Electricity, electromagnetism and magnetism Books
De Gruyter Licht-, Elektrizitäts- Und X-Strahlen: Beitrag
Book Synopsis
£95.00
De Gruyter Tagungsbericht Geomagnetismus und Aeronomie
Book Synopsis
£122.55
De Gruyter Theoretische Hydromechanik
Book Synopsis
£134.09
De Gruyter Theoretische Hydromechanik
Book Synopsis
£134.09
De Gruyter Stationen von 449 bis 000
Book Synopsis
£124.14
De Gruyter Einleitung Und Übersicht. Stationen Von 900 Bis
Book Synopsis
£123.64
de Gruyter Feldtheorie
Book Synopsis
£134.09
Springer International Publishing AG Beam Diagnostics in Superconducting Accelerating
Book SynopsisAn energetic charged particle beam introduced to an rf cavity excites a wakefield therein. This wakefield can be decomposed into a series of higher order modes and multipoles, which for sufficiently small beam offsets are dominated by the dipole component. This work focuses on using these dipole modes to detect the beam position in third harmonic superconducting S-band cavities for light source applications. A rigorous examination of several means of analysing the beam position based on signals radiated to higher order modes ports is presented. Experimental results indicate a position resolution, based on this technique, of 20 microns over a complete module of 4 cavities. Methods are also indicated for improving the resolution and for applying this method to other cavity configurations. This work is distinguished by its clarity and potential for application to several other international facilities. The material is presented in a didactic style and is recommended both for students new to the field, and for scientists well-versed in the field of rf diagnostics.Table of ContentsIntroduction.- Electromagnetic Eigenmode Simulations of the Third Harmonic Cavity.- Measurements of HOM Spectra.- Analysis Methods for Beam Position Extraction from HOM.- Dependencies of HOM on Transverse Beam Offsets.- HOM-Based Beam Position Diagnostics.- Conclusions.- Bibliography.- Mathematics.- Eigenmodes of an Ideal Third Harmonic Cavity.- Technical Details of the HOM Measurements.
£80.99
Springer International Publishing AG Computational Electromagnetism: Cetraro, Italy 2014
Book SynopsisPresenting topics that have not previously been contained in a single volume, this book offers an up-to-date review of computational methods in electromagnetism, with a focus on recent results in the numerical simulation of real-life electromagnetic problems and on theoretical results that are useful in devising and analyzing approximation algorithms. Based on four courses delivered in Cetraro in June 2014, the material covered includes the spatial discretization of Maxwell’s equations in a bounded domain, the numerical approximation of the eddy current model in harmonic regime, the time domain integral equation method (with an emphasis on the electric-field integral equation) and an overview of qualitative methods for inverse electromagnetic scattering problems.Assuming some knowledge of the variational formulation of PDEs and of finite element/boundary element methods, the book is suitable for PhD students and researchers interested in numerical approximation of partial differential equations and scientific computing.Table of ContentsPreface, Ralf Hiptmair: Maxwell's Equations: Continuous and Discrete Peter Monk: Numerical Methods for Maxwell's Equations, Rodolfo Rodriguez: Numerical Approximation of Low-Frequency Problems; Houssem Haddar: Inverse Electromagnetic Scattering Problems.
£36.89
Springer International Publishing AG High Performance Soft Magnetic Materials
Book SynopsisThis book provides comprehensive coverage of the current state-of-the-art in soft magnetic materials and related applications, with particular focus on amorphous and nanocrystalline magnetic wires and ribbons and sensor applications. Expert chapters cover preparation, processing, tuning of magnetic properties, modeling, and applications. Cost-effective soft magnetic materials are required in a range of industrial sectors, such as magnetic sensors and actuators, microelectronics, cell phones, security, automobiles, medicine, health monitoring, aerospace, informatics, and electrical engineering. This book presents both fundamentals and applications to enable academic and industry researchers to pursue further developments of these key materials. This highly interdisciplinary volume represents essential reading for researchers in materials science, magnetism, electrodynamics, and modeling who are interested in working with soft magnets.Table of Contents1. Amorphous and nanocrystalline glass-coated wires: optimization of soft magnetic properties.- 2. Tailoring of soft magnetic properties and high frequency giant magnetoimpedance in amorphous ribbons.- 3. Melt-extracted microwires.-4.Giant magneto-impedance effect in amorphous ferromagnetic microwire with a weak helical anisotropy.-5.Tunable magnetic anisotropy and magnetization reversal in microwires.- 6. Tunable electric polarization of magnetic microwires for sensing applications.- 7.Soft Ferromagnetic Microwires with Excellent Inductive Heating Properties for Clinical Hyperthermia Applications.- 8. Magnetically bistable microwires: properties and applications for magnetic field, temperature and stress sensing.- Index
£82.49
Springer International Publishing AG Optical Metamaterials: Qualitative Models:
Book SynopsisThis textbook bridges the gap between university courses on electrodynamics and the knowledge needed to successfully address the problem of electrodynamics of metamaterials. It appeals to both experimentalists and theoreticians who are interested in the physical basics of metamaterials and plasmonics. Focusing on qualitative fundamental treatment as opposed to quantitative numerical treatment, it covers the phenomena of artificial magnetization at high frequencies, and discusses homogenization procedures and the basics of quantum dynamics in detail. By considering different phenomena it creates a self-consistent qualitative picture to explain most observable phenomena. This allows readers to develop a better understanding of the concepts, and helps to create a conceptual approach, which is especially important in educational contexts. This clearly written book includes problems and solutions for each chapter, which can be used for seminars and homework, as well as qualitative models that are helpful to students. Table of ContentsPhenomenological Electrodynamics of materials with negative dielectric and magnetic constants.- Homogenization of Maxwell equations – macroscopic and microscopic approaches.- Phenomenological vs multipole models.- Charge dynamics and dielectric/magnetic constants elaboration.- Plasmons/Polaritons.- Transmission of light through subwavelength structures.- Multipole approach for homogenization of metamaterials (MM).- “Quantum” MM.
£80.99
Springer Fachmedien Wiesbaden Elektromagnetische Feldtheorie: Eine
Book SynopsisZusammen mit einer kurzen Einführung in das System der Maxwellschen Gleichungen und einer Definition der Feldgrößen lehrt das Buch mit charakteristischen Beispielen die Lösungsmethodik der Feldtheorie. Schwerpunkte sind dabei statistische und stationäre elektrische und magnetische Felder, quasistationäre elektromagnetische Felder und elektromagnetische Wellen. Für das Verständnis besonders hilfreich ist die Darstellung von Feldlinienbildern. Dieses Lehrbuch bietet eine Sammlung ausgewählter anspruchsvoller Übungsaufgaben mit Lösungen, die es ermöglichen, die elektromagnetische Feldtheorie zu verstehen und sachgerecht anzuwenden.Trade Review"Das Buch enthält in untadeliger Darstellung etliche Aufgaben mit Ausarbeitung zu den klassischen Teilgebieten der Elektrodynamik, wobei die ausgezeichneten Feldbilder besonders hervorgehoben werden müssen. Den zitierten Wunsch des Autors hat sich dieser mit seinem Buch ohne Frage erfüllt." Impulse, 01/2003Table of ContentsDie Maxwellschen Gleichungen - Elektrostatische Felder - Das stationäre Strömungsfeld - Das magnetische Feld stationärer Ströme - Das quasistationäre elektromagnetische Feld: der Skineffekt - Elektromagnetische Wellen
£31.34
Wiley-VCH Verlag GmbH Applied NMR Spectroscopy for Chemists and Life
Book SynopsisFrom complex structure elucidation to biomolecular interactions - this applicationoriented textbook covers both theory and practice of modern NMR applications. Part one sets the stage with a general description of NMR introducing important parameters such as the chemical shift and scalar or dipolar couplings. Part two describes the theory behind NMR, providing a profound understanding of the involved spin physics, deliberately kept shorter than in other NMR textbooks, and without a rigorous mathematical treatment of all the physico-chemical computations. Part three discusses technical and practical aspects of how to use NMR. Important phenomena such as relaxation, exchange, or the nuclear Overhauser effects and the methods of modern NMR spectroscopy including multidimensional experiments, solid state NMR, and the measurement of molecular interactions are the subject of part four. The final part explains the use of NMR for the structure determination of selected classes of complex biomolecules, from steroids to peptides or proteins, nucleic acids, and carbohydrates. For chemists as well as users of NMR technology in the biological sciences.Table of ContentsPreface INTRODUCTION TO NMR SPECTROSCOPY Our First 1D Spectrum Some Nomenclature: Chemical Shifts, Line Widths, and Scalar Couplings Interpretation of Spectra: A Simple Example Two-Dimensional NMR Spectroscopy: An Introduction PART ONE - Basics of Solution NMR BASICS OF 1D NMR SPECTROSCOPY The Principles of NMR Spectroscopy The Chemical Shift Scalar Couplings Relaxation and the Nuclear Overhauser Effect Practical Aspects Problems 1H NMR General Aspects Chemical Shifts Spin Systems, Symmetry, and