductory material, similar to that on the PAMIR website, and the next is a “manual” giving much more detail on the use of the programs than is on the website. They are followed by many examples of performance benchmarks and comparisons with other programs, and a discussion of the computational integration aspects of PAMIR, in comparison with other methods in the literature. The final chapter provides details of the construction of the algorithms, while the Appendices give technical details and certain mathematical derivations.Table of ContentsIntroduction; Using PAMIR; Benchmark Examples and Comparisons; Computational Integration Theory and PAMIR; Details of Construction of the PAMIR Algorithms and Programs; Appendices: Test Integrals; Derivation of the Simplex Generating Function; Derivation of the Hypercube Generating Function; Mappings Between Base Regions; Rule for Determining Where a Point Lies with Respect to a Simplex; Expansion for ∑4; Fourth Order Simplex Formula; Ninth Order Simplex Formula; Ninth Order Hypercube Formula.
£45.60
World Scientific Publishing Co Pte Ltd Guide To Pamir, The: Theory And Use Of
Book SynopsisPAMIR (Parameterized Adaptive Multidimensional Integration Routines) is a suite of Fortran programs for multidimensional numerical integration over hypercubes, simplexes, and hyper-rectangles in general dimension p, intended for use by physicists, applied mathematicians, computer scientists, and engineers. The programs, which are available on the internet at www.pamir-integrate.com and are free for non-profit research use, are capable of following localized peaks and valleys of the integrand. Each program comes with a Message-Passing Interface (MPI) parallel version for cluster use as well as serial versions.The first chapter presents introductory material, similar to that on the PAMIR website, and the next is a “manual” giving much more detail on the use of the programs than is on the website. They are followed by many examples of performance benchmarks and comparisons with other programs, and a discussion of the computational integration aspects of PAMIR, in comparison with other methods in the literature. The final chapter provides details of the construction of the algorithms, while the Appendices give technical details and certain mathematical derivations.Table of ContentsIntroduction; Using PAMIR; Benchmark Examples and Comparisons; Computational Integration Theory and PAMIR; Details of Construction of the PAMIR Algorithms and Programs; Appendices: Test Integrals; Derivation of the Simplex Generating Function; Derivation of the Hypercube Generating Function; Mappings Between Base Regions; Rule for Determining Where a Point Lies with Respect to a Simplex; Expansion for ∑4; Fourth Order Simplex Formula; Ninth Order Simplex Formula; Ninth Order Hypercube Formula.
£21.85
World Scientific Publishing Co Pte Ltd More Physics With Matlab (With Companion Media
Book SynopsisThis text continues the exploration of the use of MATLAB tools and features in visualizing physical processes. The symbolic math packages are important in solving those problems which are amenable to closed form solution, while the numerical packages are used for the remaining problems. The results for the solutions use the MATLAB graphics packages to help visualize the properties of the solutions. User dialogues are designed to allow users to change the input parameters in order to see how the dynamics of the solutions depends on the parameters of the specific problem. In particular movies are used to display the dynamical evolution of solutions in time.Table of ContentsMathematics; Classical Mechanics; Electromagnetism; Gases and Fluids; Waves; Quantum Mechanics; Astrophysics; General Relativity;
£30.40