Atomic and molecular physics Books
Springer Nature Switzerland AG Strongly Interacting Matter under Rotation
Book SynopsisThis book addresses the needs of growing community of graduate students and researchers new to the area, for a survey that covers a wide range of pertinent topics, summarizes the current status of the field, and provides the necessary pedagogical materials for newcomers. The investigation of strongly interacting matter under the influence of macroscopic rotational motion is a new, emerging area of research that encompasses a broad range of conventional physics disciplines such as nuclear physics, astrophysics, and condensed matter physics, where the non-trivial interplay between global rotation and spin is generating many novel phenomena. Edited and authored by leading researchers in the field, this book covers the following topics: thermodynamics and equilibrium distribution of rotating matter; quantum field theory and rotation; phase structure of QCD matter under rotation; kinetic theory of relativistic rotating matter; hydrodynamics with spin; magnetic effects in fluid systems with high vorticity and charge; polarization measurements in heavy ion collisions; hydrodynamic modeling of the QCD plasma and polarization calculation in relativistic heavy ion collisions; chiral vortical effect; rotational effects and related topics in neutron stars and condensed matter systems.Trade Review“The book is interesting to everyone who wants to have the detailed and comprehensive review of recent developments in strongly interacting matter under the influence of macroscopic rotational motion.” (Dominik Strzałka, zbMATH 1480.82001, 2022)Table of Contents1. Strongly Interacting Matter under Rotation: An Overview.- 2. Quantum Field Theory and Rotation.- 3. Thermodynamics of Rotating Matter.- 4. Phase Structure of Matter under Rotation.- 5. The Spin Transport of Relativistic Rotating Matter.- 6. Relativistic Hydrodynamics with Spin.- 7. Global and Local Polarization Measurements at RHIC.- 8. Global and Local Polarization Measurements at LHC.- 9. Vorticity and Polarization in Heavy Ion Collisions: Hydrodynamic Models.- 10. Vorticity and Polarization in Heavy Ion Collisions: Transport Models.- 11. Magnetic Effects of Charged Fluid under Rotation.- 12. A Review of Chiral Vertical Effect.
£52.24
Springer Nature Switzerland AG The Technology of Pressurized Water Reactors:
Book SynopsisThis book offers a complete panorama of the pressurized water reactor industry, beginning from its origin in the USA and the realization of nuclear engines for naval propulsion, to its most recent developments in the field of civil energy production, particularly in France with the 56 reactors of the multinational electric utility company, Electricité de France (EDF). This comprehensive two-volume masterwork features detailed descriptions of all the crucial components driving a pressurized water nuclear reactor. Volume 1 deals with the main components, such as the main primary circuit, the reactor core, and the steam generators. Volume 2 covers the secondary circuit and the cold source, including components such as the turbine, condenser, alternator, transformers and power supply. Written by Serge Marguet, a leading specialist in reactor physics and author of several books on the subject, this book draws on his experience of more than 35 years in research and development at EDF, a global leader in civil nuclear energy. Featuring a richly illustrated, full-color iconography, as well as a detailed index and bibliography, The Technology of Pressurized Water Reactors is an indispensable work for seasoned nuclear energy professionals, as well as inquisitive newcomers to the field.Table of ContentsHistory of the pressurized water reactor type.- The nuclear island.- The primary circuit.- The vessel and its internals.- Reactor core and fuel.- The secondary circuit.- The main circuits.- The turbine-generator unit and electricity production.- Towards the pressurized water reactors of the 21st century.
£237.49
Springer Nature Switzerland AG Topics and Solved Exercises at the Boundary of Classical and Modern Physics
Book SynopsisThis book provides a simple and well-structured course followed by an innovative collection of exercises and solutions that will enrich a wide range of courses as part of the undergraduate physics curriculum. It will also be useful for first-year graduate students who are preparing for their qualifying exams. The book is divided into four main themes at the boundary of classical and modern physics: atomic physics, matter-radiation interaction, blackbody radiation, and thermodynamics. Each chapter starts with a thorough and well-illustrated review of the core material, followed by plenty of original exercises that progress in difficulty, replete with clear, step-by-step solutions. This book will be invaluable for undergraduate course instructors who are looking for a source of original exercises to enhance their classes, while students that want to hone their skills will encounter challenging and stimulating problems.Table of ContentsChapter 1. Atoms.- Chapter 2. Matter-Radiation Interaction.- Chapter 3. Black Body Radiation.- Chapter 4. Thermodynamics.- References.- Appendix A. Michelson and Morley's experiment.- Appendix B. Useful mathematical reminders in physics.- Index.
£52.24
Springer Nature Switzerland AG A First Course on Symmetry, Special Relativity and Quantum Mechanics: The Foundations of Physics
Book SynopsisThis book provides an in-depth and accessible description of special relativity and quantum mechanics which together form the foundation of 21st century physics. A novel aspect is that symmetry is given its rightful prominence as an integral part of this foundation. The book offers not only a conceptual understanding of symmetry, but also the mathematical tools necessary for quantitative analysis. As such, it provides a valuable precursor to more focused, advanced books on special relativity or quantum mechanics.Students are introduced to several topics not typically covered until much later in their education.These include space-time diagrams, the action principle, a proof of Noether's theorem, Lorentz vectors and tensors, symmetry breaking and general relativity. The book also provides extensive descriptions on topics of current general interest such as gravitational waves, cosmology, Bell's theorem, entanglement and quantum computing.Throughout the text, every opportunity is taken to emphasize the intimate connection between physics, symmetry and mathematics.The style remains light despite the rigorous and intensive content. The book is intended as a stand-alone or supplementary physics text for a one or two semester course for students who have completed an introductory calculus course and a first-year physics course that includes Newtonian mechanics and some electrostatics. Basic knowledge of linear algebra is useful but not essential, as all requisite mathematical background is provided either in the body of the text or in the Appendices. Interspersed through the text are well over a hundred worked examples and unsolved exercises for the student.Table of Contents1 Introduction 91.1 The goal of physics . . . . . . . . . . . . . . . . . . . . . . . . 91.2 The connection between physics and mathematics . . . . . . . 101.3 Paradigm shifts . . . . . . . . . . . . . . . . . . . . . . . . . . 131.4 The Correspondence Principle . . . . . . . . . . . . . . . . . . 162 Symmetry and Physics 172.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 172.2 What is Symmetry? . . . . . . . . . . . . . . . . . . . . . . . . 172.3 Role of Symmetry in Physics . . . . . . . . . . . . . . . . . . . 182.3.1 Symmetry as a guiding principle . . . . . . . . . . . . . 182.3.2 Symmetry and Conserved Quantities: Noether's Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.3.3 Symmetry as a tool for simplifying problems . . . . . . 192.4 Symmetries were made to be broken . . . . . . . . . . . . . . 202.4.1 Spacetime symmetries . . . . . . . . . . . . . . . . . . 202.4.2 Parity violation . . . . . . . . . . . . . . . . . . . . . . 212.4.3 Spontaneously broken symmetries . . . . . . . . . . . . 242.4.4 Variational calculations: Lifeguards and light rays . . . 273 Formal Aspects of Symmetry 303.1 Learning outcomes . . . . . . . . . . . . . . . . . . . . . . . . 303.2 Symmetries and Operations . . . . . . . . . . . . . . . . . . . 303.2.1 Denition of a symmetry operation . . . . . . . . . . . 303.2.2 Rules obeyed by symmetry operations . . . . . . . . . 323.2.3 Multiplication tables . . . . . . . . . . . . . . . . . . . 353.2.4 Symmetry and group theory . . . . . . . . . . . . . . . 363.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.3.1 The identity operation . . . . . . . . . . . . . . . . . . 373.3.2 Permutations of two identical objects . . . . . . . . . . 373.3.3 Permutations of three identical objects . . . . . . . . . 383.3.4 Rotations of regular polygons . . . . . . . . . . . . . . 393.4 Continuous vs discrete symmetries . . . . . . . . . . . . . . . 403.5 Symmetries and Conserved Quantities:Noether's Theorem . . . . . . . . . . . . . . . . . . . . . . . . 413.6 Supplementary: Variational Mechanics and the Proof of Noether'sTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423.6.1 Variational Mechanics: Principle of Least Action . . . . 423.6.2 Euler-Lagrange Equations . . . . . . . . . . . . . . . . 473.6.3 Proof of Noether's Theorem . . . . . . . . . . . . . . . 484 Symmetries and Linear Transformations 524.1 Learning outcomes . . . . . . . . . . . . . . . . . . . . . . . . 524.2 Review of Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 534.2.1 Coordinate free denitions . . . . . . . . . . . . . . . . 534.2.2 Cartesian Coordinates . . . . . . . . . . . . . . . . . . 584.2.3 Vector operations in component form . . . . . . . . . . 594.2.4 Position vector . . . . . . . . . . . . . . . . . . . . . . 604.2.5 Dierentiation of vectors: velocity and acceleration . . 624.3 Linear Transformations . . . . . . . . . . . . . . . . . . . . . . 634.3.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . 634.3.2 Translations . . . . . . . . . . . . . . . . . . . . . . . . 644.3.3 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . 664.3.4 Reections . . . . . . . . . . . . . . . . . . . . . . . . . 674.4 Linear Transformations and matrices . . . . . . . . . . . . . . 684.4.1 Linear transformations as matrices . . . . . . . . . . . 684.4.2 Identity Transformation and Inverses . . . . . . . . . . 704.4.3 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . 704.4.4 Reections . . . . . . . . . . . . . . . . . . . . . . . . . 724.4.5 Matrix Representation of Permutations of Three Objects 734.5 Pythagoras and Geometry . . . . . . . . . . . . . . . . . . . . 745 Special Relativity I: The Basics 775.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 775.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 775.2.1 Frames5.2.2 Spacetime Diagrams . . . . . . . . . . . . . . . . . . . 785.2.3 Newtonian Relativity and Galilean Transformations . . 835.3 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855.3.1 The Fundamental Postulate . . . . . . . . . . . . . . . 855.3.2 The problem with Galilean Relativity . . . . . . . . . . 855.3.3 Michelson-Morley Experiment . . . . . . . . . . . . . . 875.3.4 Maxwell's Equations . . . . . . . . . . . . . . . . . . . 905.4 Summary of Consequences . . . . . . . . . . . . . . . . . . . . 915.5 Relativity of Simultaneity . . . . . . . . . . . . . . . . . . . . 925.6 Time Dilation . . . . . . . . . . . . . . . . . . . . . . . . . . . 975.6.1 Derivation: . . . . . . . . . . . . . . . . . . . . . . . . 975.6.2 Proper Time . . . . . . . . . . . . . . . . . . . . . . . . 995.6.3 Experimental Conrmation . . . . . . . . . . . . . . . 1015.6.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 1025.7 Lorentz Contraction . . . . . . . . . . . . . . . . . . . . . . . 1045.7.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . 1045.7.2 Properties: . . . . . . . . . . . . . . . . . . . . . . . . . 1045.7.3 Proper Length and Proper Distance. . . . . . . . . . . 1045.7.4 Examples: . . . . . . . . . . . . . . . . . . . . . . . . . 1056 Special Relativity II: In Depth 1106.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 1106.2 Lorentz Transformations . . . . . . . . . . . . . . . . . . . . . 1106.2.1 Derivation of general form . . . . . . . . . . . . . . . . 1106.2.2 Properties of Lorentz Transformations . . . . . . . . . 1136.2.3 Lorentzian Geometry . . . . . . . . . . . . . . . . . . . 1166.3 The Light Cone . . . . . . . . . . . . . . . . . . . . . . . . . . 1196.4 Proper time revisited . . . . . . . . . . . . . . . . . . . . . . . 1206.5 Relativistic Addition of Velocities . . . . . . . . . . . . . . . . 1226.6 Relativistic Doppler Shift . . . . . . . . . . . . . . . . . . . . . 1246.6.1 Non-relativistic Doppler Shift Review . . . . . . . . . . 1246.6.2 Relativistic Doppler Shift . . . . . . . . . . . . . . . . 1246.7 Relativistic Energy and Momentum . . . . . . . . . . . . . . . 1276.7.1 Relativistic Energy Momentum Conservation . . . . . . 1276.7.2 Relativistic Inertia . . . . . . . . . . . . . . . . . . . . 1286.7.3 Relativistic Energy . . . . . . . . . . . . . . . . . . . . 1296.7.4 Relativistic Three-Momentum . . . . . . . . . . . . . . 1296.7.5 Relationship Between Relativistic Energy and Momentum. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1306.7.6 Kinetic energy: . . . . . . . . . . . . . . . . . . . . . . 1306.7.7 Massless particles . . . . . . . . . . . . . . . . . . . . 1316.8 Space-time Vectors . . . . . . . . . . . . . . . . . . . . . . . . 1336.8.1 Position Four-Vector: . . . . . . . . . . . . . . . . . . . 1346.8.2 Four-momentum: . . . . . . . . . . . . . . . . . . . . . 1356.8.3 Null four-vectors . . . . . . . . . . . . . . . . . . . . . 1376.8.4 Relativistic Scattering . . . . . . . . . . . . . . . . . . 1376.8.5 More Examples . . . . . . . . . . . . . . . . . . . . . . 1386.9 Relativistic Units . . . . . . . . . . . . . . . . . . . . . . . . . 1396.10 Symmetry Redux . . . . . . . . . . . . . . . . . . . . . . . . . 1406.10.1 Matrix form of Lorentz Transformations . . . . . . . . 1406.10.2 Lorentz Transformations as a Symmetry Group . . . . 1426.11 Supplementary: Four vectors and tensors in covariant form . . 1437 General Relativity 1497.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 1497.2 Problems with Newtonian Gravity . . . . . . . . . . . . . . . . 1497.2.1 Review of Newtonian Gravity . . . . . . . . . . . . . . 1497.2.2 Perihelion Shift of Mercury . . . . . . . . . . . . . . . 1517.2.3 Action at a Distance . . . . . . . . . . . . . . . . . . . 1527.2.4 The Puzzle of Inertial vs Gravitational Mass . . . . . . 1537.3 Einstein's Thinking: the Strong Principle of Equivalence . . . 1537.4 Geometry of Spacetime . . . . . . . . . . . . . . . . . . . . . . 1557.5 Some Consequences of General Relativity: . . . . . . . . . . . 1587.6 Gravitational Waves . . . . . . . . . . . . . . . . . . . . . . . 1597.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1597.6.2 Detection . . . . . . . . . . . . . . . . . . . . . . . . . 1607.6.3 Recent Observations . . . . . . . . . . . . . . . . . . . 1617.7 Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1637.7.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . 1637.7.2 Properties: . . . . . . . . . . . . . . . . . . . . . . . . . 1637.7.3 Observational Evidence . . . . . . . . . . . . . . . . . . 1647.7.4 Further Information . . . . . . . . . . . . . . . . . . . 1667.8 Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1668 Introduction to the Quantum 1708.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 1708.2 Light as particles . . . . . . . . . . . . . . . . . . . . . . . . . 1718.2.1 Review: Light as Waves . . . . . . . . . . . . . . . . . 1718.2.2 Photoelectric Eect . . . . . . . . . . . . . . . . . . . . 1718.2.3 Compton Scattering . . . . . . . . . . . . . . . . . . . 1758.3 Blackbody Radiation and the Ultraviolet Catastrophe . . . . . 1798.3.1 Blackbody Radiation . . . . . . . . . . . . . . . . . . . 1798.3.2 Derivation of Rayleigh-Jeans Law . . . . . . . . . . . . 1818.3.3 The ultraviolet catastrophe . . . . . . . . . . . . . . . 1888.3.4 Quantum resolution: . . . . . . . . . . . . . . . . . . . 1898.3.5 The Early Universe: the ultimate blackbody . . . . . . 1918.4 Particles as waves . . . . . . . . . . . . . . . . . . . . . . . . . 1968.4.1 Electron waves . . . . . . . . . . . . . . . . . . . . . . 1968.4.2 de Broglie Wavelength . . . . . . . . . . . . . . . . . . 1978.4.3 Observational Evidence . . . . . . . . . . . . . . . . . . 1998.5 The Heisenberg Uncertainty Principle . . . . . . . . . . . . . . 2029 The Wave Function 2049.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 2049.2 Quantum vs Newtonian description of physical states . . . . . 2049.2.1 Newtonian description of the state of a particle . . . . 2059.2.2 Quantum description of the state of a particle . . . . . 2059.3 Physical Consequences and Interpretation . . . . . . . . . . . 2079.4 Measurements of position . . . . . . . . . . . . . . . . . . . . 2089.5 Example: Gaussian wavefunction . . . . . . . . . . . . . . . . 2099.6 \Spooky" Action at a Distance: Non-Locality in QuantumMechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2119.6.1 The EPR \Paradox" . . . . . . . . . . . . . . . . . . . 2119.6.2 Bell's Theorem and the Experimental Repudiation ofEPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21410 The Schrodinger Equation 21710.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 21710.2 Momentum in Quantum Mechanics . . . . . . . . . . . . . . . 21810.2.1 Pure Waves . . . . . . . . . . . . . . . . . . . . . . . . 21810.2.2 The Momentum Operator . . . . . . . . . . . . . . . . 22010.3 Energy in Quantum Mechanics . . . . . . . . . . . . . . . . . 22310.4 The Time Independent Schrodinger Equation . . . . . . . . . 22410.4.1 Stationary States . . . . . . . . . . . . . . . . . . . . . 22410.4.2 The \Quantum" in Quantum Mechanics . . . . . . . . 22610.5 Examples of Stationary States . . . . . . . . . . . . . . . . . . 22610.5.1 Free particle in one dimension . . . . . . . . . . . . . . 22610.5.2 Example 2: Particle in a Box with Impenetrable Walls 22710.5.3 Example 3 : Simple Harmonic Oscillator . . . . . . . . 22910.6 Absorption and emission . . . . . . . . . . . . . . . . . . . . . 23110.7 Tunnelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23310.7.1 Tunnelling through a potential barrier of nite width . 23310.7.2 Particle in a Box with Penetrable Walls . . . . . . . . . 23510.7.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 23710.7.4 Applications of tunnelling . . . . . . . . . . . . . . . . 23810.8 The Quantum Correspondence Principle . . . . . . . . . . . . 24210.8.1 Recovering the everyday world . . . . . . . . . . . . . . 24210.8.2 The Bohr Correspondence Principle . . . . . . . . . . . 24310.9 The Time Dependent Schrodinger equation . . . . . . . . . . . 24410.9.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 24611 The Hydrogen Atom 24911.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 24911.2 Newtonian (Classical) Dynamics . . . . . . . . . . . . . . . . . 24911.3 The Bohr Atom . . . . . . . . . . . . . . . . . . . . . . . . . . 25111.4 Semi-classical spectrum from the Bohr correspondence principle25411.5 Emission and Absorption Spectra . . . . . . . . . . . . . . . . 25411.6 Three Dimensional Hydrogen Atom . . . . . . . . . . . . . . . 