Description

Book Synopsis

This highly anticipated second edition features new chapters and sections, 225 new references, and comprehensive R software. In keeping with the previous edition, this book is about the art and science of data analysis and predictive modelling, which entails choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasises problem solving strategies that address the many issues arising when developing multi-variable models using real data and not standard textbook examples.

Regression Modelling Strategies presents full-scale case studies of non-trivial data-sets instead of over-simplified illustrations of each method. These case studies use freely available R functions that make the multiple imputation, model building, validation and interpretation tasks described in the book relatively easy to do. Most of the methods in this text apply to all regression models, but special emphasis is given to multiple regression using generalised least squares for longitudinal data, the binary logistic model, models for ordinal responses, parametric survival regression models and the Cox semi parametric survival model. A new emphasis is given to the robust analysis of continuous dependent variables using ordinal regression.

As in the first edition, this text is intended for Masters' or PhD. level graduate students who have had a general introductory probability and statistics course and who are well versed in ordinary multiple regression and intermediate algebra. The book will also serve as a reference for data analysts and statistical methodologists, as it contains an up-to-date survey and bibliography of modern statistical modelling techniques.



Trade Review
“The aim and scope of this edition to provide graduate students and professional and early career researchers with insights, understandings and working knowledge of regression modelling. … . The book is sequentially organized and well structured and many chapters are self-contained. It includes many useful topics and techniques for graduate .students and researchers alike. This book can be used as a textbook and equally as a reference book.” (Technometrics, Vol. 58 (2), February, 2016)



Table of Contents

Introduction.- General Aspects of Fitting Regression Models.- Missing Data.- Multivariable Modeling Strategies.- Describing, Resampling, Validating and Simplifying the Model.- R Software.- Modeling Longitudinal Responses using Generalized Least Squares.- Case Study in Data Reduction.- Overview of Maximum Likelihood Estimation.- Binary Logistic Regression.- Binary Logistic Regression Case Study 1.- Logistic Model Case Study 2: Survival of Titanic Passengers.- Ordinal Logistic Regression.- Case Study in Ordinal Regression, Data Reduction and Penalization.- Regression Models for Continuous Y and Case Study in Ordinal Regression.- Transform-Both-Sides Regression.- Introduction to Survival Analysis.- Parametric Survival Models.- Case Study in Parametric Survival Modeling and Model Approximation.- Cox Proportional Hazards Regression Model.- Case Study in Cox Regression.- Appendix.

Regression Modeling Strategies: With Applications

Product form

£89.99

Includes FREE delivery

RRP £99.99 – you save £10.00 (10%)

Order before 4pm tomorrow for delivery by Mon 22 Dec 2025.

A Hardback by Frank E. Harrell , Jr.

1 in stock


    View other formats and editions of Regression Modeling Strategies: With Applications by Frank E. Harrell , Jr.

    Publisher: Springer International Publishing AG
    Publication Date: 26/08/2015
    ISBN13: 9783319194240, 978-3319194240
    ISBN10: 3319194240

    Description

    Book Synopsis

    This highly anticipated second edition features new chapters and sections, 225 new references, and comprehensive R software. In keeping with the previous edition, this book is about the art and science of data analysis and predictive modelling, which entails choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasises problem solving strategies that address the many issues arising when developing multi-variable models using real data and not standard textbook examples.

    Regression Modelling Strategies presents full-scale case studies of non-trivial data-sets instead of over-simplified illustrations of each method. These case studies use freely available R functions that make the multiple imputation, model building, validation and interpretation tasks described in the book relatively easy to do. Most of the methods in this text apply to all regression models, but special emphasis is given to multiple regression using generalised least squares for longitudinal data, the binary logistic model, models for ordinal responses, parametric survival regression models and the Cox semi parametric survival model. A new emphasis is given to the robust analysis of continuous dependent variables using ordinal regression.

    As in the first edition, this text is intended for Masters' or PhD. level graduate students who have had a general introductory probability and statistics course and who are well versed in ordinary multiple regression and intermediate algebra. The book will also serve as a reference for data analysts and statistical methodologists, as it contains an up-to-date survey and bibliography of modern statistical modelling techniques.



    Trade Review
    “The aim and scope of this edition to provide graduate students and professional and early career researchers with insights, understandings and working knowledge of regression modelling. … . The book is sequentially organized and well structured and many chapters are self-contained. It includes many useful topics and techniques for graduate .students and researchers alike. This book can be used as a textbook and equally as a reference book.” (Technometrics, Vol. 58 (2), February, 2016)



    Table of Contents

    Introduction.- General Aspects of Fitting Regression Models.- Missing Data.- Multivariable Modeling Strategies.- Describing, Resampling, Validating and Simplifying the Model.- R Software.- Modeling Longitudinal Responses using Generalized Least Squares.- Case Study in Data Reduction.- Overview of Maximum Likelihood Estimation.- Binary Logistic Regression.- Binary Logistic Regression Case Study 1.- Logistic Model Case Study 2: Survival of Titanic Passengers.- Ordinal Logistic Regression.- Case Study in Ordinal Regression, Data Reduction and Penalization.- Regression Models for Continuous Y and Case Study in Ordinal Regression.- Transform-Both-Sides Regression.- Introduction to Survival Analysis.- Parametric Survival Models.- Case Study in Parametric Survival Modeling and Model Approximation.- Cox Proportional Hazards Regression Model.- Case Study in Cox Regression.- Appendix.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account