Chemical or Magnetic Equivalence Scalar Coupling 1H-1H Coupling Constants Problems NMR OF 13C AND HETERONUCLEI Properties of Heteronuclei Indirect Detection of Spin-1/2 Nuclei 13C NMR Spectroscopy NMR of Other Main Group Elements NMR Experiments with Transition Metal Nuclei Problems PART TWO - Theory of NMR Spectroscopy NUCLEAR MAGNETISM - A MICROSCOPIC VIEW The Origin of Magnetism Spin - An Intrinsic Property of Many Particles Experimental Evidence for the Quantization of the Dipole Moment: The Stern-Gerlach Experiment The Nuclear Spin and Its Magnetic Dipole Moment Nuclear Dipole Moments in a Homogeneous Magnetic Field: The Zeeman Effect Problems MAGNETIZATION - A MACROSCOPIC VIEW The Macroscopic Magnetization Magnetization at Thermal Equilibrium Transverse Magnetization and Coherences Time Evolution of Magnetization The Rotating Frame of Reference RF Pulses Problems CHEMICAL SHIFT AND SCALAR AND DIPOLAR COUPLINGS Chemical Shielding The Spin-Spin Coupling Problems A FORMAL DESCRIPTION OF NMR EXPERIMENTS: THE PRODUCT OPERATOR FORMALISM Description of Events by Product Operators Classification of Spin Terms Used in the POF Coherence Transfer Steps An Example Calculation for a Simple 1D Experiment A BRIEF INTRODUCTION INTO THE QUANTUM-MECHANICAL CONCEPT OF NMR Wave Functions, Operators, and Probabilities Mathematical Tools in the Quantum Description of NMR The Spin Space of Single Noninteracting Spins Hamiltonian and Time Evolution Free Precession Representation of Spin Ensembles - The Density Matrix Formalism Spin Systems PART THREE - Technical Aspects of NMR THE COMPONENTS OF AN NMR SPECTROMETER The Magnet Shim Systems and Shimming The Electronics The Probehead The Lock System Problems ACQUISITION AND PROCESSING The Time Domain Signal Fourier Transform Technical Details of Data Acquisition Data Processing Problems EXPERIMENTAL TECHNIQUES RF Pulses Pulsed Field Gradients Phase Cycling Decoupling Isotropic Mixing Solvent Suppression Basic 1D Experiments Measuring Relaxation Times The INEPT Experiment The DEPT Experiment Problems THE ART OF PULSE EXPERIMENTS Introduction Our Toolbox: Pulses, Delays, and Pulsed Field Gradients The Excitation Block The Mixing Period Simple Homonuclear 2D Sequences Heteronuclear 2D Correlation Experiments Experiments for Measuring Relaxation Times Triple-Resonance NMR Experiments Experimental Details Problems PART FOUR - Important Phenomena and Methods in Modern NMR RELAXATION Introduction Relaxation: The Macroscopic Picture The Microscopic Picture: Relaxation Mechanisms Relaxation and Motion Measuring 15N Relaxation to Determine Protein Dynamics Measurement of Relaxation Dispersion Problems THE NUCLEAR OVERHAUSER EFFECT Introduction The Formal Description of the NOE: The Solomon Equations Applications of the NOE in Stereochemical Analysis Practical Tips for Measuring NOEs Problems CHEMICAL AND CONFORMATIONAL EXCHANGE Two-Site Exchange Experimental Determination of the Rate Constants Determination of the Activation Energy by Variable-Temperature NMR Experiments Problems TWO-DIMENSIONAL NMR SPECTROSCOPY Introduction The Appearance of 2D Spectra Two-Dimensional NMR Spectroscopy: How Does It Work? Types of 2D NMR Experiments Three-Dimensional NMR Spectroscopy Practical Aspects of Measuring 2D Spectra Problems SOLID-STATE NMR EXPERIMENTS Introduction The Chemical Shift in the Solid State Dipolar Couplings in the Solid State Removing CSA and Dipolar Couplings: Magic-Angle Spinning Reintroducing Dipolar Couplings under MAS Conditions Polarization Transfer in the Solid State: Cross-Polarization Technical Aspects of Solid-State NMR Experiments Problems DETECTION OF INTERMOLECULAR INTERACTIONS Introduction Chemical Shift Perturbation Methods Based on Changes in Transverse Relaxation (Ligand-Observe Methods) Methods Based on Changes in Cross-Relaxation (NOEs) (Ligand-Observe or Target-Observe Methods) Methods Based on Changes in Diffusion Rates (Ligand-Observe Methods) Comparison of Methods Problems PART FIVE - Structure Determination of Natural Products by NMR CARBOHYDRATES The Chemical Nature of Carbohydrates NMR Spectroscopy of Carbohydrates Quick Identification A Worked Example: Sucrose STEROIDS Introduction A Worked Example: Prednisone PEPTIDES AND PROTEINS Introduction The Structure of Peptides and Proteins NMR of Peptides and Proteins Assignment of Peptide and Protein Resonances A Worked Example: The Pentapeptide TP5 NUCLEIC ACIDS Introduction The Structure of DNA and RNA NMR of DNA and RNA Assignment of DNA and RNA Resonances APPENDIX The Magnetic H and B Fields Magnetic Dipole Moment and Magnetization Scalars, Vectors, and Tensors Properties of Matrices
£53.20
Wiley-VCH Verlag GmbH Superconductivity: An Introduction
Book SynopsisSuperconductivity The third edition of this proven text has been developed further in both scope and scale to reflect the potential for superconductivity in power engineering to increase efficiency in electricity transmission or engines. The landmark reference remains a comprehensive introduction to the field, covering every aspect from fundamentals to applications, and presenting the latest developments in organic superconductors, superconducting interfaces, quantum coherence, and applications in medicine and industry. Due to its precise language and numerous explanatory illustrations, it is suitable as an introductory textbook, with the level rising smoothly from chapter to chapter, such that readers can build on their newly acquired knowledge. The authors cover basic properties of superconductors and discuss stability and different material groups with reference to the latest and most promising applications, devoting the last third of the book to applications in power engineering, medicine, and low temperature physics. An extensive list of more than 350 references provides an overview of the most important publications on the topic. A unique and essential guide for students in physics and engineering, as well as a reference for more advanced researchers and young professionals.Trade Review"The reader will find a comprehensive and legible treatment of the entire field, an overview of the theoretical concepts and a detailed description of all recent applications." (Metall 2016)Table of ContentsPreface to the Third Edition IX Introduction 1 References 9 1 Fundamental Properties of Superconductors 11 1.1 The Vanishing of the Electrical Resistance 11 1.2 Ideal Diamagnetism, Flux Lines, and Flux Quantization 21 1.3 Flux Quantization in a Superconducting Ring 30 1.4 Superconductivity: A Macroscopic Quantum Phenomenon 33 1.5 Quantum Interference 45 1.5.1 Josephson Currents 47 1.5.2 Quantum Interference in a Magnetic Field 59 References 71 2 Superconducting Elements, Alloys, and Compounds 75 2.1 Introductory Remarks 75 2.1.1 Discovery, Preparation, and Characterization of New Superconductors 75 2.1.2 Conventional and Unconventional Superconductors 76 2.2 Superconducting Elements 78 2.3 Superconducting Alloys and Metallic Compounds 83 2.3.1 The β-Tungsten Structure 84 2.3.2 Magnesium Diboride 86 2.3.3 Metal–Hydrogen Systems 87 2.4 Fullerides 88 2.5 Chevrel Phases and Boron Carbides 89 2.6 Heavy-Fermion Superconductors 92 2.7 Natural and Artificial Layered Superconductors 94 2.8 The Superconducting Oxides 96 2.8.1 Cuprates 96 2.8.2 Bismuthates, Ruthenates, and Other Oxide Superconductors 103 2.9 Iron Pnictides and Related Compounds 104 2.10 Organic Superconductors 107 2.11 Superconductivity at Interfaces 110 References 111 3 Cooper Pairing 117 3.1 Conventional Superconductivity 117 3.1.1 Cooper Pairing by Means of Electron–Phonon Interaction 117 3.1.2 The Superconducting State, Quasiparticles, and BCSTheory 124 3.1.3 Experimental Confirmation of Fundamental Concepts about the Superconducting State 129 3.1.3.1 The Isotope Effect 130 3.1.3.2 The Energy Gap 133 3.1.4 Special Properties of Conventional Superconductors 150 3.1.4.1 Influence of Lattice Defects on Conventional Cooper Pairing 150 3.1.4.2 Influence of Paramagnetic Ions on Conventional Cooper Pairing 157 3.2 Unconventional Superconductivity 163 3.2.1 General Aspects 163 3.2.2 Cuprate Superconductors 170 3.2.3 Heavy Fermions, Ruthenates, and Other Unconventional Superconductors 186 3.2.4 FFLO-State and Multiband Superconductivity 193 References 196 4 Thermodynamics and Thermal Properties of the Superconducting State 201 4.1 General Aspects ofThermodynamics 201 4.2 Specific Heat 205 4.3 Thermal Conductivity 209 4.4 Ginzburg–LandauTheory 212 4.5 Characteristic Lengths of the Ginzburg–LandauTheory 216 4.6 Type-I Superconductors in a Magnetic Field 221 4.6.1 Critical Field and Magnetization of Rod-Shaped Samples 221 4.6.2 Thermodynamics of the Meissner State 226 4.6.3 Critical Magnetic Field of Thin Films in a Field Parallel to the Surface 230 4.6.4 The Intermediate State 231 4.6.5 TheWall Energy 235 4.6.6 Influence of Pressure on the Superconducting State 239 4.7 Type-II Superconductors in a Magnetic Field 244 4.7.1 Magnetization Curve and Critical Fields 246 4.7.2 The Shubnikov Phase 256 4.8 Fluctuations above the Transition Temperature 268 4.9 States Outside Thermodynamic Equilibrium 272 References 277 5 Critical Currents in Type-I and Type-II Superconductors 283 5.1 Limit of the Supercurrent Due to Pair Breaking 283 5.2 Type-I Superconductors 285 5.3 Type-II Superconductors 291 5.3.1 Ideal Type-II Superconductor 291 5.3.2 Hard Superconductors 296 5.3.2.1 Pinning of Flux Lines 296 5.3.2.2 Magnetization Curve of Hard Superconductors 301 5.3.2.3 Critical Currents and Current–Voltage Characteristics 310 References 318 6 Josephson Junctions and Their Properties 321 6.1 Current Transport across Interfaces in a Superconductor 321 6.1.1 Superconductor–Insulator Interface 321 6.1.2 Superconductor–Normal Conductor Interfaces 328 6.1.3 Superconductor–Ferromagnet Interfaces 335 6.2 The RCSJ Model 337 6.3 Josephson Junctions under Microwave Irradiation 