25611.6.1 Schrodinger Equation . . . . . . . . . . . . . . . . . . . 25611.6.2 Solutions and Quantum Numbers . . . . . . . . . . . . 25811.6.3 Fermions and the spin quantum number . . . . . . . . 26211.7 Periodic Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 26511.7.1 Hydrogen-like atoms . . . . . . . . . . . . . . . . . . . 26511.7.2 Chemical Properties and the Periodic Table . . . . . . 26612 Nuclear Physics 27012.1 Properties of the Nucleus . . . . . . . . . . . . . . . . . . . . . 27012.1.1 Mass of Nucleons . . . . . . . . . . . . . . . . . . . . . 27012.1.2 Structure of Nucleus . . . . . . . . . . . . . . . . . . . 27112.1.3 The Nuclear Force . . . . . . . . . . . . . . . . . . . . 27112.2 Binding Energy and Stability . . . . . . . . . . . . . . . . . . 27412.2.1 Isotopes . . . . . . . . . . . . . . . . . . . . . . . . . . 27412.2.2 Binding Energy . . . . . . . . . . . . . . . . . . . . . . 27512.2.3 Binding Energy per Nucleon . . . . . . . . . . . . . . . 27512.3 Formation of Elements: A Brief History of the Universe . . . . 27612.4 Radioactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 27912.4.1 Unstable Isotopes . . . . . . . . . . . . . . . . . . . . . 27912.4.2 Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . 28112.4.3 Beta decay . . . . . . . . . . . . . . . . . . . . . . . . . 28212.4.4 Alpha Decay . . . . . . . . . . . . . . . . . . . . . . . 28312.4.5 Decay Rates . . . . . . . . . . . . . . . . . . . . . . . . 28312.4.6 Carbon Dating . . . . . . . . . . . . . . . . . . . . . . 28513 Supplementary: Advanced Topics 28713.1 Quantum Information and Quantum Computation . . . . . . . 28713.2 Relativity and quantum mechanics . . . . . . . . . . . . . . . 28714 Conclusions 28815 Appendix: Mathematical Background 28915.1 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . 28915.2 Probabilities and expectation values . . . . . . . . . . . . . . . 29115.2.1 Discrete Distributions . . . . . . . . . . . . . . . . . . 29115.2.2 Continuous probability distributions . . . . . . . . . . 29215.2.3 Dirac Delta Function . . . . . . . . . . . . . . . . . . . 29615.3 Supplementary: Fourier Series and Transforms . . . . . . . . . 29815.3.1 Fourier series . . . . . . . . . . . . . . . . . . . . . . . 29815.3.2 Fourier Transforms . . . . . . . . . . . . . . . . . . . . 30015.3.3 The mathematical uncertainty principle . . . . . . . . . 30215.3.4 Dirac Delta Function Revisited . . . . . . . . . . . . . 30315.3.5 Parseval's Theorem . . . . . . . . . . . . . . . . . . . . 30315.4 Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30415.4.1 Moving pure waves . . . . . . . . . . . . . . . . . . . . 30415.4.2 Complex Waves . . . . . . . . . . . . . . . . . . . . . . 30515.4.3 Group velocity and phase velocity . . . . . . . . . . . 30515.4.4 Wave packets . . . . . . . . . . . . . . . . . . . . . . . 30715.4.5 Wave number and momentum . . . . . . . . . . . . . . 30915.5 Derivation of Hydrogen Wave Functions . . . . . . . . . . . . 312
£62.99
Springer International Publishing AG The Euroschool on Exotic Beams, Vol. VI
Book SynopsisThis book is based on the lectures given at the “Euroschool on Exotic Beams” and collects contributions which address topics from the traditional core of the field of exotic nuclei like nuclear structure far from stability, discussing recent theoretical developments and state-of-the-art experimental methods. It provides also new perspectives in nuclear astrophysics and in applied areas such as gamma-ray emission imaging. The contributions are written with a pedagogical approach and carefully edited in order to provide the readership with a clear and fluent reading. The book is intended for PhD students and young researchers who are approaching the new research lines in nuclear physics with exotic nuclei. Only basics concepts on quantum mechanics and nuclear physics are requested to follow and master the covered arguments.Table of ContentsChapter 1: Nuclear structure at the limits of stability. The theory view.Authors: Frederic Nowacki and Alfredo Poves Introduction The Shell Model as Unified View of Nuclear Structure; A primer Shell Evolution and Correlations N=40: from 68Ni to 80Zr N=50: from 78Ni to 100Sn Islands of inversion and their mergings Conclusions Chapter 2: Low-energy Coulomb excitation and nuclear deformation Author: Magda ZielinskaAbstract: Coulomb excitation is one of the rare methods available to obtain information on static electromagnetic moments of short-lived exited nuclear states. In the scattering of two nuclei, the electromagnetic field that acts between them causes their excitation. The process selectively populates low-lying collective states and is therefore ideally suited to study nuclear collectivity. While these experiments used to be restricted to stable isotopes, the advent of new facilities, providing intense beams of short-lived radioactive species has opened the possibility to apply this powerful technique to a much wider range of nuclei. In this chapter, we will discuss observables that can be measured in a Coulomb-excitation experiment, and their relation to nuclear structure parameters and, in particular, nuclear shape. Selected examples of recent low-energy Coulomb excitation studies will be presented to illustrate the potential of this technique to investigate phenomena such as shape coexistence and octupole collectivity.Introduction Semiclassical approximation of low-energy Coulomb excitation Nuclear deformation and quadrupole sum rules Reorientation effect Relative signs of electromagnetic matrix elements Experimental considerations Beam and target requirements Particle detectors for stable and radioactive beam experiments Normalization of experimental Coulomb-excitation cross sections Recent results Shape coexistence Octupole collectivity Summary and outlookChapter 3: Ab Initio Approaches to Nuclear Structure Author: Robert Roth Abstract: I will present an overview of modern ab initio approaches to nuclear structure, focusing on basis expansion methods, such as the no-core shell model. Starting from interactions derived within chiral effective field theory, the individual stages on an ab initio calculation will be discussed, starting from a pre-processing stage based on the similarity renormalization group, followed by the solution of the many-body Schrödinger equation in a finite model space, and completed by a post-processing stage including the quantification of theory uncertainties using Bayesian methods. I will put particular emphasis on the recent advances in the context of hybrid methods that use another many-body scheme, such as many-body perturbation theory or the in-medium similarity renormalization group to accelerate the convergence of the no-core shell model. In order to demonstrate the potential and the perspectives of such ab initio approaches, I will highlight several recent applications. Introduction Nuclear Hamiltonian Pre-Processing: Similarity Renormalization Group Many-Body Solution: No-Core Shell Model Hybrid Methods: In-Medium No-Core Shell Model Post-Processing: Theory Uncertainties Recent Applications Conclusion & Outlook Chapter 4: Nuclear data and experiments for astrophysics Authors: Stephan Goriely and Anu Kankainen Abstract: Nuclear astrophysics aims to understand the origin of elements and the role of astrophysical processes in astrophysical events. Nuclear reactions and reaction rates depend strongly on nuclear properties and on the astrophysical environment. Nuclear inputs for stellar reaction rates involve a variety of nuclear properties, theoretical models and experimental data. Experiments providing data for nuclear astrophysics range from stable ion beam direct measurements to radioactive beam experiments employing inverse kinematics or indirect methods. Many properties relevant for astrophysical calculations, such as nuclear masses and beta decays, have also been intensively studied. This contribution shortly introduces selected astrophysical processes, discusses the related nuclear data needs and gives examples of recent experimental efforts in the field. Introduction: Origin of elements and astrophysical processes Nuclear reactions of astrophysical interest Data needed for various nucleosynthesis processes Experiments for nuclear astrophysics Nuclear reactions Nuclear properties (focus on masses and beta-decay studies) Summary and Outlook Chapter 5: State-of-the-art gamma-ray spectrometers for in-beam measurements Authors: Caterina Michelagnoli and Francesco Recchia Abstract: The nuclear structure of nuclei in different regions of the nuclear chart is a still unresolved puzzle for nuclear theory. The quest for a comprehensive understanding of the structure of all nuclei as well as for precise observables important for nuclear astrophysics needs precise observables. Those have been obtained in the last decades by using the resolution and efficiency of arrays of HPGe detectors. In those Notes a review of the main spectroscopy techniques will be reported. After an historical overview of the main spectrometers that contributed to our nowadays knowledge in nuclear structure, the principles of advanced gamma-ray tracking will be described. The setup and functioning of array based on this technique will be thus reported and some first results introduced.Introduction Generalities History Advanced gamma-ray tracking General Idea Digital signal processing Count-rate capabilities Position resolution and pulse shape analysis Gamma-ray tracking Selected highlights from instrumental point of view Doppler correction capabilities Lifetime measurements with Doppler techniques Chapter 6: Nuclear structure studies with active targets Author: Riccardo Raabe Abstract: The use of gaseous detectors in nuclear structure studies presents several challenges and interesting opportunities. In the last twenty years, active targets have been developed to address those challenges. In this paper we will review the characteristics of these instruments and how they can be used to great effect in a wide range of physics cases. Introduction Principles of active targets Physics cases and examples Chapter 7: Gamma ray emission imaging in the medical and nuclear safeguards fieldsAuthor: Peter Dendooven Abstract: Gamma rays can penetrate through a substantial amount of material. Therefore, the locations within an object from where gamma rays originate can be imaged by measuring the gamma rays escaping from the object. This technique of gamma ray emission imaging is introduced on the basis of its application in three different fields: nuclear medicine, particle beam radiotherapy and nuclear safeguards. To set the stage, the role and power of gamma ray emission imaging in these fields is demonstrated. Next, the principles of gamma ray emission imaging are reviewed. It will become clear how the basic principles lead to the essential instrument design considerations. Iterative image reconstruction will be explained in a non-mathematical way. Implementation of gamma ray emission imaging will be illustrated by discussing in some detail its state-of-the-art application in the three fields considered here.Applications of gamma ray emission imaging Nuclear medicine Particle beam radiotherapy Nuclear safeguards Principles of gamma ray emission imaging Basic principles Essential instrument design considerations Iterative image reconstruction Examples of gamma ray emission imaging Nuclear medicine Particle beam radiotherapy Nuclear safeguards Conclusions
£40.49
Springer International Publishing AG Molecular Dynamics
Book SynopsisThis molecular dynamics textbook takes the reader from classical mechanics to quantum mechanics and vice versa, and from few-body systems to many-body systems. It is self-contained, comprehensive, and builds the theory of molecular dynamics from basic principles to applications, allowing the subject to be appreciated by readers from physics, chemistry, and biology backgrounds while maintaining mathematical rigor. The book is enhanced with illustrations, problems and solutions, and suggested reading, making it ideal for undergraduate and graduate courses or self-study. With coverage of recent developments, the book is essential reading for students who explore and characterize phenomena at the atomic level. It is a useful reference for researchers in physics and chemistry, and can act as an entry point for researchers in nanoscience, materials engineering, genetics, and related fields who are seeking a deeper understanding of nature.Table of ContentsI BASICS OFCLASSICAL MECHANICS1 Principles of classical dynamics1.1 Newtonian dynamics1.2 Space and time1.3 Mass1.4 Energy1.5 Electric charge1.6 Reference system of coordinates1.7 Newtonian time1.8 Linear motion1.9 Angular motion1.10 Descriptions between inertialreference frames2 Foundations of Newtonian dynamics2.1 First Newton’s law2.2 Second Newton’s law2.3 Third Newton’s law2.4 Reduced mass of a two-particlesystem2.5 Time reversibility2.6 Angular momentum and torque2.7 Impulse, work and power2.8 Kinetic and potential energies2.9 Energy conservation3 Many-particle systems3.1 Reference frame of amany-particle system3.2 Angular momentum and torque of amany-particle system3.3 Mechanical energies of a many-particlesystem3.4 Transformation of the energycomponents3.5 Energy balance equation3.6 Statistical and time averages ofphysical observables3.7 Ergodic hypothesis3.8 Breaking the ergodic hypothesis3.9 Velocity distribution function3.10 Temperature of a system ofparticles3.11 Temperature scaling as athermostat3.12 Temperature fluctuations3.13 Pressure and volume3.14 The virial and the equation ofstate4 Mechanical descriptors4.1 Caloric curve4.2 Interatomic distancefluctuations4.3 Root mean square deviation ofpositions4.4 Orientational order parameter4.5 Pair correlation distributionfunction4.6 Correlation functions4.7 Properties of correlationfunctions4.8 Vibrational spectra fromautocorrelation functions5 Rigid body5.1 Angular momentum of a rotatingsystem of particles5.2 External torques acting on arotating body5.3 Total energy of a rotating rigidbody6 Analytical Mechanics6.1 Action function6.2 Principle of stationary action6.3 Classifying molecular systems6.4 Lagrange’s equations of motion6.5 Newtonian equations of motionfrom Lagrange theory6.6 Non-uniqueness of the Lagrangian6.7 Invariance of the Lagrangeequations of motion6.8 Motion with constraints6.9 Hamilton’s function6.10 Preservation of the Hamiltonianin time6.11 Conserved observables andsymmetries6.12 Space homogeneity6.13 Space isotropy6.14 Uniform passage of time6.15 Hamilton’s equations of motion6.16 Invariance under canonicaltransformations6.17 Time reversibility inHamiltonian theory6.18 Hamilton-Jacobi theory6.19 Illustrating with the harmonicoscillator6.20 Contact between quantum andclassical mechanics6.21 Poisson’s brackets6.22 Classical time propagatorII BASICS OF QUANTUM MECHANICS7 Wave-particle duality of matter7.1 Young’s experiment7.2 Interference of waves7.3 Photo-electron experiment7.4 Compton’s experiment7.5 Davisson-Germer’s experiment7.6 De Broglie’s hypothesis7.7 Bohr’s complementary principle8 Quantization of the energy8.1 Planck’s energy equation8.2 Blackbody radiation experiment8.3 Rayleigh-Jeans law8.4 Wien’s displacement law8.5 Ultraviolet catastrophe8.6 Planck’s law8.7 Franck-Hertz experiment8.8 Heisenberg’s uncertaintyprinciple8.9 Appendix: Planck’s radiationintensity law9 Quantization of the angularmomentum9.1 Orbital angular momentum andspin9.2 Characterizing a particle withspin9.3 Stern-Gerlach experiment9.4 Wave-particle duality and spinof a particle9.5 Fermions and bosons9.6 Pauli’s exclusion principle andHund’s rule9.7 Appendix: magnetic moment9.7.1 Electric current in a circularloop9.7.2 Magnetic g factor9.7.3 Magnetic energy and magneticwork9.7.4 Zeeman effect9.7.5 Electron spin9.7.6 Paschen-Back effect9.7.7 Applications of the spinresonance technique10 Postulates of quantum mechanics10.1 Reformulating the conceptualworld10.2 Postulates of quantum mechanics10.2.1 First postulate10.2.2 Second postulate10.2.3 Third postulate10.2.4 Fourth postulate10.2.5 Fifth postulate10.2.6 Sixth postulate10.3 Stationary states10.4 Superposition principle ofquantum states10.5 Bohr’s correspondence principle10.6 Selection rules10.7 Pauli’s principle in theelectronic wave function10.8 Wave function of the electronsin a molecule10.9 Variational principle of theenergy10.10 Appendix: proposing the waveequation for matter waves10.11 Appendix: expansion of a determinantalwave functionIII FIRST-PRINCIPLES MOLECULARDYNAMICS11 Dynamics of electrons and nuclei11.1 The electronic and nucleardynamics are coupled11.2 The molecular Hamiltonian11.3 Approximating the total wavefunction 20611.4 The time-dependent self-consistent field equations12 Classical limit of the nuclearmotion12.1 Polar form of the nuclear waveequation12.2 Continuity and Hamilton-Jacobiequations12.3 Conditions to describe the nuclearparticles classically12.4 Simplification of the nuclearpotential12.5 Parameterizing the potentialfunction12.6 Total energy of the molecularsystem12.7 Establishing the accuracy ofatomic forces12.8 Diffusion from the continuityequation12.9 Diffusion equation and particleflux12.10 Expansion of the electronicwave equation12.11 Expansion of the Newtonianequation of the nuclei12.12 Appendix: the Bohm’s quantumpotentialIV CLASSICAL MOLECULAR DYNAMICS13 Classical molecular dynamics13.1 Model interaction potentials13.2 Forcefields13.3 Atom types13.4 The united atom13.5 Bond elongation and compression13.6 Combination rules13.7 Bond angle vibration13.8 Plane bending13.9 Angle inversion13.10 Torsional motion13.11 Electrostatic interaction13.12 Van der Waals forces13.13 Interaction potentialfunctions of water13.14 Polarizability of atoms13.15 External fields and potentials13.16 Parameterization of forcefields13.17 Model potentials ofnon-biological systems13.18 Sutton-Chen potential function13.19 Gupta potential function13.20 Tersoff potential function13.21 Appendix: harmonic model ofthe dispersion energy14 Extended systems14.1 Fixed and flexible boundaries14.2 Periodic boundary conditions14.3 The P BC system is an opensystem14.4 Electrostatics in the P BC approach14.5 Ewald sum approach14.6 Using the Poisson equation14.7 Short-range interactions14.8 Dealing with the electrostaticself-interaction14.9 Long-range interactions14.10 Ewald electrostatic energy14.11 Smooth particle mesh Ewaldapproach14.12 Shifted potentials and forcesV TIME EVOLUTION OPERATORS15 Integrating the equations ofmotion15.1 The Liouville operator as atime propagator15.2 Discretizing the timepropagator15.3 Evolving positions and momenta15.4 Simplified time integrators15.5 Leapfrog algorithm15.6 Verlet algorithm15.7 Bond constraints
£58.49
De Gruyter Crystallography in Materials Science: From Structure-Property Relationships to Engineering
£65.55
De Gruyter Electron–Atom Collisions: Quantum-Relativistic Theory and Exercises
Book SynopsisElectron collisions with atoms, ions, and molecules have been investigated since the earliest years of the last century because of their pervasiveness and importance in fields ranging from astrophysics and plasma physics to atmospheric and condensed matter physics. Written in an accessible yet rigorous style, this book introduces the theory of electron-atom scattering into both the non-relativistic and relativistic quantum frameworks. The book also includes exercises with an increasing degree of difficulty to allow the reader to become familiar with the subject.