342 6.4 Vortices in Long Josephson Junctions 346 6.5 Quantum Properties of Superconducting Tunnel Junctions 357 6.5.1 Coulomb Blockade and Single-Electron Tunneling 358 6.5.2 Flux Quanta and Macroscopic Quantum Coherence 363 References 368 7 Applications of Superconductivity 373 7.1 Superconducting Magnetic Coils 374 7.1.1 General Aspects 374 7.1.2 Superconducting Cables and Tapes 375 7.1.3 Coil Protection 386 7.2 Superconducting Permanent Magnets 388 7.3 Applications of Superconducting Magnets 390 7.3.1 Nuclear Magnetic Resonance 390 7.3.2 Magnetic Resonance Imaging 394 7.3.3 Particle Accelerators 395 7.3.4 Nuclear Fusion 397 7.3.5 Energy Storage Devices 398 7.3.6 Motors and Generators 401 7.3.7 Magnetic Separation and Induction Heaters 404 7.3.8 Levitated Trains 405 7.4 Superconductors for Power Transmission: Cables, Transformers, and Current Fault Limiters 406 7.4.1 Superconducting Cables 407 7.4.2 Transformers 409 7.4.3 Current Fault Limiters 411 7.5 Superconducting Resonators and Filters 412 7.5.1 High-Frequency Behavior of Superconductors 413 7.5.2 Resonators for Particle Accelerators 417 7.5.3 Resonators and Filters for Communications Technology 420 7.6 Superconducting Detectors 425 7.6.1 Sensitivity,Thermal Noise, and Environmental Noise 426 7.6.2 Incoherent Radiation and Particle Detection: Bolometers and Calorimeters 427 7.6.3 Coherent Detection and Generation of Radiation: Mixers, Local Oscillators, and Integrated Receivers 431 7.6.4 Quantum Interferometers as Magnetic Field Sensors 440 7.6.4.1 SQUID Magnetometer: Basic Concepts 440 7.6.4.2 Environmental Noise, Gradiometers, and Shielding 450 7.6.4.3 Applications of SQUIDs 454 7.7 Superconductors in Microelectronics 459 7.7.1 Voltage Standards 460 7.7.2 Digital Electronics Based on Josephson Junctions 463 References 468 Monographs and Article Collections 477 History of Superconductivity 477 General Books 477 Special Materials 477 Tunnel Junctions, Josephson Junctions, and Vortices 477 Nonequilibrium Superconductivity 478 Applications of Superconductivity 478 General Overview 478 Magnets, Cables, Power Applications 478 Microwaves, Magnetic Field Sensors, Electronics 478 Low Temperature Physics and Technology 478 Index 479
£70.20
Wiley-VCH Verlag GmbH Electromagnetic Phenomena in Matter: Statistical
Book SynopsisModern electrodynamics in different media is a wide branch of electrodynamics which combines the exact theory of electromagnetic fields in the presence of electric charges and currents with statistical description of these fields in gases, plasmas, liquids and solids; dielectrics, conductors and superconductors. It is widely used in physics and in other natural sciences (such as astrophysics and geophysics, biophysics, ecology and evolution of terrestrial climate), and in various technological applications (radio electronics, technology of artificial materials, laser-based technological processes, propagation of bunches of charges particles, linear and nonlinear electromagnetic waves, etc.). Electrodynamics of matter is based on the exact fundamental (microscopic) electrodynamics but is supplemented with specific descriptions of electromagnetic fields in various media using the methods of statistical physics, quantum mechanics, physics of condensed matter (including theory of superconductivity), physical kinetics and plasma physics. This book presents in one unique volume a systematic description of the main electrodynamic phenomena in matter: - A large variety of theoretical approaches used in describing various media - Numerous important manifestations of electrodynamics in matter (magnetic materials, superconductivity, magnetic hydrodynamics, holography, radiation in crystals, solitons, etc.) - A description of the applications used in different branches of physics and many other fields of natural sciences - Describes the whole complexity of electrodynamics in matter including material at different levels. - Oriented towards 3-4 year bachelors, masters, and PhD students, as well as lectures, and engineers and scientists working in the field. - The reader will need a basic knowledge of general physics, higher mathematics, classical mechanics and microscopic (fundamental) electrodynamics at the standard university level - All examples and problems are described in detail in the text to help the reader learn how to solve problems - Advanced problems are marked with one asterisk, and the most advanced ones with two asterisks. Some problems are recommended to be solved first, and are are marked by filled dots; they are more general and important or contain results used in other problems.Table of ContentsPreface IX Basis Notations XIII Fundamental Constants and Frequently Used Numbers XVII 1 Equations of Steady Electric and Magnetic Fields in Media 1 1.1 Averaging Microscopic Maxwell Equations. Vectors of Electromagnetic Fields in Media 2 1.2 Equations of Electrostatics and Magnetostatics in Medium 4 1.3 Polarization of Media in a Constant Field 7 Problems 12 1.4 Answers and Solutions 17 2 Electrostatics of Conductors and Dielectrics 37 2.1 Basic Concepts and Methods of Electrostatics 37 Problems 41 2.2 Special Methods of Electrostatics 45 Problems 54 2.3 Energy, Forces, and Thermodynamic Relations for Conductors and Dielectrics 59 Problems 71 2.4 Answers and Solutions 76 3 Stationary Currents and Magnetic Fields in Media 115 3.1 Stationary Current 115 Problems 123 3.2 Magnetic Field in Magnetic Media 129 Problems 131 3.3 Energy, Forces, and Thermodynamic Relations for Magnetics 133 Problems 145 3.4 Electric and Magnetic Properties of Superconductors 149 Problems 153 Problems 155 Problems 160 3.5 Answers and Solutions 164 4 Quasi-Stationary Electromagnetic Field 193 4.1 Quasi-Stationary Phenomena in Linear Conductors 193 Problems 197 4.2 Eddy Currents and Skin-Effect 201 Problems 205 4.3 Magnetic Hydrodynamics 207 Problems 222 4.4 Answers and Solutions 228 5 Maxwell Equations for Alternating and Inhomogeneous Fields 275 5.1 Different Forms of Maxwell Equations in Media. Coupling Equations and Electromagnetic Response Functions 275 Problems 287 5.2 Causality Principle and Dispersion Relations 291 Problems 296 5.3 Energy Relations for Alternating Electromagnetic Field in Media. Longitudinal Electric Oscillations 297 Problems 302 5.4 Magnetic Oscillations and Magnetic Resonance 304 Problems 306 5.5 Electrodynamics of Moving Media 308 Problems 311 Problems 321 5.6 Energy–Momentum Tensor in Dispersive Media 322 Problems 327 5.7 Answers and Solutions 327 6 Propagation of Electromagnetic Waves 363 6.1 Transverse Waves in Isotropic Media. Reflection and Refraction of Waves 363 Problems 377 6.2 Plane Waves in Anisotropic and Gyrotropic Media 382 Problems 387 6.3 Scattering of Electromagnetic Waves by Macroscopic Bodies. Diffraction 390 Problem 393 Problems 401 6.4 Diffraction of X-Rays 405 Problems 408 6.5 Answers and Solutions 410 7 Coherence and Nonlinear Waves 463 7.1 Coherence and Interference 463 Problems 472 7.2 Random Waves and Waves in Randomly Inhomogeneous Media 477 Problems 489 7.3 Waves in Nonlinear and Active Media 490 Problems 503 7.4 Answers and Solutions 504 8 Electromagnetic Oscillations in Finite Bodies 521 8.1 Electromagnetic Waves in Waveguides 521 Problems 524 8.2 Electromagnetic Oscillations in Resonators 530 Problems 531 8.3 Answers and Solutions 536 9 Interaction of Charged Particles with Equilibrium and Nonequilibrium Media 565 9.1 Ionization and Radiation Energy Losses of Fast Particles in Media 565 Problems 590 9.2 Macroscopic Mechanisms of Radiation of Fast Particles in Media 591 Problems 605 9.3 Channeling and Radiation Emitted by Fast Particles in Crystals 609 Problems 624 9.4 Acceleration of Particles in Turbulent Plasma Media 624 Problems 647 9.5 Answers and Solutions 649 Appendix: Turbulence and Its Description with the Aid of Correlation Tensors 681 Bibliography 689 Index 697
£104.36
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Semiconductor Physics: An Introduction
Book SynopsisThis book will be useful to solid-state scientists, device engineers, and students involved in semiconductor design and technology. It provides a lucid account of band structure, density of states, charge transport, energy transport, and optical processes, along with a detailed description of many devices. It includes sections on superlattices and quantum well structures, the effects of deep-level impurities on transport, and the quantum Hall effect. This 8th edition has been revised and updated, including several new sections.Trade ReviewFrom the reviews of the ninth edition: "This book of K. Seeger is one of the mostly used source book in the field of semiconductor physics. … it has become the reference book of many teachers, students and researchers, both in fundamental and applied solid state science. … Altogether … this book will undoubtedly continue to be very attractive as a reference book for teachers and researchers in the field of semiconductors." (Michel Wautelet, Physicalia Magazine, Vol. 28 (1), 2006)Table of Contents1. Elementary Properties of Semiconductors.- 2. Energy Band Structure.- 3. Semiconductor Statistics.- 4. Charge and Energy Transport in a Nondegenerate Electron Gas.- 5. Carrier Diffusion Processes.- 6. Scattering Processes in a Spherical One-Valley Model.- 7. Charge Transport and Scattering Processes in the Many-Valley Model.- 8. Carrier Transport in the Warped-Sphere Model.- 9. Quantum Effects in Transport Phenomena.- 10. Impact Ionization and Avalanche Breakdown.- 11. Optical Absorption and Reflection.- 12. Photoconductivity.- 13. Light Generation by Semiconductors.- 14. Surface and Interface Properties and the Quantum Hall Effect.- 15. Miscellaneous Semiconductors.- Appendices.- A. Table A: Physical Constants.- B. Envelope wave function for Quantum Wells.- C. Table C: Semiconductor and Semimetal Data.- References.- About the Author.