£64.60
de Gruyter Oldenbourg Kosmische Alchemie Der Elemente
Book Synopsis
£40.46
Springer International Publishing AG Melting Hadrons, Boiling Quarks - From Hagedorn
Book SynopsisThis book shows how the study of multi-hadron production phenomena in the years after the founding of CERN culminated in Hagedorn's pioneering idea of limiting temperature, leading on to the discovery of the quark-gluon plasma -- announced, in February 2000 at CERN.Following the foreword by Herwig Schopper -- the Director General (1981-1988) of CERN at the key historical juncture -- the first part is a tribute to Rolf Hagedorn (1919-2003) and includes contributions by contemporary friends and colleagues, and those who were most touched by Hagedorn: Tamás Biró, Igor Dremin, Torleif Ericson, Marek Gaździcki, Mark Gorenstein, Hans Gutbrod, Maurice Jacob, István Montvay, Berndt Müller, Grazyna Odyniec, Emanuele Quercigh, Krzysztof Redlich, Helmut Satz, Luigi Sertorio, Ludwik Turko, and Gabriele Veneziano.The second and third parts retrace 20 years of developments that after discovery of the Hagedorn temperature in 1964 led to its recognition as the melting point of hadrons into boiling quarks, and to the rise of the experimental relativistic heavy ion collision program. These parts contain previously unpublished material authored by Hagedorn and Rafelski: conference retrospectives, research notes, workshop reports, in some instances abbreviated to avoid duplication of material, and rounded off with the editor's explanatory notes.About the editor: Johann Rafelski is a theoretical physicist working at The University of Arizona in Tucson, USA. Born in 1950 in Krakow, Poland, he received his Ph.D. with Walter Greiner in Frankfurt, Germany in 1973. Rafelski arrived at CERN in 1977, where in a joint effort with Hagedorn he contributed greatly to the establishment of the relativistic heavy ion collision, and quark-gluon plasma research fields. Moving on, with stops in Frankfurt and Cape Town, to Arizona, he invented and developed the strangeness quark flavor as the signature of quark-gluon plasma.Trade Review“The book is undoubtedly an ideal companion to all those who wish to recall the birth of one of the main areas of today’s concepts in high-energy physics, and it is definitely a well-deserved credit to one of the great pioneers in their development.” (Frithjof Karsch, CERN Courier, June, 2016)Table of ContentsPart I Reminiscences: Rolf Hagedorn and Relativistic Heavy Ion Research.-- Part II The Hagedorn Temperature.- Part III Melting Hadrons, Boiling Quarks Heavy Ion Path to Quark-Gluon Plasma.- Acronyms.
£42.74
Springer International Publishing AG Theoretical Atomic Physics
Book SynopsisThis expanded and updated well-established textbook contains an advanced presentationof quantum mechanics adapted to the requirements of modern atomic physics. Itincludes topics of current interest such as semiclassical theory, chaos, atom optics andBose-Einstein condensation in atomic gases. In order to facilitate the consolidationof the material covered, various problems are included, together with completesolutions. The emphasis on theory enables the reader to appreciate the fundamentalassumptions underlying standard theoretical constructs and to embark on independentresearch projects.The fourth edition of Theoretical Atomic Physics contains anupdated treatment of the sections involving scattering theory and near-thresholdphenomena manifest in the behaviour of cold atoms (and molecules). Special attentionis given to the quantization of weakly bound states just below the continuum thresholdand to low-energy scattering and quantum reflection just above. Particular emphasisis laid on the fundamental differences between long-ranged Coulombic potentialsand shorter-ranged potentials falling off faster than 1/r2 at large distances r. The newsections on tunable near-threshold Feshbach resonances and on scattering in two spatialdimensions also address problems relevant for current and future research in the fieldof cold (and ultra-cold) atoms. Graduate students and researchers will find this book avaluable resource and comprehensive reference alike.Trade Review“The book represents a modern and extended course in Quantum mechanics with applications to some areas of recent scientific interest. … the book is very complete, competent and useful for a large circle of researchers in areas of actual theoretical physics, beginning from atomic optics, Bose-condensates and lasting with traditional atomic physics.” (Yuliya S. Mishura, zbMATH 1368.81003, 2017)Table of ContentsReview of Quantum Mechanics.- Atoms and Ions.- Atomic Spectra.- Simple Reactions.- Special Topics.- Appendix.- Solutions to the Problems.- Special Mathematical Functions.
£98.99
Springer International Publishing AG Farm Hall and the German Atomic Project of World
Book SynopsisThis gripping book brings back to life the events surrounding the internment of ten German Nuclear Scientists immediately after World War II. It is also an "eye-witness" account of the dawning of the nuclear age, with the dialogue and narrative spanning the period before, during and after atomic bombs were dropped on Japan at the end of the war. This pivotal historical episode is conveyed, along with the emotions as well as the facts, through drama, historical narrative, and photographs of the captive German nuclear scientists - who included Werner Heisenberg, Otto Hahn, and Max von Laue. The unique story that unfolds in the play is based on secretly recorded transcripts of the scientists’ actual conversations at Farm Hall, together with related documents and photographs.Trade Review“He highlights several incidents that bring the story to life, including the Germans’ confused reaction to the news of Hiroshima and Nagasaki, the surprise announcement of Otto Hahn’s Nobel … . Ultimately, however, Cassidy has made Farm Hall come alive, with all the important contradictions and conflicts it embodies. His book should be of special interest to physicists and physics students and is a valuable addition to our understanding of this ambiguous chapter in the history of modern physics.” (Mark Walker, Physics Today, March, 2018)Table of ContentsIntroduction.- Farm Hall, the Play.- A Brief History of the German Project, Alsos, and Farm Hall.- Science, History, Drama.- Historical Sources: The Farm Hall Reports.
£26.99
Springer International Publishing AG Fundamentals of van der Waals and Casimir
Book SynopsisThis book presents a self-contained derivation of van der Waals and Casimir type dispersion forces, covering the interactions between two atoms but also between microscopic, mesoscopic, and macroscopic objects of various shapes and materials. It also presents detailed and general prescriptions for finding the normal modes and the interactions in layered systems of planar, spherical and cylindrical types, with two-dimensional sheets, such as graphene incorporated in the formalism. A detailed derivation of the van der Waals force and Casimir-Polder force between two polarizable atoms serves as the starting point for the discussion of forces: Dispersion forces, of van der Waals and Casimir type, act on bodies of all size, from atoms up to macroscopic objects. The smaller the object the more these forces dominate and as a result they play a key role in modern nanotechnology through effects such as stiction. They show up in almost all fields of science, including physics, chemistry, biology, medicine, and even cosmology. Written by a condensed matter physicist in the language of condensed matter physics, the book shows readers how to obtain the electromagnetic normal modes, which for metallic systems, is especially useful in the field of plasmonics.Table of ContentsIntroduction.- Part I - Background Material.- Electromagnetic.- Complex Analysis.- Statistical Physics.- Electromagnetic Normal Modes.- Different Approaches.- General Method to find the Normal Modes in Layered Structures.- Part II - Non-retarded Formalism: van der Waals.- Van der Waals Force.- Van der Waals Interaction in Planar Structures.- Van der Waals Interaction in Spherical Structures.- Van der Waals Interaction in Cylindrical Structures.- Part III - Fully Retarded Formalism: Casimir.- Casimir Interaction.- Dispersion Interaction in Planar Structures.- Dispersion Interaction in Spherical Structures.- Dispersion Interaction in Cylindrical Structures.- Summary and Outlook.
£98.99
Springer Fachmedien Wiesbaden Atomphysik: Eine Einführung
Book SynopsisDer Inhalt dieses Buches entspricht in seinem Umfang ungefähr einer einsemestrigen Einführungsvorlesung in die Atomphysik. Vorausgesetzt werden einige Kenntnisse aus der Mechanik und Elektrodynamik sowie Grundkenntnisse in Vektor-und Differential rechnung. Vertrautheit mit der Quantenmechanik wird nicht unbedingt vorausgesetzt. Natürlich ist sie nützlich, und der Leser wird dann einiges überschlagen können. Aber der vor liegende Text ist vor allem auch für Studenten gedacht, die etwa gleichzeitig mit dem Studium der Atomphysik und der Quantenmechanik beginnen, oder die sich auf die Quantenmechanik erst vorbereiten wollen. Schließlich hat sich die Quantenmechanik historisch an der Atomphysik entwickelt und ist auch in der Darstellung nicht gut von ihr zu trennen. Daher werden in dem vorliegenden Text, ausgehend von den experimen tellen Grundlagen, zunächst die einfachsten quantenmechanischen Begriffe erläutert. Es wird dann im weiteren hauptsächlich von der Schrödingergleichung und von einfachen Symmetrie-Betrachtungen Gebrauch gemacht. Diese Darlegungen können und sollen ein reguläres Studium der Quantenmechanik natürlich nicht ersetzen_ Sie sollen aber eine gewisse Ergänzung dadurch bieten, daß die Perspektiven anders liegen als bei einer theo retischen Einführung in die Quantenmechanik. Diese Wiederholung beim Lernen schadet nicht, im Gegenteil: alle Erfahrung zeigt, daß kaum jemand in der Lage ist, Quanten mechanik auf Anhieb zu lernen und damit umzugehen. Das Verständnis der Quanten mechanik entsteht vielmehr normalerweise durch längere Gewöhnung und durch ein vielfaches Durchdenken der Probleme aus verschiedenen Blickrichtungen.Table of Contents1 Die Grundlagen.- 1.1 Einleitung: Was ist Atomphysik?.- 1.2 Fundamentale Experimente.- 1.3 Die Quantelung der Energie.- 1.4 Spektroskopie, praktische Einheiten.- 1.5 Grenzen der klassischen Beschreibung, Bohrsches Modell.- 2 Teilchen und Wellen.- 2.1 Teilcheninterferenzen.- 2.2 Wellenpakete, Unschärferelation.- 2.3 Die Schrödinger-Gleichung.- 2.4 Einfachste Anwendungen: Rechteckpotential, harmonischer Oszillator.- 3 Einfache Zustände des Wasserstoffatoms.- 3.1 Die Schrödinger-Gleichung im Zentralfeld.- 3.2 Eigenzustände des Wasserstoffatoms.- 3.3 Eigenschaften des Drehimpulses.- 3.4 Diskussion der Wasserstoff-Wellenfunktionen.- 4 Magnetfeld und Spin des Elektrons.- 4.1 Magnetische Momente.- 4.2 Der Spin des Elektrons.- 4.3 Formale Beschreibung des Spins.- 4.4 Relativistische Behandlung des Elektrons.- 5 Vollständige Beschreibung des Wasserstoffspektrums.- 5.1 Spin-Bahn-Kopplung.- 5.2 Die Feinstruktur.- 5.3 Die Hyperfeinstruktur.- 5.4 Quantenelektrodynamische Effekte, Lamb-Shift.- 6 Die Emission von Lichtquanten.- 6.1 Empirisches zu den Auswahlregeln und den Eigenschaften der Quanten.- 6.2 Der Zeeman-Effekt. Weiteres zu den Lichtquanten.- 6.3 Übergangswahrscheinlichkeiten, induzierte und spontane Emission.- 6.4 Die Lebensdauer angeregter Zustände und die Breite von Spektrallinien.- 7 Identische Teilchen.- 7.1 Fermionen und Bosonen.- 7.2 Fermionensysteme, Pauli-Prinzip.- 7.3 Das Heliumatom.- 8 Atome mit mehreren Elektronen.- 8.1 Modelle mit unabhängigen Teilchen.- 8.2 Das Schalenmodell der Hülle.- 8.3 Röntgenspektren.- 8.4 Spektren komplexer Atome.- 9 Die Wechselwirkung der Elektronenhülle mit mangnetischen und elektrischen Feldern.- 9.1 Hyperfeinstruktur komplexer Atome.- 9.2 Atome im äußeren Magnetfeld.- 9.3 Die magnetische Aufspaltung der Hyperfeinstruktur-Terme.- 9.4 Der Stark-Effekt.- 10 Kohärente und inkohärente Strahlungsquellen.- 10.1 Systeme mit vielen Bosonen.- 10.2 Hohlraumstrahlung.- 10.3 Maser und Laser.- 11 Ungewöhnliche Atome.- 11.1 Allgemeines.- 11.2 Positronium und Myonium.- 11.3 Myonische Atome.- 11.4 Hadronische Atome.- 12 Gebundene Atome.- 12.1 Übersicht.- 12.2 Die Ionenbindung.- 12.3 Das Wasserstoffmolekül, die kovalente Bindung.- 12.4 Molekülanregungen.- 12.5 Elektronenzustände im Festkörper.- Anhang A 1. Komplexe Zahlen; Beschreibung der ebenen Welle.- Anhang A 2. Vergleich verschiedener Darstellungsformen der quantenmechanischen Größen.- Literaturhinweise.- Spektraltafel.
£34.19
Springer Fachmedien Wiesbaden Kernphysik: Ein Einführung
Book SynopsisAls im August 1845, so berichtet die Anekdote, Friedrich Wilhelm IV. , König von Preußen, die neuerrichtete Sternwarte der Universität in Bonn besuchte und den Astronomen mit den Worten begrüßte: "Na, Argelander, was gibt es Neues am Himmel?", erhielt er zur Antwort: "Kennen Majestät schon das Alte?" Die kleine Geschichte beleuchtet ein Dilemma, dem zu allen Zeiten Lernende und Lehrende gleichermaßen gegenüberstehen. Es ist deshalb die Hauptaufgabe eines einführenden Lehrbuchs, das Alte im Hinblick auf das Neue zu vermitteln. Die Zielsetzung des vorliegenden Studienbuches ist es daher, eine Übersicht über die etablierten Erscheinungen und Beschreibungskonzepte zu geben und die moderneren Perspektiven erkennbar werden zu lassen. Das Buch befaßt sich weder mit experimen tellen noch mit theoretischen Techniken. Der Text beginnt zur Einführung mit der klassischen Behandlung elastischer Streuung anhand der Rutherford-Streuung. Streuprobleme werden dann im Kapitel4 ausführlicher besprochen. Die Ergebnisse dienen als Grundlage für KapitelS über Kernkräfte und Kapitel? über Kernreaktio nen. In den Kapiteln 2 und 3 werden dazwischen die wichtigsten Grundzustandseigen schaften der Kerne und die Bedingungen des radioaktiven Zerfalls behandelt. Die Erscheinungen des ß-Zerfalls werden als Übergang zur Physik der Elementarteilchen im letzten Kapitel dargestellt. Entsprechend der Zielsetzung des Buches wurden Gegenstände wie etwa der Durchgang ionisierender Strahlung durch Materie nicht besprochen. Sie sind zwar in der Kernphysik technisch sehr wichtig, gehören aber der Problemstellung nach in die Atom- und Festkörperphysik. Bei der hier vorliegenden ergänzten und korrigierten 5. Auflage wurden die bewährte Gliederung und der Hauptteil des Textes beibehalten.Table of Contents1 Einleitung.- 2 Eigenschaften stabiler Kerne.- 3 Zerfall instabiler Kerne.- 4 Elastische Streuung.- 5 Kernkräfte und starke Wechselwirkung.- 6 Kernmodelle.- 7 Kernreaktionen.- 8 ?-Zerfall und schwache Wechselwirkung.- Einheiten, Konstanten, Umrechnungsfaktoren und Formeln für kernphysikalische Rechnungen.- Literaturhinweise auf Lehrbücher und Standardwerke.