£104.49
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Quantum Optics
Book SynopsisThe formalism of quantum optics is elucidated in the early chapters and the main techniques are introduced. These are applied in the later chapters to problems such as squeezed states of light, resonance fluorescence, laser theory, quantum theory of four-wave mixing, quantum non-demolition measurements, Bell's inequalities, and atom optics. Experimental results are used to illustrate the theory throughout. This yields the most comprehensive and up-to-date coverage of experiment and theory in quantum optics in any textbook.Trade ReviewFrom the reviews of the second edition:"The book contains new chapters, which cover areas of the field that were in their infancy or did not exist at all when the first edition was completed in 1994. … The second edition deserves to be intensely studied by students or young PhDs who want to pursue the research on quantum properties of light. It should also be a part of every university’s library." (Daniela Dragoman, Optics and Photonics News, November, 2008)"This is a beautiful and self-contained textbook that unifies new and well-established basic theory and experiment. It provides the readers with … both the tools of theoretical quantum optics and clarifications on the way features of squeezed states are currently being exploited, as for protocols in quantum information. … It can be definitively suggested, among the others, to all those who are willing to be safely guided into the theoretical and experimental fundamentals that place quantum optics in a central position in modern physics." (Giulio Landolfi, Zentralblatt MATH, Vol. 1163, 2009)“Quantum optics has witnessed significant theoretical and experimental developments, which are indeed concisely and effectively surveyed in the book. It covers a broad range of topics in the field, from the fundamentals to specialized problems of modern research, through a precise, though not introductory, treatment. The book is definitely suitable to graduate students and researchers in quantum optics with a solid mathematical background. … a valuable and enjoyable tool to complete and enrich an already established knowledge in the field.” (Amalia Torre, Mathematical Reviews, Issue 2011 h)Table of ContentsQuantisation of the Electromagnetic Field.- Coherence Properties of the Electromagnetic Field.- Representations of the Electromagnetic Field.- Quantum Phenomena in Simple Systems in Nonlinear Optics.- Stochastic Methods.- Input–Output Formulation of Optical Cavities.- Generation and Applications of Squeezed Light.- Nonlinear Quantum Dissipative Systems.- Interaction of Radiation with Atoms.- CQED.- Quantum Theory of the Laser.- Bells Inequalities in Quantum Optics.- Quantum Nondemolition Measurements.- Quantum Coherence and Measurement Theory.- Quantum Information.- Ion Traps.- Light Forces.- Bose-Einstein Condensation.
£67.49
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Semiconductors: Data Handbook
Book SynopsisThis Data Handbook is a updated and largely extended new edition of the book "Semiconductors: Basic Data". The data of the former edition have been updated and a complete representation of all relevant basic data is now given for all known groups of semiconducting materials.Table of ContentsDetailed table of contents.- Tetrahedrally bonded elements and compounds.- 1 Elements of the IVth group and compounds.- 1.0 Crystal structure and electronic structure.- 1.1 Diamond (C).- 1.2 Silicon (Si).- 1.3 Germanium (Ge).- 1.4 Grey tin (?-Sn).- 1.5 Silicon carbide (SiC).- 1.6 Silicon germanium mixed crystals (SixGe1-x.- 2 III-V compound.- 2.0 Crystal structure and electronic structure.- 2.1 Boron nitride (BN).- 2.2 Boron phosphide (BP).- 2.3 Boron arsenide (BAs).- 2.4 Boron antimonide (BSb).- 2.5 Aluminum nitride (AlN).- 2.6 Aluminum phosphide (AlP).- 2.7 Aluminum arsenide (AlAs).- 2.8 Aluminum antimonide (AlSb).- 2.9 Gallium nitride (GaN).- 2.10 Gallium phosphide (GaP).- 2.11 Gallium arsenide (GaAs).- 2.12 Gallium antimonide (GaSb).- 2.13 Indium nitride (InN).- 2.14 Indium phosphide (InP).- 2.15 Indium arsenide (InAs).- 2.16 Indium antimonide (InSb).- 2.17 Ternary alloys lattice matched to binary III-V compounds.- 2.18 Quaternary alloys lattice matched to binary III-V compounds.- 3 II-VI compound.- 3.0 Crystal structure and electronic structure.- 3.1 Beryllium oxide (BeO.- 3.2 Beryllium sulfide (BeS.- 3.3 Beryllium selenide (BeSe.- 3.4 Beryllium telluride (BeTe).- 3.5 Magnesium oxide (MgO).- 3.6 Magnesium sulfide (MgS).- 3.7 Magnesium selenide (MgSe).- 3.8 Magnesium telluride (MgTe).- 3.9 Calcium oxide (CaO).- 3.10 Strontium oxide (SrO).- 3.11 Barium oxide (BaO).- 3.12 Zinc oxide (ZnO).- 3.13 Zinc sulfide (ZnS).- 3.14 Zinc selenide (ZnSe).- 3.15 Zinc telluride (ZnTe).- 3.16 Cadmium oxide (CdO).- 3.17 Cadmium sulfide (CdS).- 3.18 Cadmium selenide (CdSe).- 3.19 Cadmium telluride (CdTe).- 3.20 Mercury oxide (HgO).- 3.21 Mercury sulfide (HgS).- 3.22 Mercury selenide (HgSe).- 3.23 Mercury telluride (HgTe).- 4 I-VII compound.- 4.0 Crystal structure and electronic structure.- 4.1 Cuprous fluoride (CuF).- 4.2 Cuprous chloride (?-CuCl).- 4.3 Cuprous bromide (?-CuBr).- 4.4 Cuprous iodide (?-CuI).- 4.5 Silver fluoride (AgF).- 4.6 Silver chloride (AgCl).- 4.7 Silver bromide (AgBr).- 4.8 Silver iodide (AgI).- 5 III2-VI3 compound.- 5.0 Crystal structure of quasi-binary II2-VI3 compounds.- 5.1 Gallium sulfide (Ga2S3).- 5.2 Gallium selenide (Ga2Se3).- 5.3 Gallium telluride (Ga2Te3).- 5.4 Indium sulfide (In2S3).- 5.5 Indium selenide (In2Se3).- 5.6 Indium telluride (In2Te3).- 6 I-III-VI2 compound (included are I-Fe-VI2 compounds).- 6.0 Crystal structure and electronic structure.- 6.1 Copper aluminum sulfide (CuAlS2).- 6.2 Copper aluminum selenide (CuAlSe2).- 6.3 Copper aluminum telluride (CuAlTe2).- 6.4 Copper gallium sulfide (CuGaS2).- 6.5 Copper gallium selenide (CuGaSe2).- 6.6 Copper gallium telluride (CuGaTe2).- 6.7 Copper indium sulfide (CuInS2).- 6.8 Copper indium selenide (CuInSe2).- 6.9 Copper indium telluride (CuInTe2).- 6.10 Silver gallium sulfide (AgGaS2).- 6.11 Silver gallium selenide (AgGaSe2).- 6.12 Silver gallium telluride (AgGaTe2).- 6.13 Silver indium sulfide (AgInS2).- 6.14 Silver indium selenide (AgInSe2).- 6.15 Silver indium telluride (AgInTe2).- 6.16 Copper thallium sulfide (CuTlS2).- 6.17 Copper thallium selenide (CuTlSe2).- 6.18 Copper thallium telluride (CuTlT2).- 6.19 Silver thallium selenide (AgTlSe2).- 6.20 Silver thallium telluride (AgTlTe2).- 6.21 Copper iron sulfide (CuFeS2).- 6.22 Copper iron selenide (CuFeSe2).- 6.23 Copper iron telluride (CuFeTe2).- 6.24 Silver iron selenide (AgFeSe2).- 6.25 Silver iron telluride (AgFeTe2).- 7 II-IV-V2 compound.- 7.0 Crystal structure and electronic structure.- 7.1 Magnesium silicon phosphide (MgSiP2).- 7.2 Zinc silicon phosphide (ZnSiP2).- 7.3 Zinc silicon arsenide(ZnSiAs2).- 7.4 Zinc germanium nitride (ZnGeN2).- 7.5 Zinc germanium phosphide (ZnGeP2).- 7.6 Zinc germanium arsenide (ZnGeAs2).- 7.7 Zinc tin phosphide (ZnSnP2).- 7.8 Zinc tin arsenide (ZnSnAs2).- 7.9 Zinc tin antimonide (ZnSnSb2).- 7.10 Cadmium silicon phosphide (CdSiP2).- 7.11 Cadmium silicon arsenide (CdSiAs2).- 7.12 Cadmium germanium phosphide (CdGeP2).- 7.13 Cadmium germanium arsenide (CdGeAs2).- 7.14 Cadmium tin phosphide (CdSnP2).- 7.15 Cadmium tin arsenide (CdSnAs2).- 8 I2-IV-VI3 compound.- 8.1 Copper germanium sulfide (Cu2GeS3).- 8.2 Copper germanium selenide (Cu2GeSe3).- 8.3 Copper germanium tellurid (Cu2GeSe3).- 8.4 Copper tin sulfide (Cu2SnS3).- 8.5 Copper tin selenide (Cu2SnSe3).- 8.6 Copper tin telluride (Cu2SnTe3).- 8.7 Silver germanium selenide (Ag2GeSe3).- 8.8 Silver germanium telluride (Ag2GeTe3).- 8.9 Silver tin sulfide (Ag2SnS3).