£34.19
Springer Fachmedien Wiesbaden Atome, Moleküle, Festkörper
Book SynopsisTable of Contents1. Teilcheneigenschaften von Wellen.- 1.1 Der photoelektrische Effekt.- 1.2 Die Quantentheorie des Lichts.- 1.3 Röntgenstrahlen.- 1.4 Die Beugung von Röntgenstrahlen.- 1.5 Der Comptoneffekt.- 1.6 Rotverschiebung im Gravitationsfeld.- 1.7 Aufgaben.- 2. Welleneigenschaften von Teilchen.- 2.1 De Broglie-Wellen.- 2.2 Die Wellenfunktion.- 2.3 Die Geschwindigkeit der de Broglie-Welle.- 2.4 Gruppen- und Phasengeschwindigkeiten.- 2.5 Die Streuung von Teilchen.- 2.6 Das Unschärfeprinzip.- 2.7 Anwendungen des Unschärfeprinzips.- 2.8 Die Qualität von Welle und Teilchen.- 2.9 Aufgabe.- 3. Atomstruktur.- 3.1 Atommodelle.- 3.2 Das Thomson-Modell.- 3.3 ?-Teilchen-Streuung.- 3.4 Die Rutherfordsche Streuformel.- 3.5 Die Größe der Kerne.- 3.6 Elektronenbahnen.- 3.7 Das Versagen der klassischen Physik.- 3.8 Aufgaben.- 4. Das Bohrsche Atommodell.- 4.1 Atomspektren.- 4.2 Das Bohrsche Atom.- 4.3 Energieniveaus und Spektren.- 4.4 Anregung von Atomen.- 4.5 Das Experiment von Franck und Hertz.- 4.6 Das Korrespondenzprinzip.- 4.7 Kernbewegung und reduzierte Masse.- 4.8 Wasserstoffähnliche Atome.- 4.9 Aufgaben.- 5. Die Schrödinger-Gleichung.- 5.1 Quantemechanik.- 5.2 Die Wellenfunktion.- 5.3 Die Wellengleichung.- 5.4 Schrödinger-Gleichung: zeitabhängige Form.- 5.5 Der Wahrscheinlichkeitsstrom.- 5.6 Erwartungswerte.- 5.7 Operatoren.- 5.8 Schrödinger-Gleichung: stationäre Zustände.- 5.9 Eigenwerte und Eigenfunktionen.- 5.10 Aufgaben.- 6. Anwendungen der Quantenmechanik.- 6.1 Das Teilchen im Kasten: Quantisierung der Energie.- 6.2 Das Teilchen im Kasten: Wellenfunktionen.- 6.3 Das Teilchen im Kasten: Quantisierung des Impulses.- 6.4 Das Teilchen in einem endlichen Potentialtopf.- 6.5 Der harmonische Oszillator.- 6.6 Der harmonische Osziallator: Energieniveaus.- 6.7 Der harmonische Oszillator: Wellenfunktionen.- 6.8 Das Teilchen in einem dreidimensionalen Kasten.- 6.9 Aufgaben.- 7. Quantentheorie des Wasserstoffatoms.- 7.1 Die Schrödinger-Gleichung des Wasserstoffatoms.- 7.2 Separation der Variablen.- 7.3 Quantenzahlen.- 7.4 Gesamtquantenzahl.- 7.5 Orbital-Quantenzahl.- 7.6 Magnetische Quantenzahl.- 7.7 Der normale Zeemann-Effekt.- 7.8 Der Drehimpuls.- 7.9 Die Wahrscheinlichkeitsdichte des Elektrons.- 7.10 Aufgaben.- 8 Atome mit mehreren Elektronen.- 8.1 Der Spin des Elektrons.- 8.2 Spin-Bahn-Kopplung.- 8.3 Das Ausschließungsprinzip.- 8.4 Elektronenfigurationen.- 8.5 Das Periodensystem der Elemente.- 8.6 Die Hundsche Regel.- 8.7 Der Gesamtdrehimpuls.- 8.8 LS-Kopplung.- 8.9 jj-Kopplung.- 8.10 Aufgaben.- 9. Atomspektren.- 9.1 Der Ursprung der Spektrallinien.- 9.2 Auswahlregeln.- 9.3 Spektren von Einelektronensystemen.- 9.4 Spektren von Systemen mit zwei Elektronen.- 9.5 Röntgenspektren.- 9.6 Aufgaben.- 10. Die chemische Bindung.- 10.1 Bildung von Molekülen.- 10.2 Kovalente Bindung.- 10.3 Da H2+-Ion.- 10.4 Die LCAO-Methode.- 10.5 Das H2-Molekül.- 10.6 Die Ionenbindung.- 10.7 Aufgaben.- 11. Molekülstruktur.- 11.1 Verschiedene Theorien.- 11.2 Die Valenz-Bindungs-Methode.- 11.3 Molekülorbitale.- 11.4 Elektronegativität.- 11.5 Mehratomige Moleküle.- 11.6 Hybrid-Orbitale.- 11.7 Kohlenstoff-Kohlenstoff-Bindungen.- 11.8 Der Benzol-Ring.- 11.9 Aufgaben.- 12. Molekülspektren.- 12.1 Energieniveaus der Rotation: Zweiatomige Moleküle.- 12.2 Energieniveaus der Rotation: Mehratomige Moleküle.- 12.3 Rotationsspektren.- 12.4 Isotopieeffekte.- 12.5 Schwingungen zweiatomiger Moleküle: Energieniveaus.- 12.6 Energieniveaus mehratomiger Moleküle.- 12.7 Rotations-Schwingungs-Spektren.- 12.8 Elektronenspektren.- 12.9 Aufgaben.- 13. Statistische Mechanik.- 13.1 Der Phasenraum.- 13.2 Die Wahrscheinlichkeit einer Verteilung.- 13.3 Die wahrscheinlichste Verteilung.- 13.4 Die Maxwell-Boltzmann-Statistik.- 13.5 Molekülgeschwindigkeiten.- 13.6 Rotationsspektren.- 13.7 Aufgaben.- 14. Quantenstatistik.- 14.1 Die Bose-Einstein-Statistik.- 14.2 Hohlraumstrahlung.- 14.3 Die Formel von Rayleigh und Jeans.- 14.4 Die Plancksche Strahlungsformel.- 14.5 Die Fermi-Dirac-Statistik.- 14.6 Vergleich der Ergebnisse.- 14.7 Übergänge zwischen Zuständen.- 14.8 Maser und Laser.- 14.9 Aufgaben.- 15. Bindung in Festkörpern.- 15.1 Amorphe Festkörper.- 15.2 Ionenkristalle.- 15.3 Kovalente Kristalle.- 15.4 Van der Waalssche Kräfte.- 15.5 Die Wasserstoffbrücken.- 15.6 Die metallische Bindung.- 15.7 Ein- und zweidimensionale Kristalle.- 15.8 Aufgaben.- 16. Kristallstruktur.- 16.1 Bravais-Gitter.- 16.2 Einige Kristallstrukturen.- 16.3 Atomradien.- 16.4 Punktdefekte.- 16.5 Versetzungen.- 16.6 Aufgaben.- 17. Spezifische Wärme von Festkörpern.- 17.1 Thermische Schwingungen: Frequenzen.- 17.2 Thermische Schwingungen: Amplituden.- 17.3 Spezifische Wärme von Festkörpern.- 17.4 Die Einsteinsche Theorie.- 15.7 Die Theorie von Debye.- 17.6 Die Fermi-Energie.- 17.7 Die Verteilung der Elektronenenergien.- 17.8 Spezifische Wärme der Elektronen.- 17.9 Aufgaben.- 18. Bändertheorie des Festkörpers.- 18.1 Energiebänder.- 18.2 Dotierte Halbleiter.- 18.3 Das Ohmsche Gesetz.- 18.4 Brillouin-Zonen.- 18.5 Verbotene Energiebänder.- 18.6 Elektrischer Widerstand.- 18.7 Die effektive Masse.- 18.8 Aufgaben.- Sachwortverzeichnis.
£53.99
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Atomic and Quantum Physics: An Introduction to the Fundamentals of Experiment and Theory
Book SynopsisAtomic physics and its underlying quantum theory are the point of departure for many modern areas of physics, astrophysics, chemistry, biology, and even electrical engineering. This textbook provides a careful and eminently readable introduction to the results and methods of empirical atomic physics. The student will acquire the tools of quantum physics and at the same time learn about the interplay between experiment and theory. A chapter on the quantum theory of the chemical bond provides the reader with an introduction to molecular physics. Plenty of problems are given to elucidate the material. The authors also discuss laser physics and nonlinear spectroscopy, incorporating latest experimental results and showing their relevance to basic research. Extra items in the second edition include solutions to the exercises, derivations of the relativistic Klein-Gordon and Dirac equations, a detailed theoretical derivation of the Lamb shift, a discussion of new developments in the spectroscopy of inner shells, and new applications of NMR spectroscopy, for instance tomography.Table of Contents1. Introduction.- 1.1 Classical Physics and Quantum Mechanics.- 1.2 Short Historical Review.- 2. The Mass and Size of the Atom.- 2.1 What is an Atom?.- 2.2 Determination of the Mass.- 2.3 Methods for Determining Avogadro’s Number.- 2.3.1 Electrolysis.- 2.3.2 The Gas Constant and Boltzmann’s Constant.- 2.3.3 X-Ray Diffraction in Crystals.- 2.3.4 Determination Using Radioactive Decay.- 2.4 Determination of the Size of the Atom.- 2.4.1 Application of the Kinetic Theory of Gases.- 2.4.2 The Interaction Cross Section.- 2.4.3 Experimental Determination of Interaction Cross Sections.- 2.4.4 Determining the Atomic Size from the Covolume.- 2.4.5 Atomic Sizes from X-Ray Diffraction Measurements on Crystals.- 2.4.6 Can Individual Atoms Be Seen?.- Problems.- 3. Isotopes.- 3.1 The Periodic System of the Elements.- 3.2 Mass Spectroscopy.- 3.2.1 Parabola Method.- 3.2.2 Improved Mass Spectrometers.- 3.2.3 Results of Mass Spectrometry.- 3.2.4 Modern Applications of the Mass Spectrometer.- 3.2.5 Isotope Separation.- Problems.- 4. The Nucleus of the Atom.- 4.1 Passage of Electrons Through Matter.- 4.2 Passage of Alpha Particles Through Matter (Rutherford Scattering).- 4.2.1 Some Properties of Alpha Particles.- 4.2.2 Scattering of Alpha Particles by a Foil.- 4.2.3 Derivation of the Rutherford Scattering Formula.- 4.2.4 Experimental Results.- 4.2.5 What is Meant by Nuclear Radius?.- Problems.- 5. The Photon.- 5.1 Wave Character of Light.- 5.2 Thermal Radiation.- 5.2.1 Spectral Distribution of Black Body Radiation.- 5.2.2 Planck’s Radiation Formula.- 5.2.3 Einstein’s Derivation of Planck’s Formula.- 5.3 The Photoelectric Effect.- 5.4 The Compton Effect.- 5.4.1 Experiments.- 5.4.2 Derivation of the Compton Shift.- Problems.- 6. The Electron.- 6.1 Production of Free Electrons.- 6.2 Size of the Electron.- 6.3 The Charge of the Electron.- 6.4 The Specific Charge e/m of the Electron.- 6.5 Wave Character of Electrons.- Problems.- 7. Some Basic Properties of Matter Waves.- 7.1 Wave Packets.- 7.2 Probabilistic Interpretation.- 7.3 The Heisenberg Uncertainty Relation.- 7.4 The Energy-Time Uncertainty Relation.- 7.5 Some Consequences of the Uncertainty Relations for Bound States.- Problems.- 8. Bohr’s Model of the Hydrogen Atom.- 8.1 Basic Principles of Spectroscopy.- 8.2 The Optical Spectrum of the Hydrogen Atom.- 8.3 Bohr’s Postulates.- 8.4 Some Quantitative Conclusions.- 8.5 Motion of the Nucleus.- 8.6 Spectra of Hydrogen-like Atoms.- 8.7 Muonic Atoms.- 8.8 Excitation of Quantum Jumps by Collisions.- 8.9 Sommerfeld’s Extension of the Bohr Model and the Experimental Justification of a Second Quantum Number.- 8.10 Lifting of Orbital Degeneracy by the Relativistic Mass Change.- 8.11 Limits of the Bohr-Sommerfeld Theory. The Correspondence Principle.- 8.12 Rydberg Atoms.- Problems.- 9. The Mathematical Framework of Quantum Theory.- 9.1 The Particle in a Box.- 9.2 The Schrödinger Equation.- 9.3 The Conceptual Basis of Quantum Theory.- 9.3.1 Observations, Values of Measurements and Operators.- 9.3.2 Momentum Measurement and Momentum Probability.- 9.3.3 Average Values and Expectation Values.- 9.3.4 Operators and Expectation Values.- 9.3.5 Equations for Determining the Wavefunction.- 9.3.6 Simultaneous Observability and Commutation Relations.- 9.4 The Quantum Mechanical Oscillator.- Problems.- 10. Quantum Mechanics of the Hydrogen Atom.- 10.1 Motion in a Central Field.- 10.2 Angular Momentum Eigenfunctions.- 10.3 The Radial Wavefunctions in a Central Field.- 10.4 The Radial Wavefunctions of Hydrogen.- Problems.- 11. Lifting of the Orbital Degeneracy in the Spectra of Alkali Atoms.- 11.1 Shell Structure.- 11.2 Screening.- 11.3 The Term Diagram.- 11.4 Inner Shells.- Problems.- 12. Orbital and Spin Magnetism. Fine Structure.- 12.1 Introduction and Overview.- 12.2 Magnetic Moment of the Orbital Motion.- 12.3 Precession and Orientation in a Magnetic Field.- 12.4 Spin and Magnetic Moment of the Electron.- 12.5 Determination of the Gyromagnetic Ratio by the Einstein-de Haas Method.- 12.6 Detection of Directional Quantisation by Stern and Gerlach.- 12.7 Fine Structure and Spin-Orbit Coupling: Overview.- 12.8 Calculation of Spin-Orbit Splitting in the Bohr Model.- 12.9 Level Scheme of the Alkali Atoms.- 12.10 Fine Structure in the Hydrogen Atom.- 12.11 The Lamb Shift.- Problems.- 13. Atoms in a Magnetic Field: Experiments and Their Semiclassical Description.- 13.1 Directional Quantisation in a Magnetic Field.- 13.2 Electron Spin Resonance.- 13.3 The Zeeman Effect.- 13.3.1 Experiments.- 13.3.2 Explanation of the Zeeman Effect from the Standpoint of Classical Electron Theory.- 13.3.3 Description of the Ordinary Zeeman Effect by the Vector Model.- 13.3.4 The Anomalous Zeeman Effect.- 13.3.5 Magnetic Moments with Spin-Orbit Coupling.- 13.4 The Paschen-Back Effect.- 13.5 Double Resonance and Optical Pumping.- Problems.- 14. Atoms in a Magnetic Field: Quantum Mechanical Treatment.- 14.1 Quantum Theory of the Ordinary Zeeman Effect.- 14.2 Quantum Theoretical Treatment of the Electron and Proton Spins.- 14.2.1 Spin as Angular Momentum.- 14.2.2 Spin Operators, Spin Matrices and Spin Wavefunctions.- 14.2.3 The Schrödinger Equation of a Spin in a Magnetic Field.- 14.2.4 Description of Spin Precession by Expectation Values.- 14.3 Quantum Mechanical Treatment of the Anomalous Zeeman Effect with Spin-Orbit Coupling*.- 14.4 Quantum Theory of a Spin in Mutually Perpendicular Magnetic Fields, One Constant and One Time Dependent.- 14.5 The Bloch Equations.- 14.6 The Relativistic Theory of the Electron. The Dirac Equation.- Problems.- 15. Atoms in an Electric Field.- 15.1 Observations of the Stark Effect.- 15.2 Quantum Theory of the Linear and Quadratic Stark Effects.- 15.2.1 The Hamiltonian.- 15.2.2 The Quadratic Stark Effect. Perturbation Theory Without Degeneracy.- 15.2.3 The Linear Stark Effect. Perturbation Theory in the Presence of Degeneracy.- 15.3 The Interaction of a Two-Level Atom with a Coherent Radiation Field.- 15.4 Spin- and Photon Echoes.- 15.5 A Glance at Quantum Electrodynamics.- 15.5.1 Field Quantization.- 15.5.2 Mass Renormalization and Lamb Shift.- Problems.- 16. General Laws of Optical Transitions.- 16.1 Symmetries and Selection Rules.- 16.1.1 Optical Matrix Elements.- 16.1.2 Examples of the Symmetry Behaviour of Wavefunctions.- 16.1.3 Selection Rules.- 16.1.4 Selection Rules and Multipole Radiation.- 16.2 Linewidths and Lineshapes.- 17. Many-Electron Atoms.- 17.1 The Spectrum of the Helium Atom.- 17.2 Electron Repulsion and the Pauli Principle.- 17.3 Angular Momentum Coupling.- 17.3.1 Coupling Mechanism.- 17.3.2 LS Coupling (Russell-Saunders Coupling).- 17.3.3 jj Coupling.- 17.4 Magnetic Moments of Many-Electron Atoms.- 17.5 Multiple Excitations.- Problems.- 18. X-Ray Spectra, Internal Shells.- 18.1 Introductory Remarks.- 18.2 X-Radiation from Outer Shells.- 18.3 X-Ray Bremsstrahlung Spectra.- 18.4 Emission Line Spectra: Characteristic Radiation.- 18.5 Fine Structure of the X-Ray Spectra.- 18.6 Absorption Spectra.- 18.7 The Auger Effect (Inner Photoeffect).- 18.8 Photoelectron Spectroscopy (XPS), ESCA.- Problems.- 19. Structure of the Periodic System. Ground States of the Elements.- 19.1 Periodic System and Shell Structure.- 19.2 Ground States of Atoms.- 19.3 Excited States and Complete Term Scheme.- 19.4 The Many-Electron Problem. Hartree-Fock Method.- 19.4.1 The Two-Electron Problem.- 19.4.2 Many Electrons Without Mutual Interactions.- 19.4.3 Coulomb Interaction of Electrons. Hartree and Hartree-Fock Methods.- Problems.- 20. Nuclear Spin, Hyperfine Structure.- 20.1 Influence of the Atomic Nucleus on Atomic Spectra.- 20.2 Spins and Magnetic Moments of Atomic Nuclei.- 20.3 The Hyperfine Interaction.- 20.4 Hyperfine Structure in the Ground States of the Hydrogen and Sodium Atoms.- 20.5 Hyperfine Structure in an External Magnetic Field, Electron Spin Resonance.- 20.6 Direct Measurements of Nuclear Spins and Magnetic Moments, Nuclear Magnetic Resonance.- 20.7 Applications of Nuclear Magnetic Resonance.- 20.8 The Nuclear Electric Quadrupole Moment.- Problems.- 21. The Laser.- 21.1 Some Basic Concepts for the Laser.- 21.2 Rate Equations and Lasing Conditions.- 21.3 Amplitude and Phase of Laser Light.- Problems.- 22. Modern Methods of Optical Spectroscopy.- 22.1 Classical Methods.- 22.2 Quantum Beats.- 22.3 Doppler-free Saturation Spectroscopy.- 22.4 Doppler-free Two-Photon Absorption.- 22.5 Level-Crossing Spectroscopy and the Hanle Effect.- 23. Fundamentals of the Quantum Theory of Chemical Bonding.- 23.1 Introductory Remarks.- 23.2 The Hydrogen-Molecule Ion H2+.- 23.3 The Tunnel Effect.- 23.4 The Hydrogen Molecule H2.- 23.5 Covalent-Ionic Resonance.- 23.6 The Hund-Mulliken-Bloch Theory of Bonding in Hydrogen.- 23.7 Hybridisation.- 23.8 The ? Electrons of Benzene, C6H6.- Problems.- A. The Dirac Delta Function and the Normalisation of the Wavefunction of a Free Particle in Unbounded Space.- B. Some Properties of the Hamiltonian Operator, Its Eigenfunctions and Its Eigenvalues.- Bibliography of Supplementary and Specialised Literature.- Fundamental Constants of Atomic Physics (Inside Front Cover).- Energy Conversion Table (Inside Back Cover).
£42.74
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG The Nuclear Many-Body Problem
Book Synopsis From the reviews:"Its scope and complexity are suitable for easy reading by beginning students of nuclear theory. With a crisp and concise style, the authors quickly develop the shell-model approach to the nuclear many-body problem and subsequently devote more than a third of the text to Hartree-Fock and related models…" Physics TodayTrade ReviewFrom the reviews: "The monography by Peter Ring and Peter Schuck covers the techniques used to solve the nuclear many-body problem … . is recognized as a reference by the nuclear physics community. Theoretical developments are explained pedagogically, with a constant rigour, are well documented and are illustrated with suitably chosen examples. The book contains a lot of references … . It is served by a concise style. By its scope and rigour, it has no real rival and will expectedly remain a familiar introductory text in nuclear structure theory for many years." (Joseph Cugnon, Physicalia, Vol. 57 (3), 2005) "In many ways, the 1950s through to the 1970s may be seen as a golden period for the development of nuclear physics, both experimental and theoretical. … The book contains an excellent description of many basic theoretical methods, which continue to be relevant today, it is still of value to specialist students of nuclear theory." (J. P. Elliott, Contemporary Physics, Vol. 46 (6), 2005)Table of Contents1 The Liquid Drop Model.- 1.1 Introduction.- 1.2 The Semi-empirical Mass Formula.- 1.3 Deformation Parameters.- 1.4 Surface Oscillations About a Spherical Shape.- 1.5 Rotations and Vibrations for Deformed Shapes.- 1.5.1 The Bohr Hamiltonian.- 1.5.2 The Axially Symmetric Case.- 1.5.3 The Asymmetric Rotor.- 1.6 Nuclear Fission.- 1.7 Stability of Rotating Liquid Drops.- 2 The Shell Model.- 2.1 Introduction and General Considerations.- 2.2 Experimental Evidence for Shell Effects.- 2.3 The Average Potential of the Nucleus.- 2.4 Spin Orbit Coupling.- 2.5 The Shell Model Approach to the Many-Body Problem.- 2.6 Symmetry Properties.- 2.6.1 Translational Symmetry.- 2.6.2 Rotational Symmetry.- 2.6.3 The Isotopic Spin.- 2.7 Comparison with Experiment.- 2.7.1 Experimental Evidence for Single-Particle (Hole) States.- 2.7.2 Electromagnetic Moments and Transitions.- 2.8 Deformed Shell Model.- 2.8.1 Experimental Evidence.- 2.8.2 General Deformed Potential.- 2.8.3 The Anisotropic Harmonic Oscillator.- 2.8.4 Nilsson Hamiltonian.- 2.8.5 Quantum Numbers of the Ground State in Odd Nuclei.- 2.8.6 Calculation of Deformation Energies.- 2.9 Shell Corrections to the Liquid Drop Model and the Strutinski Method.- 2.9.1 Introduction.- 2.9.2 Basic Ideas of the Strutinski Averaging Method.- 2.9.3 Determination of the Average Level Density.- 2.9.4 Strutinski’s Shell Correction Energy.- 2.9.5 Shell Corrections and the Hartree-Fock Method.- 2.9.6 Some Applications.- 3 Rotation and Single-Particle Motion.- 3.1 Introduction.- 3.2 General Survey.- 3.2.1 Experimental Observation of High Spin States.- 3.2.2 The Structure of the Yrast Line.- 3.2.3 Phenomenological Classification of the Yrast Band.- 3.2.3 The Backbending Phenomenon.- 3.3 The Particle-plus-Rotor Model.- 3.3.1 The Case of Axial Symmetry.- 3.3.2 Some Applications of the Particle-plus-Rotor Model.- 3.3.3 The triaxial Particle-plus-Rotor Model.- 3.3.4 Electromagnetic Properties.- 3.4 The Cranking Model.- 3.4.1 Semiclassical Derivation of the Cranking Model.- 3.4.2 The Cranking Formula.- 3.4.3 The Rotating Anisotropic Harmonic Oscillator.- 3.4.4 The Rotating Nilsson Scheme.- 3.4.5 The Deformation Energy Surface at High Angular Momenta.- 3.4.6 Rotation about a Symmetry Axis.- 3.4.7 Yrast Traps.- 4 Nuclear Forces.- 4.1 Introduction.- 4.2 The Bare Nucleon-Nucleon Force.- 4.2.1 General Properties of a Two-Body Force.- 4.2.2 The Structure of the Nucleon-Nucleon Interaction.- 4.3 Microscopic Effective Interactions.- 4.3.1 Bruckner’s G-Matrix and Bethe Goldstone Equation.- 4.3.2 Effective Interactions between Valence Nucleons.- 4.3.3 Effective Interactions between Particles and Holes.- 4.4 Phenomenological Effective Interactions.- 4.4.1 General Remarks.- 4.4.2 Simple Central Forces.- 4.4.3 The Skyrme Interaction.- 4.4.4 The Gogny Interaction.- 4.4.5 The Migdal Force.- 4.4.6 The Surface-Delta Interaction (SDI).- 4.4.7 Separable Forces and Multipole Expansions.- 4.4.8 Experimentally Determined Effective Interactions.- 4.5 Concluding Remarks.- 5 The Hartree-Fock Method.- 5.1 Introduction.- 5.2 The General Variational Principle.- 5.3 The Derivation of the Hartree-Fock Equation.- 5.3.1 The Choice of the Set of Trial Wave Functions.- 5.3.2 The Hartree-Fock Energy.- 5.3.3 Variation of the Energy.- 5.3.4 The Hartree-Fock Equations in Coordinate Space.- 5.4 The Hartree-Fock Method in a Simple Solvable Model.- 5.5 The Hartree-Fock Method and Symmetries.- 5.6 Hartree-Fock with Density Dependent Forces.- 5.6.1 Approach with Microscopic Effective Interactions.- 5.6.2 Hartree-Fock Calculations with the Skyrme Force.- 5.7 Concluding Remarks.- 6 Pairing Correlations and Superfluid Nuclei.- 6.1 Introduction and Experimental Survey.- 6.2 The Seniority Scheme.- 6.3 The BCS Model.- 6.3.1 The Wave Function.- 6.3.2 The BCS Equations.- 6.3.3 The Special Case of a Pure Pairing Force.- 6.3.4 Bogoliubov Quasi-particles—Excited States and Blocking.- 6.3.5 Discussion of the Gap Equation.- 6.3.6 Schematic Solution of the Gap Equation.- 7 The Generalized Single-Particle Model (HFB Theory).- 7.1 Introduction.- 7.2 The General Bogoliubov Transformation.- 7.2.1 Quasi-particle Operators.- 7.2.2 The Quasi-particle Vacuum.- 7.2.3 The Density Matrix and the Pairing Tensor.- 7.3 The Hartree-Fock-Bogoliubov Equations.- 7.3.1 Derivation of the HFB Equation.- 7.3.2 Properties of the HFB Equations.- 7.3.3 The Gradient Method.- 7.4 The Pairing-plus-Quadrupole Model.- 7.5 Applications of the HFB Theory for Ground State Properties.- 7.6 Constrained Hartree-Fock Theory (CHF).- 7.7 HFB Theory in the Rotating Frame (SCC).- 8 Harmonic Vibrations.- 8.1 Introduction.- 8.2 Tamm-Dancoff Method.- 8.2.1 Tamm-Dancoff Secular Equation.- 8.2.3 The Schematic Model.- 8.2.3 Particle-Particle (Hole-Hole) Tamm-Dancoff Method.- 8.3 General Considerations for Collective Modes.- 8.3.1 Vibrations in Quantum Mechanics.- 8.3.2 Classification of Collective Modes.- 8.3.3 Discussion of Some Collective ph-Vibrations.- 8.3.4 Analog Resonances.- 8.3.5 Pairing Vibrations.- 8.4 Particle-Hole Theory with Ground State Correlations (RPA).- 8.4.1 Derivation of the RPA Equations.- 8.4.2 Stability of the RPA.- 8.4.3 Normalization and Closure Relations.- 8.4.4 Numerical Solution of the RPA Equations.- 8.4.5 Representation by Boson Operators.- 8.4.6 Construction of the RPA Ground State.- 8.4.7 Invariances and Spurious Solutions.- 8.5 Linear Response Theory.- 8.5.1 Derivation of the Linear Response Equations.- 8.5.2 Calculation of Excitation Probabilities and Schematic Model.- 8.5.3 The Static Polarizability and the Moment of Inertia.- 8.5.4 RPA Equations in the Continuum.- 8.6 Applications and Comparison with Experiment.- 8.6.1 Particle-Hole Calculations in a Phenomenological Basis.- 8.6.2 Particle-Hole Calculations in a Self-Consistent Basis.- 8.7 Sum Rules.- 8.7.1 Sum Rules as Energy Weighted Moments of the Strength Functions.- 8.7.2 The S1-Sum Rule and the RPA Approach.- 8.7.3 Evaluation of the Sum Rules S1, S?1, and S3.- 8.7.4 Sum Rules and Polarizabilities.- 8.7.5 Calculation of Transition Currents and Densities.- 8.8 Particle-Particle RPA.- 8.8.1 The Formalism.- 8.8.2 Ground State Correlations Induced by Pairing Vibrations.- 8.9 Quasi-particle RPA.- 9 Boson Expansion Methods.- 9.1 Introduction.- 9.2 Boson Representations in Even-Even Nuclei.- 9.2.1 Boson Representations of the Angular Momentum Operators.- 9.2.2 Concepts for Boson Expansions.- 9.2.3 The Boson Expansion of Belyaev and Zelevinski.- 9.2.4 The Boson Expansion of Marumori.- 9.2.5 The Boson Expansion of Dyson.- 9.2.6 The Mathematical Background.- 9.2.7 Methods Based on pp-Bosons.- 9.2.8 Applications.- 9.3 Odd Mass Nuclei and Particle Vibration Coupling.- 9.3.1 Boson Expansion for Odd Mass Systems.- 9.3.2 Derivation of the Particle Vibration Coupling (Bohr) Hamiltonian.- 9.3.3 Particle Vibration Coupling (Perturbation Theory).- 9.3.4 The Nature of the Particle Vibration Coupling Vertex.- 9.3.5 Effective Charges.- 9.3.6 Intermediate Coupling and Dyson’s Boson Expansion.- 9.3.7 Other Particle Vibration Coupling Calculations.- 9.3.8 Weak Coupling in Even Systems.- 10 The Generator Coordinate Method.- 10.1 Introduction.- 10.2 The General Concept.- 10.2.1 The GCM Ansatz for the Wave Function.- 10.2.2 The Determination of the Weight Function f(a).- 10.2.3 Methods of Numerical Solution of the HW Equation.- 10.3 The Lipkin Model as an Example.- 10.4 The Generator Coordinate Method and Boson Expansions.- 10.5 The One-Dimensional Harmonic Oscillator.- 10.6 Complex Generator Coordinates.- 10.6.1 The Bargman Space.- 10.6.2 The Schrödinger Equation.- 10.6.3 Gaussian Wave Packets in the Harmonic Oscillator.- 10.6.4 Double Projection.- 10.7 Derivation of a Collective Hamiltonian.- 10.7.1 General Considerations.- 10.7.2 The Symmetric Moment Expansion (SME).- 10.7.3 The Local Approximation (LA).- 10.7.4 The Gaussian Overlap Approximation (GOAL).- 10.7.5 The Lipkin Model.- 10.7.6 The Multidimensional Case.- 10.8 The Choice of the Collective Coordinate.- 10.9 Application of the Generator Coordinate Method for Bound States.- 10.9.1 Giant Resonances.- 10.9.2 Pairing Vibrations.- 11 Restoration of Broken Symmetries.- 11.1 Introduction.- 11.2 Symmetry Violation in the Mean Field Theory.- 11.3 Transformation to an Intrinsic System.- 11.3.1 General Concepts.- 11.3.2 Translational Motion.- 11.3.3 Rotational Motion.- 11.4 Projection Methods.- 11.4.1 Projection Operators.- 11.4.2 Projection Before and After the Variation.- 11.4.3 Particle Number Projection.- 11.4.4 Approximate Projection for Large Deformations.- 11.4.5 The Inertial Parameters.- 11.4.6 Angular Momentum Projection.- 11.4.7 The Structure of the Intrinsic Wave Functions.- 12 The Time Dependent Hartree-Fock Method (TDHF).- 12.1 Introduction.- 12.2 The Full Time-Dependent Hartree-Fock Theory.- 12.2.1 Derivation of the TDHF Equation.- 12.2.2 Properties of the TDHF Equation.- 12.2.3 Quasi-static Solutions.- 12.2.4 General Discussion of the TDHF Method.- 12.2.5 An Exactly Soluble Model.- 12.2.6 Applications of the TDHF Theory.- 12.3 Adiabatic Time-Dependent Hartree-Fock Theory (ATDHF).- 12.3.1 The ATDHF Equations.- 12.3.2 The Collective Hamiltonian.- 12.3.3 Reduction to a Few Collective Coordinates.- 12.3.4 The Choice of the Collective Coordinates.- 12.3.5 General Discussion of the Atdhf Methods.- 12.3.6 Applications of the ATDHF Method.- 12.3.7 Adiabatic Perturbation Theory and the Cranking Formula.- 13 Semiclassical Methods in Nuclear Physics.- 13.1 Introduction.- 13.2 The Static Case.- 13.2.1 The Thomas-Fermi Theory.- 13.2.2 Wigner-Kirkwood ?-Expansion.- 13.2.3 Partial Resummation of the ?-Expansion.- 13.2.4 The Saddle Point Method.- 13.2.5 Application to a Sperical Woods-Saxon Potential.- 13.2.6 Semiclassical Treatment of Pairing Properties.- 13.3 The Dynamic Case.- 13.3.1 The Boltzmann Equation.- 13.3.2 Fluid Dynamic Equations from the Boltzmann Equation.- 13.3.3 Application of Ordinary Fluid Dynamics to Nuclei.- 13.3.4 Variational Derivation of Fluid Dynamics.- 13.3.5 Momentum Distribution of the Density ?O.- 13.3.6 Imposed Fluid Dynamic Motion.- 13.3.7 An Illustrative Example.- Appendices.- A Angular Momentum Algebra in the Laboratory and the Body-Fixed System.- B Electromagnetic Moments and Transitions.- B.l The General Form of the Hamiltonian.- B.2 Static Multipole Moments.- B.3 The Multipole Expansion of the Radiation Field.- B.4 Multipole Transitions.- B.5 Single-Particle Matrix Elements in a Spherical Basis.- B.6 Translational Invariance and Electromagnetic Transitions.- B.7 The Cross Section for the Absorption of Dipole Radiation.- C Second Quantization.- C.1 Creation and Annihilation Operators.- C.2 Field Operators in the Coordinate Space.- C.3 Representation of Operators.- C.4 Wick’s Theorem.- D Density Matrices.- D.l Normal Densities.- D.2 Densities of Slater Determinants.- D.3 Densities of BCS and HFB States.- D.4 The Wigner Transformation of the Density Matrix.- E Theorems Concerning Product Wave Functions.- E.l The Bloch-Messiah Theorem [BM 62].- E.2 Operators in the Quasi-particle Space.- E.3 Thouless’ Theorem.- E.4 The Onishi Formula.- E.5 Bogoliubov Transformations for Bosons.- F Many-Body Green’s Functions.- F.l Single-Particle Green’s Function and Dyson’s Equation.- F.2 Perturbation Theory.- F.3 Skeleton Expansion.- F.4 Factorization and Brückner-Hartree-Fock.- F.5 Hartree-Fock-Bogoliubov Equations.- F.6 The Bethe-Salpeter Equation and Effective Forces.- Author Index.