- 8.10 Silver tin selenide (Ag2SnSe3).- 8.11 Silver tin telluride (Ag2SnTe3).- 9 I3-V-VI4 compound.- 9.0 Crystal structure.- 9.1 Copper thiophosphate (Cu3PS4).- 9.2 Copper thioarsenide, enargite, luzonite (Cu3AsS4).- 9.3 Copper arsenic selenide (Cu3AsSe4).- 9.4 Copper antimony sulfide, famatinite (Cu3SbS4).- 9.5 Copper antimony selenide (Cu3SbSe4).- 9.6 Copper arsenic telluride (Cu3AsTe.- 9.7 Copper antimony telluride (Cu3SbTe.- 10 II-III2-VI4 compound.- 10.0 Crystal structure and electronic structure.- 10.1 Zinc aluminum sulfide (ZnAl2S4).- 10.2 Zinc gallium sulfide (ZnGa2S4).- 10.3 Zinc gallium selenide (ZnGa2Se4).- 10.4 Zinc thioindate (ZnIn2S4).- 10.5 Zinc indium selenide (ZnIn2Se4).- 10.6 Zinc indium telluride (?n?n2?e4).- 10.7 Cadmium thioaluminate (CdAl2S4).- 10.8 Cadmium thiogallate (CdGa2S4).- 10.9 Cadmium gallium selenide (CdGa2Se4).- 10.10 Cadmium gallium telluride (CdGa2Te4).- 10.11 Cadmium thioindate (CdIn2S4).- 10.12 Cadmium indium selenide (CdIn2Se4).- 10.13 Cadmium indium telluride (CdIn2Te4).- 10.14 Cadmium thallium selenide (CdTl2Se4).- 10.15 Mercury thiogallate (HgGa2S4).- 10.16 Mercury gallium selenide (HgGa2Se4).- 10.17 Mercury indium telluride (HgIn2Te4).- 10.18 HgIn2Se4,Hg3In2Te6,Hg5In2Te.- 10.19 Further II-III2-VI4 compounds with II = Mg, Ca.- Further elements.- 11 Group III element.- 11.0 Crystal structure and electronic structure of boron.- 11.1 Physical properties of boron.- 12 Group V element.- 12.0 Crystal structure and electronic structure.- 12.1 Phosphorus (P).- 12.2 Arsenic (As).- 12.3 Antimony (Sb).- 12.4 Bismuth (Bi).- 13 Group VI element.- 13.0 Crystal structure and electronic structure.- 13.1 Sulfur (S).- 13.2 Selenium (Se).- 13.3 Tellurium (Te).- Further binary compounds.- 14 IAx-IBy compound.- 14.0 Crystal structure and electronic structure.- 14.1 CsAu.- 14.2 RbAu.- 15 Ix-Vy compound.- 15.0 Crystal structure and electronic structure.- 15.1 I-V compounds (NaSb, KSb, RbSb, CsSb).- 15.2 I3-V compounds.- 15.2.1 Lattice parameters and meltin temperatures.- 15.2.2 Li3Sb, Li3Bi.- 15.2.3 Na3Sb.- 15.2.4 K3Sb.- 15.2.5 Rb3Sb.- 15.2.6 Cs3Sb.- 15.2.7 Rb3Bi, Cs3Bi.- 15.3.- 15.3.1 Na2KSb.- 15.3.2 K2CsSb.- 15.3.3 Na2RbSb, Na2CsSb, K2RbSb, Rb2CsSb.- 16 Ix-VIy compound.- 16.0 Crystal structure and electronic structure.- 16.1 Cupric oxide (CuO).- 16.2 Cuprous oxide (Cu20).- 16.3 Copper sulfides (Cu2S, Cu2-xS).- 16.4 Copper selenides (Cu2Se, Cu2-xSe).- 16.5 Copper tellurides (Cu2Te, Cu2-xTe).- 16.6 Silver oxides (AgxOy).- 16.7 Silver sulfide (Ag2S).- 16.8 Silver selenide (Ag2Se).- 16.9 Silver telluride (Ag2Te).- 17 IIx-IVy compound.- 17.0 Crystal structure and electronic structure.- 17.1 Magnesium suicide (Mg2Si).- 17.2 Magnesium germanide (Mg2Ge).- 17.3 Magnesium stannide (Mg2Sn).- 17.4 Magnesium plumbide (Mg2Pb).- 17.5 Ca2Si, Ca2Sn, Ca2Pb.- 17.6 BaSi2, BaGe2, SrGe.- 18 Hx-Vy compound.- 18.0 Crystal structure and electronic structure.- 18.1 Magnesium arsenide (Mg3As2).- 18.2 Zinc phosphide (Zn3P2).- 18.3 Zinc arsenide (Zn3As2).- 18.4 Cadmium phosphide (Cd3P2).- 18.5 Cadmium arsenide (Cd3As2).- 18.6 Zinc phosphide (ZnP2).- 18.7 Zinc arsenide (ZnAs2).- 18.8 Cadmium phosphide (CdP2).- 18.9 Cadmium arsenide (CdAs2).- 18.10 Cadmium tetraphosphide (CdP4).- 18.11 Zinc antimonide (ZnSb).- 18.12 Cadmium antimonide (CdSb).- 18.13 Zinc antimonide (Zn4Sb3).- 18.14 Cadmium antimonide (Cd4Sb3).- 18.15 Cd.- 18.16 Cd.- 19 II-VII2 compound.- 19.0 Crystal structure and electronic structure.- 19.1 Cadmium dichloride (CdCl2).- 19.2 Cadmium dibromide (CdBr2).- 19.3 Cadmium diiodide (CdI2).- 19.4 Mercury diiodide (HgI2).- 20 IIIx-VIy compound.- 20.0 Crystal structure and electronic structure.- 20.1 Gallium sulfide (GaS).- 20.2 Gallium selenide (GaSe).- 20.3 Gallium telluride (GaTe).- 20.4 Indium sulfide (InS).- 20.5 Indium selenide (InSe).- 20.6 Indium telluride (InTe).- 20.7 Thallium sulfide (TlS).- 20.8 Thallium selenide (TlSe).- 20.9 Thallium telluride (TlTe).- 20.10 In6S7.- 20.11 In4Se3.- 20.12 In6Se7.- 20.13 In60Se40.- 20.14 In50Se50.- 20.15 In40Se60.- 20.16 In5Se6.- 20.17 In4Te3.- 20.18 Tl5Te3.- 20.19 TlGa2.- 20.20 TlGaSe2.- 20.21 TlGaTe2.- 20.22 TlIn2.- 20.23 TlInSe2.- 20.24 TlInTe2.- 21 III-VII compound.- 21.0 Crystal structure and electronic structure.- 21.1 Thallium fluoride (TlF).- 21.2 Thallium chloride (T1C1).- 21.3 Thallium bromide (TlBr).- 21.4 Thallium iodide (TlI).- 22 IV-V compound.- 22.0 Crystal structure and lattice parameters.- 22.1 SiP, Ge.- 22.2 SiAs.- 22.3 GeAs.- 22.4 SiP2, SiAs2.- 22.5 GeAs2.- 23 IVx-VIy compound.- 23.0 Crystal structure and electronic structure.- 23.1 Germanium sulfide (GeS).- 23.2 Germanium selenide (GeSe).- 23.3 Germanium telluride (GeTe).- 23.4 Tin sulfide (SnS).- 23.5 Tin selenide (SnSe).- 23.6 Tin telluride (SnTe).- 23.7 Lead monoxide (PbO).- 23.8 Lead sulfide (PbS).- 23.9 Lead selenide (PbSe).- 23.10 Lead telluride (PbTe).- 23.11 Germanium dioxide (GeO2).- 23.12 Germanium disulfide (GeS2).- 23.13 Germanium diselenide (GeSe2).- 23.14 Tin dioxide (SnO2).- 23.15 Tin disulfide (SnS2).- 23.16 Tin diselenide (SnSe2).- 23.17 Si2Te3.- 23.18 Sn2S3, PbSnS3, SnGeS3, PbGe3.- 24 IV-VII2 Compound.- 24.0 Crystal structure.- 24.1 Lead difluoride (PbF2).- 24.2 Lead dichloride (PbCl2).- 24.3 Lead dibromide (PbBr2).- 24.4 Lead diiodide (Pbl2).- 25 Vx-VIy Compound.- 25.0 Crystal structure and electronic structure.- 25.1 Arsenic oxide (As2O3).- 25.2 Arsenic sulfide (As2S3).- 25.3 Arsenic selenide (As2Se3).- 25.4 Arsenic telluride (As2Te3).- 25.5 Antimony sulfide (Sb2S3).- 25.6 Antimony selenide (Sb2Se3).- 25.7 Antimony telluride (Sb2Te3).- 25.8 Bismuth oxide (Bi2O3).- 25.9 Bismuth sulfide (Bi2S3).- 25.10 Bismuth selenide (Bi2Se3).- 25.11 Bismuth telluride (Bi2Te3).- 25.12 Realgar (As4S4).- 26 V-VII3 compound.- 26.0 Crystal structure and electronic structure.- 26.1 Arsenic triiodide (AsI3).- 26.2 Antimony triiodide (SbI3).- 26.3 Bismuth triiodide (BiI3).- Further ternary compounds.- 27 Ix-IVy-VIz compound.- 27.0 Crystal structure.- 27.1 Ag8GeS6 (argyrodite).- 27.2 Ag8SnS6 (canfieldite).- 27.3 Ag8SiSe6.- 27.4 Ag8GeSe6.- 27.5 Ag8SnSe6.- 27.6 Ag8GeTe6.- 27.7 Cu8Ge6.- 27.8 Cu8GeSe6.- 27.9 Cu4Ge3S5, Cu4Ge3Se5 and Cu4Sn3Se6.- 27.10 Cu4Sn4.- 28 Ix-Vy-VIz compound.- 28.0 Crystal structure and electronic structure.- 28.1 AgAs2.- 28.2 AgAsSe2.- 28.3 AgAsTe2.- 28.4 AgSb2.- 28.5 AgSbSe2.- 28.6 AgSbTe2.- 28.7 AgBi2.- 28.8 AgBiSe2.- 28.9 AgBiTe2.- 28.10 CuSbSe2.- 28.11 CuSbTe2.- 28.12 CuBiSe2.- 28.13 CuBiTe2.- 28.14 Ag3As3.- 28.15 Ag3Sb3.- 29 IIx-IIIy-VIz compound.- 29.0 Crystal structure of II-III-VI2 compounds.- 29.1 CdIn2.- 29.2 CdInSe2.- 29.3 CdInTe2.- 29.4 CdTl2.- 29.5 CdTlSe2.- 29.6 CdTlTe2.- 29.7 HgTl2.- 30 IIIx-Vy-VIz compound.- 30.0 Crystal structure of III-V-VI2 compounds.- 30.1 TlAs2.- 30.2 TlSb2.- 30.3 TlBi2.- 30.4 TlBiSe2.- 30.5 TlBiTe2.- 30.6 Ga6Sb5Te2.- 30.7 In6Sb5Te2.- 30.8 In7SbTe2.- 31 IVx-Vy-VIz compound.- 31.0 Crystal structure.- 31.1 Bi12Si20.- 31.2 Bi12Ge20.- 31.3 PbSb2S4, GeSb2Te4, GeBi2Te4,SnBi2Te4.- 31.4 GeBi4Te7, GeSb4Te7, PbBi4Te7.- 32 V-VI-VII compound.- 32.0 Crystal structure and electronic structure.- 32.1 AsSBr.- 32.2 Sb.- 32.3 SbSBr.- 32.4 SbSeBr.- 32.5 SbSe.- 32.6 SbTe.- 32.7 Bi.- 32.8 BiOBr.- 32.9 Bi.- 32.10 BiSCl.- 32.11 BiSBr.- 32.12 Bi.- 32.13 BiSeBr.- 32.14 BiSe.- 32.15 BiTeBr.- 32.16 BiTel.- 33 Further ternary compound.- 33.1 Cu3In5Se9.- 33.2 Cu3Ga5Se9.- 33.3 Ag3In5Se9.- 33.4 Ag3Ga5Se9.- 33.5 Cu2Ga4Te7.- 33.6 Cu2In4Te7.- 33.7 CuIn3Te5.- 33.8 AgIn3Te5.- 33.9 AgIn5S8.- 33.10 AgIn9Te14.- 33.11 Cd2Sn4.- 33.12 CdSn3.- 33.13 Li3Cu3.- 33.14 Hg3PS3, Hg3Ps4.- 33.15 Cd4(PAs)2(Cl,Br,I).- 34 Boron compound.- 34.1 Boron-hydrogen alloys.- 34.2 Binary boron-lithium compounds.- 34.3 Ternary boron-lithium compounds.- 34.4 Boron-sodium compounds.- 34.5 Boron-potassium compounds.- 34.6 Beryllium-aluminum-boron compounds.- 34.7 Boron-aluminum-magnesium compounds.- 34.8 Boron-alkaline earth compound.- 34.9 Aluminum-boron compounds.- 34.10 Boron-yttrium compounds.- 34.11 Lanthanide hexaborides.- 34.14 Boron compounds with group IV elements: boron carbide.- 34.15 Boron-silicon compounds.- 34.16 Boron-zirconium compounds.- 34.17 Boron-nitrogen compounds.- 34.18 Boron-phosphorus compounds.- 34.19 Boron-arsenic compounds.- 35 Binary transition metal compound.- 35.1.- 35.2.- 35.3.- 36 Binary rare earth compound.- 37 Ternary transition metal compound.- 37.1.- 37.2.- 37.3.- 38 Ternary rare earth compound.