£61.74
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG The Quantum Mechanics Solver: How to Apply Quantum Theory to Modern Physics
Book SynopsisMotivates students by challenging them with real-life applications of the somtimes esoteric aspects of quantum mechanics that they are learning. Offers completely original excerices developed at teh Ecole Polytechnique in France, which is know for its innovative and original teaching methods. Problems from modern physics to help the student apply just-learnt theory to fields such as molecular physics, condensed matter physics or laser physics.Trade ReviewFrom the reviews of the second edition: "This problem based textbook is a concise and particularly useful reference of quantum mechanics as used in a large range of modern applications in physics. … At the end of each section worked solutions, references and general comments are given … . this book of problems would be very useful for any physics departmental, or indeed individual research group, library. Highly recommended." (Lloyd C L Hollenberg, Australian Physics, Vol. 32 (6), 2007)Table of ContentsElementary Particles, Nuclei and Atoms.- Neutrino Oscillations.- Summary of Quantum Mechanics.- Quantum Entanglement and Measurement.- The EPR Problem and Bell’s Inequality.- Complex Systems.- Exact Results for the Three-Body Problem.- Atomic Clocks.- Neutron Interferometry.- Spectroscopic Measurement on a Neutron Beam.- Analysis of a Stern-Gerlach Experiment.- Measuring the Electron Magnetic Moment Anomaly.- Decay of a Tritium Atom.- The Spectrum of Positronium.- The Hydrogen Atom in Crossed Fields.- Energy Loss of Ions in Matter.- Schrödinger’s Cat.- Quantum Cryptography.- Direct Observation of Field Quantization.- Ideal Quantum Measurement.- The Quantum Eraser.- A Quantum Thermometer.- Properties of a Bose-Einstein Condensate.- Magnetic Excitons.- A Quantum Box.- Colored Molecular Ions.- Hyperfine Structure in Electron Spin Resonance.- Probing Matter with Positive Muons.- Quantum Reflection of Atoms from a Surface.- Laser Cooling and Trapping.- Bloch Oscillations.
£42.74
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Particle Metaphysics: A Critical Account of
Book SynopsisAre the particles of modern physics "real" or are they virtual entities, their existence deduced merely by abstract theories? This book examines the continuing debate regarding the inner constitution of matter by exploring the particle concept in physics. It investigates if the particles of particle physics are real or not. Readers interested in the "true meaning" of such physical concepts will find this book informative and thought provoking.Trade ReviewFrom the reviews: "This work could, and should, change the direction of current philosophy of science. Accomplished physicist-philosopher Falkenburg … has constructed a significant metaphysical framework in which to evaluate the knowledge claims of empirical particle physics. … Urgently recommended to all philosophers of science and interested physicists. Summing Up: Highly recommended. Upper-division undergraduates through faculty." (P. D. Skiff, CHOICE, Vol. v4 (3), November, 2007)Table of ContentsScientific Realism.- Extending Physical Reality.- Particle Observation and Measurement.- Probing Subatomic Structure.- Measurement and the Unity of Physics.- Metamorphoses of the Particle Concept.- Wave-Particle Duality.- Subatomic Reality.
£66.49
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Theory of Light Hydrogenic Bound States
Book SynopsisThe book describes the modern theory of light hydrogen-like systems. The discussion is based on quantum electrodynamics. Green's functions, relativistic bound-state equations and Feynman diagrams are extensively used. New theoretical approaches are described and explained. The book contains derivation of many theoretical results obtained in recent years. A complete set of all theoretical results for the energy levels of hydrogen-like bound states is presented.Table of ContentsTheoretical Approaches to the Energy Levels of Loosely Bound Systems.- General Features of the Hydrogen Energy Levels.- External Field Approximation.- Essentially Two-Particle Recoil Corrections.- Radiative-Recoil Corrections.- Nuclear Size and Structure Corrections.- Lamb Shift in Light Muonic Atoms.- Physical Origin of the Hyperfine Splitting and the Main Nonrelativistic Contribution.- Nonrecoil Corrections to HFS.- Essentially Two-Body Corrections to HFS.- Hyperfine Splitting in Hydrogen.- Notes on Phenomenology.
£161.99
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Radioaktivität: Fakten, Ursachen, Wirkungen
Book SynopsisRadioaktivität, natürliche und künstliche, ist ein Teil unseres täglichen Lebens, Fragen der Radioaktivität sind ein wichtiger Gegenstand öffentlicher Diskussion. Dieses Buch bringt gut verständlich und nüchtern die Fakten: zur Entstehung der unterschiedlichen radioaktiven Strahlen, zu ihren Eigenschaften und zu ihren Wirkungen auf Mensch und Materie. Strahlungsmessung und -meßgeräte sowie wesentliche Radioaktivitätsmethoden aus Forschung, Medizin und Technik werden ebenso ausführlich erläutert wie die Strahlenbelastung des Menschen, Kernreaktoren, Spaltprodukte und die Plutoniumproblematik.Table of Contents1. Einleitung.- 2. Grundlagen.- 2.1 Physikalische Größen und Maßeinheiten.- 2.2 Struktur der Materie.- 2.3 Elementarteilchen.- 2.4 Strahlung.- 3. Erhaltungssätze.- 3.1 Erhaltung von Impuls, Drehimpuls und Energie.- 3.2 Zentralkräfte, Bindungsenergie.- 3.3 Quantenmechanische Aspekte.- 3.4 Relativistische Aspekte.- 3.5 Kernbindungsenergie.- 3.6 Weitere Erhaltungssätze.- 4. Strahlung aus Elektronenhülle und Atomkern.- 4.1 Herkunft der Strahlung.- 4.2 Atomübergänge.- 4.2.1 Energiebetrachtungen.- 4.2.2 Atomzerfälle.- 4.3 Kernzerfälle.- 4.3.1 Gammazerfall.- 4.3.2 Betazerfall.- 4.3.3 Alphazerfall.- 4.3.4 Weitere Zerfallsmöglichkeiten.- 4.3.5 Zusammenfassung.- 5. Zeitliches Verhalten.- 5.1 Zerfallsgesetz und Aktivität.- 5.2 Mehrere Zerfallsmöglichkeiten, Beispiel 40K.- 5.3 Zerfallsketten.- 5.4 Altersbestimmung von Mineralien.- 5.5 Zerfallsstatistik.- 5.6 Radioaktiver Zerfall und Determinismus.- 6. Durchgang von Strahlung durch Materie.- 6.1 Überblick.- 6.2 Protonen und ?-Teilchen.- 6.2.1 Energieverlust pro Wegstreckenintervall.- 6.2.2 Streuung des Energieverlustes.- 6.2.3 Reichweite.- 6.3 Elektronen.- 6.3.1 Anregung und Ionisation.- 6.3.2 Brems Strahlung.- 6.3.3 Cerenkov-Strahlung.- 6.4 Neutronen.- 6.4.1 Streuung.- 6.4.2 Einfang in einen Atomkern.- 6.5 Röntgen- und ?-Strahlung.- 6.5.1 Photoeffekt.- 6.5.2 Compton-Effekt.- 6.5.3 Paarbildung.- 6.5.4 Schwächungskoeffizienten.- 6.6 Zusammenfassung.- 7. Strahlungsmessung.- 7.1 Vorbemerkungen.- 7.2 Strahlungsmeßgeräte.- 7.2.1 Gasionisationsdetektoren.- 7.2.2 Szintillatoren.- 7.2.3 Halbleiter-Detektoren.- 7.2.4 Weitere Nachweisverfahren.- 7.3 Durchführung von Messungen.- 7.3.1 Aktivitätsmessung.- 7.3.2 Gammaspektroskopie.- 7.3.3 Dosismessungen.- 7.4 Anwendungsbeispiele.- 7.4.1 Aufklärung der Photosynthese.- 7.4.2 Radioimmunoassay.- 7.4.3 Organszintigraphie.- 7.4.4 Aktivierungsanalyse.- 7.4.5 Anwendungen in der Technik.- 8. Strahlung und Mensch.- 8.1 Biologische Wirkung von ionisierender Strahlung.- 8.2 Strahlendosis und Strahlenschutz.- 8.2.1 Dosisgrößen.- 8.2.2 Dosisberechnung.- 8.2.3 Strahlenschutzvorschriften.- 8.3 Strahlenbelastung des Menschen.- 8.3.1 Herkunft der Strahlenbelastung.- 8.3.2 Gesundheitsrisiko.- 9. Kernreaktoren, Spaltprodukte.- 9.1 Vorbetrachtung.- 9.2 Kernspaltung.- 9.3 Kettenreaktion.- 9.4 Energieerzeugung.- 9.5 Spaltprodukte.- 9.6 Sicherheitsfragen.- 10. Plutonium.- Nachwort.- AI Relativistische Beziehung zwischen Masse und Energie..- A2 Nichtrelativistische Stoßkinematik.- A3 Wirkungsquerschnitt.- A4 Zum Energieverlust geladener Teilchen.- A5 Zur Poisson-Statistik beim radioaktiven Zerfall.- Weiterführende Literatur.- Personenverzeichnis.- Stichwortverzeichnis.
£35.99
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Feynman-Graphen und Eichtheorien für
Book Synopsis1 Relativistische Wellengleichungen.- 1.1 Vorbemerkungen.- 1.2 Betrachtungen zur Schrödingergleichung.- 1.3 Die Klein-Gordon-Gleichung.- 1.4 Die Dirac-Gleichung.- 1.5 Nichtrelativistischer Grenzfall der Dirac-Gleichung.- 1.6 Dirac-Gleichung für ein Elektron im elektromagnetischen Feld.- 1.7 Übungsaufgaben.- 2 Relativistische Kovarianz der Dirac-Gleichung.- 2.1 Vierervektoren, Lorentz-Transformation.- 2.2 Die ?-Matrizen.- 2.3 Ebene Wellen. Dirac-Spinoren.- 2.4 Kovarianz der Dirac-Gleichung.- 2.5 Spin des Elektrons.- 2.6 Skalare und vektorielle Bilinearformen.- 2.7 Übungsaufgaben.- 3 Interpretation der Lösungen negativer Energie.- 3.1 Stückelberg-Feynman-Bild der Antiteilchen.- 3.2 Die Wellenfunktionen des Positrons.- 3.3 Übungsaufgaben.- 4 Feynman-Graphen.- 4.1 Greensche Punktion.- 4.2 Elektron-Propagator.- 4.3 Matrixelement für Elektronenstreuung.- 4.4 Photon-Propagator.- 4.5 Feynman-Regeln.- 4.6 Übungsaufgaben.- 5 Anwendung der Feynman-Graphen.- 5.1 Streuung nichtrelativistischer Elektronen an Kernen.- 5.2 Streuung relativistischer Elektronen an Kernen.- 5.3 Elektron-Fermion-Streuung.- 5.4 Myon-Paarerzeugung.- 5.5 Elektron-Elektron- und Elektron-Positron-Streuung.- 5.6 Teilchen-Antiteilchen-Symmetrie.- 5.7 Compton-Streuung und Elektron-Positron-Vernichtung in ?-Quanten.- 5.8 Übungsaufgaben.- 6 Schwache Wechselwirkungen.- 6.1 Fermi-Theorie, intermediäre Bosonen.- 6.2 Paritätsverletzung, (V-A)-Theorie.- 6.3 Pion-Zerfall.- 6.4 Neutrino-Lepton-Reaktionen.- 6.5 Schwache Wechselwirkungen von Hadronen, Cabibbo-Winkel.- 6.6 Schwache neutrale Ströme.- 6.7 Schwacher Isospin, Charm-Quark.- 6.8 Übungsaufgaben.- 7 Lepton-Quark-Wechselwirkungen, Parton-Modell.- 7.1 Einführung.- 7.2 Elektron-Kern-Streuung, Formfaktor.- 7.3 Nukleon-Formfaktoren.- 7.4 InelastischeElektron-Nukleon-Streuung.- 7.5 Skaleninvarianz und Parton-Modell.- 7.6 Quark-Parton-Modell.- 7.7 Tief inelastische Neutrino-Nukleon-Streuung.- 7.8 Elektron-Positron-Vernichtung in Hadronen.- 7.9 Lepton-Paarerzeugung in Hadron-Stö?en.- 7.10 Übungsaufgaben.- 8 Divergenz-Probleme in der schwachen Wechselwirkung.- Überschreiten der Unitaritätsgrenze bei der Punkt- Wechselwirkung.- Divergenzen im W-Boson-Modell.- Kompensation der Divergenz durch ein neutrales Feldquant.- 9 Eichinvarianz als dynamisches Prinzip.- 9.1 Eichinvarianz und Maxwellsche Gleichungen.- 9.2 Eichinvarianz in der Quantenmechanik.- 9.3 Globale und lokale Phasentransformationen.- 9.4 Das Eichprinzip.- 9.5 Eichinvarianz und Masse der Feldquanten.- 9.6 Polarisationsvektoren für Photonen.- 9.7 Bedeutung der Potentiale in der Quantentheorie.- 9.8 Übungsaufgaben.- 10 Eichinvarianz bei massiven Vektor-Feldern.- 10.1 Die Erzeugung einer Photon-Masse im Supraleiter.- 10.2 Die Higgs-Teilchen als Verallgemeinerung der Cooper-Paare.- 10.3 Der Higgs-Mechanismus im Lagrange-Formalismus.- 10.4 Übungsaufgaben.- 11 Das Standard-Modell der elektroschwachen Wechselwirkung.- 11.1 Phaseninvarianz in der SU(2)-Symmetrie.- 11.2 Schwacher Isospin, schwache Hyperiadung.- 11.3 Lokale SU(2)l× U(l)-Transformationen, Kopplungen der Fermionen.- 11.4 Feynman-Regeln der elektroschwachen Wechselwirkung.- 11.5 Die Massen der W- und Z-Bosonen.- 11.6 Die Massen der geladenen Fermionen.- 11.7 Selbstwechselwirkung der Eichbosonen.- 11.8 Eigenschaften der W- und Z-Bosonen.- 11.9 Experimentelle Verifikation des Standard-Modells.- 11.10 Übungsaufgaben.- 12 Quanten-Chromodynamik.- 12.1 Historische Entwicklung der QCD.- 12.2 SU(3)-Symmetrie und Quarkmodell.- 12.3 Farbladungen.- 12.4 Lokale SU(3)c-Invarianz, Gluon-Felder.- 12.5Stabilität der $$q\bar q$$-und qqq-Systeme.- 12.6 Asymptotische Freiheit und Confinement.- 12.7 Experimentelle Ergebnisse zur QCD.- 12.8 Ausblick.- 12.9 Übungsaufgaben.- A Lagrange-Funktion für ein Teilchen im elektromagnetischen Feld.- B Lagrange-Formalismus in der Quantenfeldtheorie.- C Polarisationsvektoren für Spin-1-Teilchen.- Literatur.Table of Contents1 Relativistische Wellengleichungen.- 1.1 Vorbemerkungen.- 1.2 Betrachtungen zur Schrödingergleichung.- 1.3 Die Klein-Gordon-Gleichung.- 1.4 Die Dirac-Gleichung.- 1.5 Nichtrelativistischer Grenzfall der Dirac-Gleichung.- 1.6 Dirac-Gleichung für ein Elektron im elektromagnetischen Feld.- 1.7 Übungsaufgaben.- 2 Relativistische Kovarianz der Dirac-Gleichung.- 2.1 Vierervektoren, Lorentz-Transformation.- 2.1.1 Vierervektoren.- 2.1.2 Lorentz-Transformation.- 2.1.3 Drehung des Koordinatensystems.- 2.2 Die ?-Matrizen.- 2.3 Ebene Wellen. Dirac-Spinoren.- 2.4 Kovarianz der Dirac-Gleichung.- 2.4.1 Problemstellung.- 2.4.2 Transformation der Lösungen relativistischer Wellengleichungen.- 2.4.3 Rotation um die z-Achse.- 2.4.4 Lorentz-Transformation längs der z-Achse.- 2.4.5 Eigenschaften der Transformations-Matrizen.- 2.4.6 Raumspiegelung und Zeitumkehr.- 2.5 Spin des Elektrons.- 2.6 Skalare und vektorielle Bilinearformen.- 2.6.1 Skalar.- 2.6.2 Viererstromdichte.- 2.6.3 Pseudoskalar und Axialvektor.- 2.7 Übungsaufgaben.- 3 Interpretation der Lösungen negativer Energie.- 3.1 Stückelberg-Feynman-Bild der Antiteilchen.- 3.2 Die Wellenfunktionen des Positrons.- 3.3 Übungsaufgaben.- 4 Feynman-Graphen.- 4.1 Greensche Punktion.- 4.2 Elektron-Propagator.- 4.2.1 Berechnung der Greenschen Funktion.- 4.2.2 Propagator und zeitliche Entwicklung.- 4.3 Matrixelement für Elektronenstreuung.- 4.3.1 Matrixelement 1. Ordnung.- 4.3.2 Matrixelement 2. Ordnung.- 4.3.3 Anwendungsbeispiel: Streuung an einem Atomkern.- 4.4 Photon-Propagator.- 4.5 Feynman-Regeln.- 4.5.1 Konventionen zu Feynman-Diagrammen.- 4.5.2 Strom-Strom-Kopplung.- 4.5.3 Elementarprozesse.- 4.6 Übungsaufgaben.- 5 Anwendung der Feynman-Graphen.- 5.1 Streuung nichtrelativistischer Elektronen an Kernen.- 5.2 Streuung relativistischer Elektronen an Kernen.- 5.2.1 Spin-Summationen.- 5.2.2 Sätze über Spuren.- 5.2.3 Wirkungsquerschnitt für Elektron-Kern-Streuung.- 5.3 Elektron-Fermion-Streuung.- 5.3.1 Differentieller Wirkungsquerschnitt für Zweikörperreaktionen.- 5.3.2 Wirkungsquerschnitt für unpolarisierte Teilchen.- 5.4 Myon-Paarerzeugung.- 5.5 Elektron-Elektron- und Elektron-Positron-Streuung.- 5.5.1 Elektron-Elektron-Streuung.- 5.5.2 Elektron-Positron-Streuung.- 5.6 Teilchen-Antiteilchen-Symmetrie.- 5.7 Compton-Streuung und Elektron-Positron-Vernichtung in ?-Quanten.- 5.7.1 Compton-Streuung.- 5.7.2 Annihilation in zwei ?-Quanten.- 5.8 Übungsaufgaben.- 6 Schwache Wechselwirkungen.- 6.1 Fermi-Theorie, intermediäre Bosonen.- 6.2 Paritätsverletzung, (V-A)-Theorie.- 6.2.1 Eigenparitäten der Leptonen und Quarks.- 6.2.2 Helizität und Chiralität.- 6.3 Pion-Zerfall.- 6.4 Neutrino-Lepton-Reaktionen.- 6.5 Schwache Wechselwirkungen von Hadronen, Cabibbo-Winkel.- 6.6 Schwache neutrale Ströme.- 6.7 Schwacher Isospin, Charm-Quark.- 6.8 Übungsaufgaben.- 7 Lepton-Quark-Wechselwirkungen, Parton-Modell.- 7.1 Einführung.- 7.2 Elektron-Kern-Streuung, Formfaktor.- 7.3 Nukleon-Formfaktoren.- 7.4 Inelastische Elektron-Nukleon-Streuung.- 7.4.1 Inelastische Streuung als Mittel der Struktur-Analyse.- 7.4.2 Kinematik und Wirkungsquerschnitt für inelastische Elektron-Nukleon-Streuung.- 7.5 Skaleninvarianz und Parton-Modell.- 7.6 Quark-Parton-Modell.- 7.7 Tief inelastische Neutrino-Nukleon-Streuung.