£224.99
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Introduction to the Classical Theory of Particles
Book SynopsisThis volume is intended as a systematic introduction to gauge field theory for advanced undergraduate and graduate students in high energy physics. The discussion is restricted to the classical (non-quantum) theory in Minkowski spacetime. Particular attention has been given to conceptual aspects of field theory, accurate definitions of basic physical notions, and thorough analysis of exact solutions to the equations of motion for interacting systems.Trade ReviewFrom the reviews: "Russian physicist Kosyakov has written an introduction to classical gauge theory for students of high energy or particle physics. … Extensive reference list. A valuable addition to a university library supporting a program in high energy theory; highly mathematical, so most useful as a resource for undergraduate programs. Summing Up: Recommended. Graduate students; professionals." (R. L. Stearns, CHOICE, Vol. 44 (10), June, 2007) "The classical theory of gauge fields is an important subject that has numerous applications in modern physics. … A nice feature of this book is that this is self contained. All the necessary definitions as well as the technical tools are provided by the author in the main body of the book. … I enjoyed reading the book. … Overall the monograph … can be warmly recommended to any serious student of electrodynamics and gauge theory and to their instructors alike." (Yuri N. Obukhov, Annalen der Physik, Vol. 16 (12), 2007) "Each chapter contains problems and final notes, a useful guide to the history of the subject. … The volume is intended to be an introduction for advanced undergraduate and graduate students in high energy physics. … We mention that it is timely elaborate a unified view of the classical self-interaction problems in classical gauge theories with particular reference to the electrodynamics of point electrons and Yang-Mills interaction of point quarks. The present work is a valuable contribution to this task." (Petre P. Teodorescu, Zentralblatt MATH, Vol. 1114 (16), 2007) "This book is an introduction to classical field theory. Although it was designed for advanced undergraduate and graduate students, researchers could also benefit from this book. It is intended for mathematical physicists and theoretical physicists. Classical gauge theories are discussed in detail, with great emphasis on self-interactions. … In summary, this is a useful introduction to classical gauge theories that can be recommended both to students (theoretical or mathematical physics), and to specialists and researchers, as a reference book." (Giuseppe Nardelli, Mathematical Reviews, Issue 2008 c)Table of ContentsGeometry of Minkowski Space.- Relativistic Mechanics.- Electromagnetic Field.- Solutions to Maxwell's Equations.- Lagrangian Formalism in Electrodynamics.- Self-Interaction in Electrodynamics.- Lagrangian Formalism for Gauge Theories.- Solutions to the Yang?Mills Equations.- Self-Interaction in Gauge Theories.- Generalizations.- Mathematical Appendices.
£164.99
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Principles of Pulsed Magnet Design
Book SynopsisThis first book on pulsed magnet design deals with the design of pulsed, non-destructive coils for the generation of high magnetic fields. It provides readers with a concise and comprehensive text describing every aspect of coil construction. Table of Contents1. Basics.- 2. Analytical Calculations.- 3. Numerical Simulations.- 4. Pulsed Field Facilities.- References.
£116.99
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations
Book SynopsisThis is the first of a two-volume presentation on current research problems in quantum optics, and will serve as a standard reference in the field for many years to come. The book provides an introduction to the methods of quantum statistical mechanics used in quantum optics and their application to the quantum theories of the single-mode laser and optical bistability. The generalized representations of Drummond and Gardiner are discussed together with the more standard methods for deriving Fokker-Planck equations.Trade ReviewFrom the reviews"To sum up: Statistical Methods in Quantum Optics 1 is an excellent book. Try it, you'll like it!" (M.O. Scully, Physics Today, 2000)"The book is carefully written, in considerable detail, paying attention to both foundations and applications. It contains exercices completing or generalizing the material presented, and ample references to the literature. It is, therefore, very useful as the basis for a course." (V.R. Vieira, Mathematical Reviews, 2000f) PHYSICS TODAY"…a valuable addition to the literature…an excellent book. Try it, you’ll like it!” "It is a pleasure to recommend this title thoroughly for both individual and institutional purchase." (D. L. Andrews (University of Anglia), Contemporary Physics 2002, vol. 43, page 232-233)Table of Contents1. Dissipation in Quantum Mechanics: The Master Equation Approach.- 2. Two-Level Atoms and Spontaneous Emission.- 3. Quantum—Classical Correspondence for the Electromagnetic Field I: The Glauber—Sudarshan P Representation.- 4. Quantum—Classical Correspondence for the Electromagnetic Field II: P, Q, and Wigner Representations.- 5. Fokker—Planck Equations and Stochastic Differential Equations.- 6. Quantum—Classical Correspondence for Two-Level Atoms.- 7. The Single-Mode Homogeneously Broadened Laser I: Preliminaries.- 8. The Single-Mode Homogeneously Broadened Laser II: Phase-Space Analysis.- References.
£71.24
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Quantum Theory of Magnetism
Book SynopsisMagnetism is one of the oldest and most fundamental problems of Solid State Physics although not being fully understood up to now. On the other hand it is one of the hottest topics of current research. Practically all branches of modern technological developments are based on ferromagnetism, especially what concerns information technology. The book, written in a tutorial style, starts from the fundamental features of atomic magnetism, discusses the essentially single-particle problems of dia- and paramagnetism, in order to provide the basis for the exclusively interesting collective magnetism (ferro, ferri, antiferro). Several types of exchange interactions, which take care under certain preconditions for a collective ordering of localized or itinerant permanent magnetic moments, are worked out. Under which conditions these exchange interactions are able to provoke a collective moment ordering for finite temperatures is investigated within a series of theoretical models, each of them considered for a very special class of magnetic materials. The book is written in a tutorial style appropriate for those who want to learn magnetism and eventually to do research work in this field. Numerous exercises with full solutions for testing own attempts will help to a deep understanding of the main aspects of collective ferromagnetism.Table of ContentsBasic Facts.- Atomic Magnetism.- Diamagnetism.- Paramagnetism.- Exchange Interaction.- Ising Model.- Heisenberg Model.- Hubbard Model.
£85.49
£53.62
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Quantum Theory of Magnetism: Magnetic Properties of Materials
Book Synopsis"Quantum Theory of Magnetism" is the only book that deals with the phenomenon of magnetism from the point of view of "linear response". That is, how does a magnetic material respond when excited by a magnetic field? That field may be uniform, or spatially varying, static or time dependent. Previous editions have dealt primarily with the magnetic response. This edition incorporates the resistive response of magnetic materials as well. It also includes problems to test the reader's (or student's) comprehension. The rationale for a book on magnetism is as valid today as it was when the first two editions of Quantum Theory of Magnetism were published. Magnetic phenomena continue to be discovered with deep scientific implications and novel applications. Since the Second Edition, for example, Giant Magneto Resistance (GMR) was discovered and the new field of "spintronics" is currently expanding. Not only do these phenomena rely on the concepts presented in this book, but magnetic properties are often an important clue to our understanding of new materials (e.g., high-temperature superconductors). Their magnetic properties, studied by susceptibility measurements, nuclear magnetic resonance, neutron scattering, etc. have provided insight to the superconductivity state.This updated edition offers revised emphasis on some material as a result of recent developments and includes new material, such as an entire chapter on thin film magnetic multilayers. Researchers and students once again have access to an up-to-date classic reference on magnetism, the key characteristic of many modern materials.Table of ContentsThe Magnetic Susceptibility.- The Magnetic Hamiltonian.- The Static Susceptibility of Noninteracting Systems.- The Static Susceptibility of Interacting Systems: Local Moments.- The Static Susceptibility of Interacting Systems: Metals.- The Dynamic Susceptibility of Weakly Interacting Systems: Local Moments.- The Dynamic Susceptibility of Weakly Interacting Systems: Metals.- The Dynamic Susceptibility of Strongly Interacting Systems.- Thin Film Systems.- Neutron Scattering.
£161.99
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Dispersion Forces II: Many-Body Effects, Excited Atoms, Finite Temperature and Quantum Friction
Book SynopsisIn this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of different aspects and scenarios. Macroscopic quantum electrodynamics is applied within the context of dispersion forces. In contrast to the normal-mode quantum electrodynamics traditionally used to study dispersion forces, the new approach allows to consider realistic material properties including absorption and is flexible enough to be applied to a broad range of geometries. Thus general properties of dispersion forces like their non-additivity and the relation between microscopic and macroscopic dispersion forces are discussed. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. In particular, nontrivial magnetic properties of the bodies, bodies of irregular shapes, the role of material absorption, and dynamical forces for excited atoms are discussed. This volume 2 deals especially with quantum electrodynamics, dispersion forces, Casimir forces, asymptotic power laws, quantum friction and universal scaling laws. The book gives both the specialist and those new to the field a thorough overview over recent results in the context of dispersion forces. It provides a toolbox for studying dispersion forces in various contexts.Table of ContentsIntroduction.- Approximating Casimir–Polder potentials.- Common properties of dispersion forces.- Casimir–Polder forces on excited atoms: static theory.- Casimir–Polder forces on excited atoms: dynamical approach.- Casimir–Polder forces in cavity quantum electrodynamics.- Thermal Casimir–Polder forces.- Casimir–Polder forces on moving atoms.
£189.99
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Laser Spectroscopy 1: Basic Principles
Book SynopsisKeeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., ultrafast lasers (atto- and femtosecond lasers) and parametric oscillators, coherent matter waves, Doppler-free Fourier spectroscopy with optical frequency combs, interference spectroscopy, quantum optics, the interferometric detection of gravitational waves and still more applications in chemical analysis, medical diagnostics, and engineering.Table of ContentsIntroduction.- Absorption and Emission of Light.- Widths and Profiles of Spectral Lines.- Spectroscopic Instrumentation.- Lasers as Spectroscopic Sources.- Solutions.
£75.99
Springer Spektrum Schwingungen Und Wellen: Phänomene in Mechanik
Book Synopsis
£9.99
Springer Fachmedien Wiesbaden Wellenausbreitung: Grundlagen – Modelle –
Book SynopsisDas Lehrbuch vermittelt dem Leser grundlegende Kenntnisse über das, was zwischen Sende- und Empfangsantenne geschieht, da sie für eine plangemäße Funktion entscheidend sind. Die Wellenausbreitung bestimmt maßgebend die Übertragungsverfahren in der Funkkommunikation und beeinflusst in vielen HF-Anwendungen die Systemauslegung. Ziel des Buches ist, dem Leser diese Kenntnisse zu vermitteln sowie ihn in die Lage zu versetzen, Probleme und Möglichkeiten in Zusammenhang mit der Wellenausbreitung zu verstehen und beurteilen zu können.Table of ContentsReflexion, Transmission, Beugung und Streuung.- Troposphäre und Ionosphäre.- Mehrwegeausbreitung, Kanalmodellierung.- Messverfahren von Funkkanälen.- Peiltechnik incl. MUSIC und ESPRIT.- Mehrantennensysteme im Mobilfunk (MIMO).- Räumliche Entzerrung (Zero-Forcing, Matched-Filter, MMSE).
£26.59
Springer Fachmedien Wiesbaden Theoretische Elektrotechnik und spezielle
Book SynopsisIm Buch werden Begriffe der Elektrotechnik unter konsequenter Einbeziehung der speziellen Relativitätstheorie eingeführt. Es kann ein invariantes elektromagnetisches Gesamtfeld aus der Kraft einer bewegten Ladung auf eine bewegte Probeladung definiert werden. So folgt eine plausible Vorstellung, bei der alle elektromagnetischen Vorgänge von einer Ladung ausgehen und sich als Nahwirkung in den Raum ausbreiten. Neben einem elektrischen Potential folgt daraus auch das Vektorpotential. Das Gesetz für die „Ruheinduktion“ kann unmittelbar aus der Vorstellung einer Ausbreitung von Stromänderungen entlang eines Leiters aus dieser Kraft abgeleitet werden. Es ergibt sich die Möglichkeit, für das Magnetfeld weitere Modelle zu erstellen. Die Darstellung ist bis zum vierdimensionalen Raum mit dem Tensorkalkül konsistent.Table of ContentsGrößen des elektrischen Feldes.- Wirkungen bewegter Ladungen mit Hilfe der speziellen Relativitätstheorie.- Potential und Vektorpotential.- Ruheinduktion aus der Kraftwirkung auf eine Probeladung.- Modelle für Magnetfelder.- Vergleich der Vor- und Nachteil.- einige Resultate der Quantenphysik.- Schlussfolgerungen.- Rechenbeispiele.
£21.84
LAP Lambert Academic Publishing Offshore Wind and Tidal Current Energy Resources
Book Synopsis
£56.44
LAP Lambert Academic Publishing Control System of DFIG for Wind Power Generation Systems
£40.93
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Atoms, Molecules and Photons: An Introduction to
Book SynopsisThis introduction to Atomic and Molecular Physics explains how our present model of atoms and molecules has been developed over the last two centuries both by many experimental discoveries and, from the theoretical side, by the introduction of quantum physics to the adequate description of micro-particles. It illustrates the wave model of particles by many examples and shows the limits of classical description. The interaction of electromagnetic radiation with atoms and molecules and its potential for spectroscopy is outlined in more detail and in particular lasers as modern spectroscopic tools are discussed more thoroughly. Many examples and problems with solutions are offered to encourage readers to actively engage in applying and adapting the fundamental physics presented in this textbook to specific situations.Completely revised third edition with new sections covering all actual developments, like photonics, ultrashort lasers, ultraprecise frequency combs, free electron lasers, cooling and trapping of atoms, quantum optics and quantum information.Table of ContentsIntroduction.- The Concept of the Atom.- Development of Quantum Physics.- Basic Concepts of Quantum Mechanics.- The Hydrogen Atom.- Atoms with More Than One Electron.- Emission and Absorption of Electromagnetic Radiation by Atoms.- Lasers.- Diatomic Molecules.- Polyatomic Molecules.- Experimental Techniques in Atomic and Molecular Physics.- Modern Developments in Atomic and Molecular Physics.- Chronological Table for the Development of Atomic and Molecular Physics.- Solutions to the Exercises.
£98.99
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Elektrodynamik und Relativität: Das theoretische
Book SynopsisWie entsteht die Lorentz-Kraft? Was haben Felder mit Teilchen zu tun? Wieso ist Eichinvarianz anders? Leonard Susskind und Art Friedman erklären nicht alles, was es über Spezielle Relativitätstheorie und Elektrodynamik zu wissen gibt – sondern alles Wichtige.Mit diesem Buch bekommen begeisterte Physik-Amateure die notwendige Mathematik und Formeln an die Hand, die sie für ein wirkliches Verständnis benötigen. Die Autoren erklären mit witzigen und hilfreichen Dialogen, grundlegenden Übungen und glasklaren Erläuterungen die Spezielle Relativitätstheorie und Elektrodynamik so einfach wie möglich, aber nicht einfacher.Table of ContentsEinführung.- 1 Die Lorentz-Transformation.- 2 Geschwindigkeiten und Vierervektoren.- 3 Relativistische Bewegungsgesetze.- 4 Klassische Feldtheorie.- 5 Teilchen und Felder.- I Verrückte Einheiten.- 6 Das Lorentzkraft-Gesetz.- 7 Fundamentale Prinzipien und Eichinvarianz.- 8 Die Maxwell-Gleichungen.- 9 Physikalische Konsequenzen der Maxwell-Gleichungen.- 10 Maxwell aus Lagrange.- 11 Felder und klassische Mechanik.- A Magnetische Monopole.- B Dreidimensionale Differentialoperatoren.- Index.
£26.59
Springer Spektrum Klassische Elektrodynamik
Book Synopsis
£34.19
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Electrostatics and Magnetostatics
Book SynopsisThis textbook offers you a profound understanding of the core concepts in electrostatics and magnetostatics. It covers basic equations of electrostatics and solution of the Poisson equation as well as Magnetostatics.