- 7.7.1 Strukturfunktionen der Neutrino-Streuung.- 7.7.2 Antiquark-Inhalt der Nukleonen.- 7.8 Elektron-Positron-Vernichtung in Hadronen.- 7.9 Lepton-Paarerzeugung in Hadron-Stö?en.- 7.10 Übungsaufgaben.- 8 Divergenz-Probleme in der schwachen Wechselwirkung.- Überschreiten der Unitaritätsgrenze bei der Punkt- Wechselwirkung.- Divergenzen im W-Boson-Modell.- Kompensation der Divergenz durch ein neutrales Feldquant.- 9 Eichinvarianz als dynamisches Prinzip.- 9.1 Eichinvarianz und Maxwellsche Gleichungen.- 9.2 Eichinvarianz in der Quantenmechanik.- 9.3 Globale und lokale Phasentransformationen.- 9.4 Das Eichprinzip.- 9.5 Eichinvarianz und Masse der Feldquanten.- 9.6 Polarisationsvektoren für Photonen.- 9.7 Bedeutung der Potentiale in der Quantentheorie.- 9.8 Übungsaufgaben.- 10 Eichinvarianz bei massiven Vektor-Feldern.- 10.1 Die Erzeugung einer Photon-Masse im Supraleiter.- 10.2 Die Higgs-Teilchen als Verallgemeinerung der Cooper-Paare.- 10.2.1 Das Higgs-Potential.- 10.3 Der Higgs-Mechanismus im Lagrange-Formalismus.- 10.3.1 Wechselwirkung zwischen Higgs-Feld und elektromagnetischem Feld.- 10.4 Übungsaufgaben.- 11 Das Standard-Modell der elektroschwachen Wechselwirkung.- 11.1 Phaseninvarianz in der SU(2)-Symmetrie.- 11.2 Schwacher Isospin, schwache Hyperiadung.- 11.3 Lokale SU(2)l× U(l)-Transformationen, Kopplungen der Fermionen.- 11.4 Feynman-Regeln der elektroschwachen Wechselwirkung.- 11.5 Die Massen der W- und Z-Bosonen.- 11.6 Die Massen der geladenen Fermionen.- 11.7 Selbstwechselwirkung der Eichbosonen.- 11.8 Eigenschaften der W- und Z-Bosonen.- 11.8.1 Berechnung der Zerfallsraten.- 11.8.2 Erzeugung der Z0-Bosonen in der e?e+-Annihilation.- 11.9 Experimentelle Verifikation des Standard-Modells.- 11.9.1 Zahl der Neutrino-Familien.- 11.9.2 Lepton-Universalität, Mischungswinkel.- 11.9.3 Eingrenzung der Top-Quark-Masse.- 11.10 Übungsaufgaben.- 12 Quanten-Chromodynamik.- 12.1 Historische Entwicklung der QCD.- 12.2 SU(3)-Symmetrie und Quarkmodell.- 12.2.1 Antiquarks.- 12.2.2 Quark-Antiquark-Zustände: Mesonen.- 12.2.3 Drei-Quark-Zustände: Baryonen.- 12.3 Farbladungen.- 12.3.1 Die Farbe als innere Quantenzahl der Quarks.- 12.3.2 Experimentelle Evidenz für die drei Farben.- 12.3.3 Farbladungen der Gluonen.- 12.4 Lokale SU(3)c-Invarianz, Gluon-Felder.- 12.4.1 Lokale SU(3)c-Transformationen.- 12.4.2 Kopplungen zwischen Quarks und Gluonen.- 12.4.3 Singulett-Gluon und Reichweite der starken Kräfte.- 12.5 Stabilität der $$ q\bar q $$-und qqq-Systeme.- 12.6 Asymptotische Freiheit und Confinement.- 12.6.1 Einführung effektiver Ladungen.- 12.6.2 Renormierung und Q2-Abhängigkeit der Kopplung.- 12.6.3 Confinement.- 12.7 Experimentelle Ergebnisse zur QCD.- 12.7.1 Entdeckung und Eigenschaften der Gluonen.- 12.7.2 Verletzung der Skaleninvarianz.- 12.7.3 Bestimmung von ?s.- 12.8 Ausblick.- 12.9 Übungsaufgaben.- A Lagrange-Funktion für ein Teilchen im elektromagnetischen Feld.- B Lagrange-Formalismus in der Quantenfeldtheorie.- C Polarisationsvektoren für Spin-1-Teilchen.- Literatur.
£37.99
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Laser-Induced Breakdown Spectroscopy:
Book SynopsisThis book is a comprehensive source of the fundamentals, process parameters, instrumental components and applications of laser-induced breakdown spectroscopy (LIBS). The effect of multiple pulses on material ablation, plasma dynamics and plasma emission is presented. A heuristic plasma modeling allows to simulate complex experimental plasma spectra. These methods and findings form the basis for a variety of applications to perform quantitative multi-element analysis with LIBS. These application potentials of LIBS have really boosted in the last years ranging from bulk analysis of metallic alloys and non-conducting materials, via spatially resolved analysis and depth profiling covering measuring objects in all physical states: gaseous, liquid and solid. Dedicated chapters present LIBS investigations for these tasks with special emphasis on the methodical and instrumental concepts as well as the optimization strategies for a quantitative analysis. Requirements, concepts, design and characteristic features of LIBS instruments are described covering laboratory systems, inspections systems for in-line process control, mobile systems and remote systems. State-of-the-art industrial applications of LIBS systems are presented demonstrating the benefits of inline process control for improved process guiding and quality assurance purposes.Table of ContentsIntroduction.- Laser-induced breakdown spectroscopy.- Process parameters.- Instrumental components.- Evaporation and plasma generation.- Multiple-pulses for LIBS.- Material ablation.- Plasma dynamics and plasma parameters.- Plasma emission.- Modeling of plasma emission.- Quantitative analysis.- Combination of LIBS and LIF.- Bulk analysis of metallic alloys.- Bulk analysis of non-conducting materials.- Spatially resolved analysis.- Depth profiling.- LIBS instruments.- Industrial applications.
£189.99
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Terahertz Spectroscopy and Imaging
Book SynopsisThis book presents the state-of-the-art of Terahertz spectroscopy. It is a modern source for a beginners and researcher interested in THz spectroscopy. The basics and physical background of THz spectroscopy and technology are explained, and important applications are described. The book presents the highlights of scientific research in the field of THz science and provides an excellent overview of the field and future directions of research. Over the last decade the field of terahertz spectroscopy has developed into one of the most rapidly growing fields of spectroscopy with large impact across a wide range of scientific disciplines. Due to substantial advances in femtosecond laser technology, terahertz time-domain spectroscopy (THz-TDS) has established itself as the dominant spectroscopic technique for experimental scientists interested in measurements in this frequency range. In solids and liquids terahertz radiation is at resonance with both phonon modes and hydrogen bonding modes which makes it an ideal tool to study the interaction between molecules in a unique way, thus opening a wealth of opportunities for research in physics, chemistry, biology, materials science and pharmaceuticals. This book provides an easy access to scientists, engineers and students alike who want to understand the theory and applications of modern terahertz spectroscopy.Table of ContentsTransmission, reflection, refraction and scattering of Terahertz radiation.- Optical constants and dispersion relations in THz spectroscopy.- Scattering effects.- Converging Terahertz beam vs. plane wave.- Signal Processing – Wavelet Transform.- Signal Processing – Fractional Fourier transformation and spectrogram in signal processing of Terahertz pulses.- Terahertz Spectroscopy.- Crystalline and non-crystalline solids.- Liquids and Biomolecules.- Ellipsometry and active polarization control of Terahertz waves.- ATR sensing at terahertz frequencies.- Pump-probe spectroscopy.- Liquid crystals.- Waveguide spectroscopy.- Condensed matter physics.- Assignment of vibrational modes in crystalline materials.- On-chip pulsed Terahertz spectroscopy.- Nonlinear terahertz spectroscopy.- Terahertz Imaging.- Far-field / Near-field.- Biomedical Imaging.- Pharmaceutical imaging.- Terahertz tomography.- Security.- Artists’ materials characterization.- Interesting Physics at Terahertz Frequencies.- Plasmonic structures.
£208.99
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Nuclear Physics
Book SynopsisThis textbook explains the experimental basics, effects and theory of nuclear physics. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams help to better understand the explanations. A better feeling to the subject of the book is given with sketches about the historical development of nuclear physics. The main topics of this book include the phenomena associated with passage of charged particles and radiation through matter which are related to nuclear resonance fluorescence and the Moessbauer effect., Gamov’s theory of alpha decay, Fermi theory of beta decay, electron capture and gamma decay. The discussion of general properties of nuclei covers nuclear sizes and nuclear force, nuclear spin, magnetic dipole moment and electric quadrupole moment. Nuclear instability against various modes of decay and Yukawa theory are explained. Nuclear models such as Fermi Gas Model, Shell Model, Liquid Drop Model, Collective Model and Optical Model are outlined to explain various experimental facts related to nuclear structure. Heavy ion reactions, including nuclear fusion, are explained. Nuclear fission and fusion power production is treated elaborately.Table of ContentsPassage of Charged Particles Through Matter.- Passage of Radiation Through Matter.- Radioactivity.- General Properties of Nuclei.- The Nuclear 1\vo-Body.- Nuclear Models.- Nuclear Reactions.
£61.74
Springer Spektrum Spin - Was Ist Das Eigentlich?: Ein Abstrakter
Book Synopsis
£9.99
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Strong Interaction Physics: Heidelberg-Karlsruhe International Summer Institute in Theoretical Physics (1970)
Table of ContentsSome consequences of unitarity and crossing existence and asymptotic theorems.- Analyticity, unitarity and crossing-symmetry constraints for pion-pion partial wave amplitudes.- New methods in the analysis of ?—N scattering.- Regge-pole phenomenology.- Certain problems of two-body reactions with spin.- Duality and regge theory.- Complex angular momentum.- An introduction to dual resonance models in multiparticle physics.- Physical N-pion functions.- Application of harmonic analysis to inelastic electron-proton scattering.- Small-distance behaviour in field theory.- Physics on the light cone.- Course on padé approximants.
£42.74
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Atoms, Molecules and Photons: An Introduction to
Book SynopsisThis introduction to Atomic and Molecular Physics explains how our present model of atoms and molecules has been developed over the last two centuries both by many experimental discoveries and, from the theoretical side, by the introduction of quantum physics to the adequate description of micro-particles. It illustrates the wave model of particles by many examples and shows the limits of classical description. The interaction of electromagnetic radiation with atoms and molecules and its potential for spectroscopy is outlined in more detail and in particular lasers as modern spectroscopic tools are discussed more thoroughly. Many examples and problems with solutions are offered to encourage readers to actively engage in applying and adapting the fundamental physics presented in this textbook to specific situations.Completely revised third edition with new sections covering all actual developments, like photonics, ultrashort lasers, ultraprecise frequency combs, free electron lasers, cooling and trapping of atoms, quantum optics and quantum information.Table of ContentsIntroduction.- The Concept of the Atom.- Development of Quantum Physics.- Basic Concepts of Quantum Mechanics.- The Hydrogen Atom.- Atoms with More Than One Electron.- Emission and Absorption of Electromagnetic Radiation by Atoms.- Lasers.- Diatomic Molecules.- Polyatomic Molecules.- Experimental Techniques in Atomic and Molecular Physics.- Modern Developments in Atomic and Molecular Physics.- Chronological Table for the Development of Atomic and Molecular Physics.- Solutions to the Exercises.
£98.99
Springer Fachmedien Wiesbaden Über die Quantentheorie der Linienspektren
Book SynopsisDieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.
£49.49
New India Publishing Agency Molecular Markers and Plant Biotechnology
Book Synopsis
£79.49
CRC Press The Effects of Low Dose Radiation
Book SynopsisThe papers collected in this book show the results of investigations performed by Russian scientists in the field of low dose irradiation action. It is confirmed that low doses do have effects on the human organism and the environment and that the most serious consequences are observed in the far post-irradiation period. This branch of radiobiology, which developed after the Chernobyl accident and studied its consequences, is discussed in detail. The main part of reviews and articles is devoted to the aspects of low dose effects on the human and animal genome and far post-irradiation consequences. New details of mechanisms of low dose action are shown and methods of their determination are discussed. Furthermore, the adaptive response of organisms and the low dose effects on the immune system are demonstrated. Also, the difference between protection mechanisms against low dose irradiation and against high dose irradiation is shown and proved.
£332.50
New India Publishing Agency Molecular Markers and Plant Biotechnology
Book SynopsisThe book entitled "Molecular Markers and Plant Biotechnology" is an exclusive collection of molecular marker based techniques narrated in 40 s through 578 along with figures makes it essential for biotechnology people. To supplement the practical working the relevant equipments have been described. Laboratory safety rules placed in the beginning is a wise task. Appendices include basic calculations; basic principles in preparation of reagents, abbreviations and glossary show the carefulness while preparing this text. This is an unavoidable text for biotechnology laboratory and class."Table of Contents1. Milestones in DNA history and biotechnology. 2. Equipments required in a molecular marker laboratory. 3. Isolation, purification and quantification of genomic DNA from plants. 4. Isolation, purification and quantification of RNA from plants. 5. Electrophoresis. 6. Molecular weight markers for gel electrophoresis. 7. Polycrylamide Gel Electrophoresis PAGE. 8. Gel electrophoresis of protein. 9. Isoenzyme. 10. Extraction of DNA fragments from Agarose Gel. 11. Why molecular markers? 12. Restriction enzyme digestion of DNA and its Agarose Gel Electrophoresis. 13. Thermocyclers PCR Machines. 14. Modifications of basic PCR technique. 15. Random amplified polymorphic DNA RAPD. 16. Restriction Fragment Length Polymorphism RFLP. 17. Amplified Fragment Length Polymorphism AFLP. 18. Simple sequence repeats Microsatellite. 19. Variable number of Tandem repeats Minisatellite. 20. Inter Simple Sequence Repeat ISSR. 21. Sequence Characterized Amplified Region SCAR. 22. Cleaved Amplified Polymorphic Sequence CAPS. 23. Single-Strand Conformation Polymorphism SSCP. 24. Retrotransposon-based markers S-SAP, IRAP, REMAP, RBIP, RGAS, SNP. 25. Silver staining. 26. Basics of marker assisted selection in crop plants. 27. Mapping populations. 28. QTL mapping. 29. Southern blotting. 30. Western blotting. 31. Northern blotting. 32. Eastern blotting. 33. DNA sequencing and designing of primers. 34. Gene transfer to plant. 35. Fluorescent in Situ Hybridization FISH. 36. Genotypic Barcoding. 37. mtDNA. 38. MicroRNA. 39. Graphical approach to calculate molecular weights of DNA/protein fragments. 40. Calculation of similarity index values and construction of Dendrogram using NTSYSpc 2.0.