£49.49
Springer Electrodynamics
Book SynopsisLorentz Force and Maxwell’s Equations.- Stationary Electric Charges and the Distribution of Electricity on Conductors.- Boundary Value problems in Electrostatics.- Magnetostatics in Vacuum.- Electromagnetic Processes in Matter.- Electrostatics in Matter.- Magnetostatics in Matter.- Fields of Moving Charges.- Quasi-Stationary Currents.- Electromagnetic Waves.- X-Ray Scattering.- Special Theory of Relativity.- Covariant Electrodynamics.- Relativistic Mechanics.- Vectors, Vector Analysis and Integral Theorems.- Mathematical Tools.- Systems of Units in Electrodynamics.- Compilation of Formulas for Electrodynamics.
£58.49
Springer Verlag GmbH Innere Elektronik Erster Teil Elektronik des
Book SynopsisTable of ContentsE 1. Definition der Elektronik.- E 2. Das Elektron als Korpuskel.- E 3. Das Elektron als Welle.- Erstes Kapitel. Langsame Bewegung des Elektrons im elektrischen Felde.- I 1. Arbeit und Elektronenenergie im elektrischen Felde.- I 2. Bewegung langsamer Elektronen im elektrischen Homogenfelde.- I 3. Elementare Theorie des Ablenkkondensators.- I 4. Elektrostatik zweidimensionaler Ablenkfelder.- I 5. Elektronik des ungeschirmten Ablenk-Kondensators.- I 6. Strichfokussierung in Röntgenröhren.- I 7. Elektronenbewegung im elektrostatischen Paßfelde.- I 8. Das Kepler-Problem des Einzelelektrons.- I 9. Aufladungserscheinungen in Hochvakuumröhren.- Zweites Kapitel. Langsame Bewegung des Elektrons im elektromagnetischen Felde.- II 1. Die Lorentz-Kraft.- II 2. Die Energie langsamer Elektronen im stationären elektromagnetischen Felde.- II 3. Langsame Elektronenbewegung im homogenen, magnetostatischen Felde.- II 4. Der Kaufmann-Thomsonsche Massenspektrograph.- II 5. Der Astonsche Massenspektrograph.- II 6. Elementare Theorie des Magnetrons.- II 7. Das ebene Magnetron als Ablenkorgan.- II 8. Der magnetische Sekundärelektronen-Vervielfacher.- II 9. Stationäre Elektronenbewegung im Schlitzanoden-Magnetron.- II 10. Einfluß elektrischer Störfelder auf die zyklische Elektronenbewegung im magnetischen Felde.- II 11. Das Prinzip des Zyklotrons.- II 12. Einführung in die Stabilitätsprobleme des Zyklotrons.- Drittes Kapitel. Allgemeine klassische Mechanik des Einzelelektrons.- III 1. Das Hamiltonsche Prinzip.- III 2. Ermittlung zweidimensionaler Elektronenbewegungen am Membranmodell.- III 3. Das kinetische Potential des elektromagnetischen Feldes.- III 4. Der Satz von Larmor.- III 5. Bewegung eines Elektrons im kugelsymmetrischen Magnetfelde.- III 6. Einführung in die Theorie des Polarlichtes.- III 7. Die Hamiltonschen kanonischen Gleichungen.- III 8. Die Glasersche Störungsmethode.- III 9. Das Prinzip der kleinsten Wirkung.- III 10. Die Wirkungsfunktion.- III 11. Strahlenmechanik.- III 12. Strahlenoptik.- Viertes Kapitel. Die elektronenoptischen Systeme der Gaußschen Dioptrik.- IV 1. Geometrie der kollinearen Abbildung.- IV 2. Ionenstrahlen in rotationssymmetrischen Systemen.- IV 3. Das Mark der rotationssymmetrischen Primärfelder.- IV 4. Gaußsche Elektronendioptrik rotationssymmetrischer Systeme.....- IV 5. Wirkungsweise kurzer magnetischer Linsen.- IV 6. Magnetische Linsen mit analytisch integrablen Strahlgleichungen...- IV 7. Allgemeine Eigenschaften elektrischer Linsen.- IV 8. Theorie der kurzen elektrischen Linsen.- IV 9. Uniforme elektrische Rohrlinsen.- IV 10. Heteroforme Rohrlinsen.- IV 11. Kreisloch-Blenden.- IV 12. Die Kreislochblenden-Immersionslinse.- IV 13. Analytische Theorie der Immersionslinse.- IV 14. Elektronen-Objektive.- IV 15. Kathoden-Objektive.- IV 16. Nadelkathoden.- IV 17. Elektrostatik des Elektronenwerfers.- IV 18. Dioptrik des Elektronenwerfers.- Fünftes Kapitel. Einführung in die Theorie der elektronenoptischen Aberration.- V 1. Störungstheorie der Elektronenbahnen in achsialsymmetrischen Feldern.- V 2. Die monochromatischen Abbildungsfehler dritter Ordnung in zentrierten Systemen.- V 3. Chromatische Elektronenaberration in zentrierten Feldern.- V 4. Das Punkteikonal.- V 5. Aberrationstheorie einfach-symmetrischer Ablenksysteme.- V 6. Das Richtungseikonal.- V 7. Das Winkeleikonal der sphärischen Doppelfläche.- V 8. Das gemischte Eikonal.- V 9. Das Seidelsche Eikonal.- V 10. Das Seidel-Glasersche Eikonal.- Sechstes Kapitel. Die Grundlagen der relativistischen Elektronik.- VI 1. Der Kraftbegriff der beschränkten Relativitätstheorie.- VI 2. Elektromagnetische Feldkräfte auf bewegte Ladungsträger.- VI 3. Transformation der Konvektionsstromdichte.- VI 4. Die Potentialfunktionen der relativistischen Mechanik.- VI 5. Die Hyperbel-Bewegung.- VI 6. Strahlungsdruck auf bewegte Ladungskörper.- VI 7. Relativistische Kepler-Bewegung.- VI 8. Relativistische Elektronenbahnen im ebenen Magnetron.- VI 9. Theorie des Betatrons.- VI 10. Das Synchro-Zyklotron.- VI 11. Das Synchrotron.- VI 12. Der Linearbeschleuniger.- VI 13. Relativistische Elektronenoptik zentrierter Felder.- Literaturhinweise.- Namen- und Sachverzeichnis.
£67.49
LAP Lambert Academic Publishing Elektroprivod S Sinkhronnym Dvigatelem
Book Synopsis
£52.46
Eae Editorial Academia Espanola Guía para el Análisis de Estabilidad en Sistemas de Potencia
£38.64
Editorial Academica Espanola Método de protección contra descargas
Book Synopsis
£29.80
Infinite Science Publishing Magnetic Fluid Hyperthermia: Magnetic Relaxation
Book Synopsis
£71.62
Noor Publishing Three Phase Induction Motor
Book Synopsis
£23.83
Globeedit Time Based Development Planning of Distribution
Book Synopsis
£22.62
Edicoes Nosso Conhecimento Qualidade de energia elétrica e micro-rede
Book Synopsis
£43.29
Edicoes Nosso Conhecimento Sistema inteligente de monitoramento e controle
Book Synopsis
£38.00
Narosa Publishing House Physics of Semiconductor Devices: IWPSD-2003,
Book SynopsisPhysics of Semiconductor Devices covers latest trends in semiconductor materials, devices, and technologies across two volumes. Includes discussions on elemental and compound semiconductors, MEMS, nanofluidic devices, nanostructures, device modeling, scaling, emerging technologies, high frequency devices, and optoelectronics.
£112.50
Det Danske Sprog- og Litteraturselskab The Discovery of Electromagnetism: Made in the
Book SynopsisAfter his revolutionary discovery of electromagnetism in 1820 H.C. Oersted quickly published his findings in a small treatise in Latin for the scholars of Europe. Soon after the treatise was translated into French, Italian, German, English and Danish, and reprinted in a number of scientific journals. This new publication contains photographic reproductions of all these texts. Søren Absalon Larsen, professor at the College of Advanced Technology founded by Oersted in 1829, currently DTU (Technical University of Denmark) published the texts in facsimile in 1920, the hundred-year anniversary for Oersteds discovery. It is this 1920 edition which is now reprinted, supplemented by a new postscript by Carl Henrik Koch.
£13.30
Springer Solved Problems in Lagrangian and Hamiltonian Mechanics
Book SynopsisThe aim of this work is to bridge the gap between the well-known Newtonian mechanics and the studies on chaos, ordinarily reserved to experts. Several topics are treated: Lagrangian, Hamiltonian and Jacobi formalisms, studies of integrable and quasi-integrable systems. The chapter devoted to chaos also enables a simple presentation of the KAM theorem. All the important notions are recalled in summaries of the lectures. They are illustrated by many original problems, stemming from real-life situations, the solutions of which are worked out in great detail for the benefit of the reader. This book will be of interest to undergraduate students as well as others whose work involves mechanics, physics and engineering in general.Trade ReviewFrom the reviews:“The present book fills an important gap in the scientific literature since most books on analytical mechanics concentrate on the theoretical aspects. A great number of exercises and problems are divided into eight chapters … . In conclusion, this is an excellent source of concrete examples for students and mathematicians from several fields.” (Mircea Crâşmăreanu, Zentralblatt MATH, Vol. 1172, 2009)Table of ContentsForeword Synoptic Tables. Chapter 1 : The Lagrangian formulation (1 1 problems) Chapter 2 : Lagrangian systems (14 problems) Chapter 3 : The Hamilton's principle (15 problems) Chapter 4 : The Hamiltonian formalism (17 problems) Chapter 5 : The Hamilton-Jacobi formalism (1 1 problems) Chapter 6 : Integrable systems (18 problems) Chapter 7 : Quasi-integrable systems (9 problems) Chapter 8 : From order to chaos (12 problems). Bibliography.
£75.99