£128.00
Springer Particles and Fundamental Interactions: An Introduction to Particle Physics
Book SynopsisThe book provides theoretical and phenomenological insights on the structure of matter, presenting concepts and features of elementary particle physics and fundamental aspects of nuclear physics. Starting with the basics (nomenclature, classification, acceleration techniques, detection of elementary particles), the properties of fundamental interactions (electromagnetic, weak and strong) are introduced with a mathematical formalism suited to undergraduate students. Some experimental results (the discovery of neutral currents and of the W± and Z0 bosons; the quark structure observed using deep inelastic scattering experiments) show the necessity of an evolution of the formalism. This motivates a more detailed description of the weak and strong interactions, of the Standard Model of the microcosm with its experimental tests, and of the Higgs mechanism. The open problems in the Standard Model of the microcosm and macrocosm are presented at the end of the book. Table of ContentsPreface.- 1. Historical Notes and Fundamental Concepts.- 2. Particle Interactions with Matter and Detectors.- 3. Particle Accelerators and Particle Detection.- 4. The Paradigm of Interactions: the Electromagnetic Case.- 5. First Discussion of the Other Fundamental Interactions.- 6 Invariance and Conservation Principles.- 7. Hadron Interactions at Low Energies and the Static Quark Model.- 8. Weak Interactions and Neutrinos.- 9. Discoveries in Electron-Positron Collisions.- 10. High Energy Interactions at the Dynamic Quark Model.- 11. The Standard Model of the Microcosm.- 12. CP-Violation and Particle Oscillations.- 13. Microcosm and Macrocosm.- 14. Fundamental aspects of Nucleon Interactions.- Appendix 1. Periodic Table.- Appendix 2. The natural units in subnuclear physics.- Appendix 3. Basic concepts of relativity and classical EM.- Appendix 4. Dirac’s equation and formalism.- Appendix 5. Physical and astrophysical constants.- References.- Index.
£53.99
Springer Structure and Dynamics of Non-Rigid Molecular Systems
Book SynopsisThis volume contains a selection of scientific papers related to the structure and dynamics of non-rigid molecules. This frontline topic was born a few decades ago, when Longuet-Higgins proposed his famous theory of Molecular Symmetry Groups (Mol. Phys. 6, (1962) 457). Unfortunately, since this early paper, very few publications have been devoted to the study of non-rigid molecules. Let us mention some books which dedicate some chapters to them: Induced Representations in Crystals and Molecules, by S. L. Altmann, Academic Publishers, 1977; Molecular Symmetry and Spectroscopy, by P. R. Bunker, Academic Publishers, 1979; and finally Large Amplitude Motion in Molecules, Vols. I and II, by several authors, Springer Verlag, 1979. More recently an International Symposium on Non-Rigid Molecules was held in Paris, France, from 1-7 July 1982, the proceedings of which were published in the volume entitled Symmetries and Properties of Non-Rigid Molecules. A Comprehensive Survey, edited by J. Maruani et al., Elsevier, 1983. Finally, we should mention the very specialized work The Permutational Approach to Dynamic Stereochemistry, by J. Brocas et al., McGraw-Hill, 1983. The purpose of this book is to fill in this information on the structure and dynamics of non-rigid systems. To this aim, we have gathered a collection of recent papers written by the most qualified specialists in the world, covering a large field from van der Waals molecules to inorganic complexes and organic polyrotor molecules, as well as considering statistical and dynamic aspects.Table of ContentsEditorial. Preface; R.S. Berry. Part I: Some Fundamental Questions in Non-Rigid Molecular Problems. The Structure, Symmetry, and Properties of Non-Rigid Molecules; A.I. Boldyrev. Do We Really Know How to Define Normal Vibrations in Non-Rigid Molecular Systems? G.A. Natanson. Generalizing the Molecular Symmetry Group of Longuet-Higgins to Asymmetric Tunneling Problems; R.G.A. Bone. Part II: Structure and Symmetry of Non-Rigid Molecular Systems. Characterization of Rotational Isomerization Processes in Monorotor Molecules; G.I. Cárdenas-Jirón, A. Toro-Labbé, C.W. Bock, J. Maruani. Group Theory for Three-Dimensional Non-Rigid Molecular Problems. Applications to the Double C3v Rotation, plus Bending, Wagging or Torsion Mode; Y.G. Smeyers. Non-Rigidity in Heptacoordinate Complexes; J. Brocas. Jet-Cooled Fluorescence Excitation Spectra and Carbonyl Wagging Potential Energy Functions of Cyclic Ketones in their Electronic Excited States; J. Lanne, J. Zhang, W.-Y. Chiang, P. Sagear, P. Cheatham. Part II: Dynamics of Non-Rigid Molecular Systems. Photofragmentation Dynamics of van der Waals Complexes; G. Delgado-Barrio, J.A. Beswick. Dynamics of Non-Rigid Molecules: Explorations of the Phase Space; D.E. Weeks, R.D. Levine. Index.
£42.74
Springer Super-Intense Laser-Atom Physics IV
Book SynopsisAtoms in strong radiation fields are interesting objects for study, and the research field that concerns itself with this study is a comparatively young one. For a long period after the ~scovery of the photoelectric effect. it was not possible to generate electro magnetic fields that did more than perturb the atom only slightly, and (first-or~er) perturbation theory could perfectly explain what was going on at those low intensities. The development of the pulsed laser bas changed this state of affairs in a rather dramatic way, and fields can be applied that really have a large, or even dominant influence on atomic structure. In the latter case, w~ speak of super-intense fields. Since the interaction between atoms and electromagnetic waves is characterized by many parameters other than the light intensity, such as frequency, iQnization potential, orbit time, etc., it is actually quite difficult to define what is exactly meant by the term 'super-intense'. Obviously the term does not have an absolute meaning, and intensity should always be viewed in relation to other properties of the system. An atom in a radiation field can thus best be described in terms of various ratios of the quantities involved. The nature of the system sometimes drastically changes if the value of one of these parameters exceeds a certain critical value, and the new regime could be called super-intense with respect to that parameter.Table of ContentsPreface. I: Multiphoton Ionization. Stabilization. General Strong-Field Ionization and High-Order ATI. Molecules. II: Multi-Electron Atoms. Correlation Effects. Coherence Transfer. Multiphoton Multiple Ionization. III: Hard Radiation Quanta. X-Rays. Two- Color Processes. Compton Scattering. High-Harmonic Generation. IV: Coherence and Interference. Non-Linear Light Propagation. Coherence, Interference and Wavepackets. Subject Index. Author Index.
£42.74
World Scientific Publishing Co Pte Ltd Electric-dipole Polarizabilities Of Atoms,
Book SynopsisThis book is an in-depth review of experiment and theory on electric-dipole polarizabilities. It is broad in scope, encompassing atomic, molecular, and cluster polarizabilities. Both static and dynamic polarizabilities are treated (in the absence of absorption) and a full tensor picture of the polarizability is used. Traditional experimental techniques for measuring electric polarizabilities are described in detail. Recently developed experimental methods, including light forces, position-sensitive time-of-flight deflection, and atom interferometry, are also extensively discussed. Theoretical techniques for calculating polarizabilities are reviewed, including a discussion on the use of Gaussian basis sets. Many important comparisons between theory and experiment are summarized in an extensive set of tables of polarizabilities of important atoms, molecules, and clusters. Applications of polarizabilities to many areas of chemistry and physics are described, including optics, chemical structure, interactions of gases and particles with surfaces, and the interaction of molecules with light. The emphasis is on a lucid presentation of the ideas and results with up-to-date discussions on important applications such as optical tweezers and nanostructure fabrication. This book provides an excellent overview of the importance of polarizabilities in understanding the physical, electronic, and optical properties of particles in a regime that goes from free atoms to condensed-phase clusters.Table of ContentsGeneral properties of the linear polarizability; polarizable systems; theory; experiment; manifestations of polarization properties.
£55.80
Springer Verlag, Singapore Fundamental Principles of Nuclear Engineering
Book SynopsisThis book highlights a comprehensive and detailed introduction to the fundamental principles related to nuclear engineering. As one of the most popular choices of future energy, nuclear energy is of increasing demand globally. Due to the complexity of nuclear engineering, its research and development as well as safe operation of its facility requires a wide scope of knowledge, ranging from basic disciplines such as mathematics, physics, chemistry, and thermodynamics to applied subjects such as reactor theory and radiation protection. The book covers all necessary knowledge in an illustrative and readable style, with a sufficient amount of examples and exercises. It is an easy-to-read textbook for graduate students in nuclear engineering and a valuable handbook for nuclear facility operators, maintenance personnel and technical staff.Table of ContentsChapter 1 Fundamentals of mathematics and physics Chapter 2 Thermodynamics Chapter 3 Heat transferChapter 4 Fluid flowChapter 5 Electrical ScienceChapter 6 Instrumentation & controlChapter 7 Chemistry and chemical engineeringChapter 8 Material ScienceChapter 9 Mechanical Science Chapter 10 Nuclear physics Chapter 11 Reactor theory Chapter 12 Radiation protection
£56.99
Springer Verlag, Singapore Modern Nuclear Physics: From Fundamentals to
Book SynopsisThis textbook is a unique and ambitious primer of nuclear physics, which introduces recent theoretical and experimental progresses starting from basics in fundamental quantum mechanics. The highlight is to offer an overview of nuclear structure phenomena relevant to recent key findings such as unstable halo nuclei, superheavy elements, neutron stars, nucleosynthesis, the standard model, lattice quantum chromodynamics (LQCD), and chiral effective theory. An additional attraction is that general properties of nuclei are comprehensively explained from both the theoretical and experimental viewpoints. The book begins with the conceptual and mathematical basics of quantum mechanics, and goes into the main point of nuclear physics – nuclear structure, radioactive ion beam physics, and nuclear reactions. The last chapters devote interdisciplinary topics in association with astrophysics and particle physics. A number of illustrations and exercises with complete solutions are given. Each chapter is comprehensively written starting from fundamentals to gradually reach modern aspects of nuclear physics with the objective to provide an effective description of the cutting edge in the field.Table of ContentsTentative Table of Contents [ asterisk (*) for graduate level] 1. Concepts of quantum mechanics from the nuclear viewpoint 1.1 Genesis of quantum physics 1.2 Spin and Isospin 1.3 Quantum entanglement 1.4 Schrödinger equation 1.5 Quantum Tunneling in one dimension 1.6 Uncertainty relation 1.7 Symmetries and symmetry breaking 1.8 Dirac equation *) 1.9 Lagrangian and Path integral *) 1.10 Second quantization *) 2. Nuclear forces 2.1 Fundamental interactions 2.2 Nuclear force and symmetry constraints 2.3 Meson theory of nucleon-nucleon (NN) interaction 2.4 Phase shifts and nuclear potentials 2.5 Three-body forces 2.6 Chiral Effective Field Theory (ChEFT)*) 3. Nuclear Structure theory 3.0 Bird’s eye view of nuclear models 3.1 Nuclear mean field 3.2 Random phase approximation 3.2 Energy density functionals 3.2.1 Pairing interactions and BCS/Bogolyubov approximation 3.3 Beyond the mean field approaches*) 3.3.1 Generator coordinate method (GCM) 3.3.2 Anti-symmetrized molecular dynamics (AMD) 3.4 The Monte Carlo shell models*) 3.5 Ab-initio approaches*) 3.5.1 No core shell model (NCSM) 3.5.2 Variational (VMC) and Green’s function Monte Carlo (GFMC) approaches 3.5.3 Fermionic molecular dynamics (FMD) 4. Nuclear Structure phenomena and observables 4.1 Spectroscopic observables for shell structure 4.2 Collective oscillations 4.3 Short-range correlations 4.4 Superheavy elements 4.5 Hypernuclei 5. Radioactive ion beam physics 5.1 Radioactive ion beam accelerators 5.2 In-beam gamma-ray spectroscopy and inverse kinematics 5.3 Neutron-rich nuclei –halo and skin 5.4 Evolution of nuclear shells with Isospin – island of inversion- 5.5 Di-neutron correlations and nuclear superfluidity *) 5.6 Clusters in nuclei *) 6. Deformation and Rotation 6.1 Deformation of Molecules and Nuclei 6.2 Nuclear deformation and observables 6.3 Microscopic origin for nuclear deformations and prolate dominance 6.4 Measuring shapes 6.4.1 Hyperfine atomic structure from laser spectroscopy 6.4.2 Magnetic and Quadrupole Nuclear Resonance 6.4.3 Coulomb excitation 6.5 Shape and shape coexistence*) 6.6 Superdeformation and Hyperdeformation*) 6.7 Advances in gamma spectroscopy*) 7. Nuclear reactions 7.1 Overview of reaction mechanics 7.2 Elastic scattering 7.3 Direct reactions 7.1.1 Spectroscopic factors 7.1.2 Transfer rections 7.1.3 Quasifree scattering 7.1.4 Heavy-ion induced nucleon removal 7.4 Nuclear fusion 7.4.1 Solar energies , and p-p chain reaction and CNO cycle 7.4.2 Magnetic confinement and the ITER project *) 7.4.3 Inertial confinement *) 7.5 Nuclear fission 7.5.1 Macroscopic models 7.5.2 Microscopic models *) 7.5.3 Principle of a nuclear power plant *) 8. Celestial observables and terrestrial experiments 8.1 Nuclear Equation-of-States constrained by terrestrial observables 8.2 Neutron stars 8.3 Nucleosynthesis 8.4 Supernovae explosion *) 9. Nuclear physics and the standard model of elementary particle 9.1 Standard model 9.2 Lattice Quantum Chromodynamics for Nuclei *) 9.3 CKM matrix and superallowed b decay*) 9.4 Neutrino oscillations and search for a 4 th neutrino*) 9.5 Double beta decay and neutrino mass*) 9.6 Appendix for LQCD*) References Solutions of problems
£49.49
Springer Verlag, Singapore Introduction to Nuclear Reactor Experiments
Book SynopsisThis open access book is a pedagogical text on nuclear reactor experiments, covering almost all the experiments that can be carried out at the University Training Reactor, Kindai University (UTR-KINKI) with respect to reactor physics and radiation detection, and additionally including academic materials of test and research reactors, nuclear instrumentation, nuclear laws and regulations, in this main body. The book is an excellent primer for students who are interested in reactor physics, radiation detection, nuclear laws and regulations at universities, and the best textbook for students who have started to study the nuclear energy related fields to understand the basic theories and principles of the experiments in the fields of reactor physics and radiation detection. UTR-KINKI has been used for educational reactor experiments and basic research in a wide range of fields related to the use of radiation (neutrons, gamma-ray, beta-ray, alpha-ray, and X-ray), including reactor physics, radiation detection, radiation health physics, activation analysis, radiation biology, medical applications and archaeology. Also, UTR-KINKI has been actively engaged in nuclear education with its long history of operation, and has gained extensive experience in educational activities for undergraduate and graduate students, elementary, junior high and high school teachers, junior high and high school students, and general audiences.Table of Contents
£31.49
Springer Verlag, Singapore Proceedings of the 23rd Pacific Basin Nuclear
Book SynopsisThis is the first in a series of three volumes of proceedings of the 23rd Pacific Basin Nuclear Conference (PBNC 2022) which was held by Chinese Nuclear Society. As one in the most important and influential conference series of nuclear science and technology, the 23rd PBNC was held in Beijing and Chengdu, China in 2022 with the theme “Nuclear Innovation for Zero-carbon Future”. For taking solid steps toward the goals of achieving peak carbon emissions and carbon neutrality, future-oriented nuclear energy should be developed in an innovative way for meeting global energy demands and coordinating the deployment mechanism. It brought together outstanding nuclear scientists and technical experts, senior industry executives, senior government officials and international energy organization leaders from all across the world. The proceedings highlight the latest scientific, technological and industrial advances in Nuclear Safety and Security, Operations and Maintenance, New Builds, Waste Management, Spent Fuel, Decommissioning, Supply Capability and Quality Management, Fuel Cycles, Digital Reactor and New Technology, Innovative Reactors and New Applications, Irradiation Effects, Public Acceptance and Education, Economics, Medical and Biological Applications, and also the student program that intends to raise students’ awareness in fully engaging in this career and keep them updated on the current situation and future trends.These proceedings are not only a good summary of the new developments in the field, but also a useful guideline for the researchers, engineers and graduate students.This is an open access book.Table of ContentsChapter 1. Safety and securityChapter 2. Operations and maintenanceChapter 3. New buildsChapter 4. Waste management, spent fuel, decommissioningChapter 5. Supply capability and quality managementChapter 6. Fuel cyclesChapter 7. digital reactor and new technologyChapter 8. Innovative reactors and new applicationsChapter 9. Irradiation effectsChapter 10. Public acceptance and educationChapter 11. EconomicsChapter 12. Medical and biological applications
£33.24