Other technologies and applied sciences Books
John Wiley & Sons Inc Wheat
Book SynopsisWheat is produced on a greater area, grown over a wider geographic range, and traded internationally as a commodity more than any other arable crop. Wheat alone provides 20% of the calories and protein in the global human diet. Understanding the interactions between wheat production, the environment, and human nutrition is essential for meeting the demands of food security as we approach the middle of the 21st century. Wheat: Environment, Food and Health is written by two leading authorities in the field and offers insights into critical issues such as the sustainability of wheat production, the challenges of both mitigating and adapting to environmental change, and the effects of wheat consumption on human health. Covering a broad range of topics, the authors: Introduce the historical development and utilization of the wheat crop. Describe the factors affecting the quality and acceptability of wheat for different uses. Table of ContentsForeword xv Acknowledgements xvi 1 Wheat and Humans: An Introduction to the Development and Utilisation of the Wheat Crop 1 1.1 Wheat Production in the Past and Present 1 1.1.1 Co-Evolution of Wheat Production and Human Societies 1 1.1.2 Wheat Supply and Demand 4 1.1.3 Wheat Adaptation 7 1.2 The Wheat Plant 9 1.2.1 Vegetative Phase 14 1.2.1.1 Germination 14 1.2.1.2 Leaves 15 1.2.1.3 Tillers 16 1.2.1.4 Roots 16 1.2.2 Reproductive Phase 16 1.2.2.1 Stem Extension 17 1.2.2.2 Booting and Ear Emergence 18 1.2.2.3 Anthesis 18 1.2.2.4 Grain Growth 19 1.3 Wheat Evolution and Migration 20 1.3.1 Origin in the Fertile Crescent 20 1.3.2 Wild Wheats 21 1.3.3 Domestication 22 1.3.4 The Spread of Wheat Cultivation 23 1.3.5 Increases in Harvest Index 24 1.4 Wheat as Food 25 1.4.1 The Development of Milling and Baking 25 1.4.2 The Cultural Significance of Bread 28 1.4.3 Bread Today 30 1.4.4 The Fall and Rise of Whole Grain Foods 31 1.4.5 Producing White and Wholemeal Flours by Roller Milling 33 1.5 Grain Quality 33 1.5.1 Grain Size, Shape, and Specific Weight 33 1.5.2 Endosperm Texture 35 1.5.3 Water Absorption 35 1.5.4 Gluten 36 1.5.4.1 The Origin and Properties of Gluten 36 1.5.4.2 Gluten and Health 37 1.5.4.3 Dough Properties that Determine Processing Quality 37 1.5.4.4 Importance of Total Protein Concentration 38 1.5.4.5 Importance of Protein Quality 40 1.5.4.6 Measurement of Dough Rheology and Quality 40 1.5.5 Other Factors Affecting the Acceptability of Wheat for Different End-Uses 41 1.5.5.1 Alpha-Amylase Activity 41 1.5.5.2 Seed Coat Colour 42 1.6 Further Chapters 42 References 42 2 A ‘Good’ Soil 52 2.1 Soils for Wheat Production 53 2.1.1 Soil Taxonomy 53 2.1.2 Soil Texture 54 2.1.3 Soil Organic Matter 56 2.1.4 Soil pH and Sodicity 58 2.1.5 Salinity 60 2.1.6 Soil Structure 61 2.1.7 Soil Depth 63 2.1.8 Land Classification 63 2.2 The Rise of the Plough 64 2.3 Soil Change and Land Degradation 66 2.3.1 Loss of Soil 66 2.3.2 Organic Matter Loss and Amendment 70 2.3.3 Acidification and Liming 74 2.3.3.1 Calcium as a Nutrient 75 2.3.4 Depletion of Micronutrients 76 2.3.4.1 Boron 76 2.3.4.2 Chlorine 76 2.3.4.3 Copper 77 2.3.4.4 Iron 77 2.3.4.5 Manganese 78 2.3.4.6 Molybdenum 78 2.3.4.7 Nickel 78 2.3.4.8 Zinc 79 2.3.5 Salinisation 79 2.3.6 The Weed Seedbank 80 2.4 Systems for Protecting the Soil 82 2.4.1 Conservation Tillage 82 2.4.2 Organic Farming 84 2.4.3 Conservation Agriculture 85 2.5 Land-Use Efficiency and Soils 86 References 87 3 Ample Water 101 3.1 The Water Requirement of Wheat 103 3.1.1 Germination and Seedling Emergence 103 3.1.2 Transpiration 104 3.1.3 Root Growth 108 3.1.4 Reproductive Growth and Grain Filling 109 3.2 Available Water 113 3.2.1 Soil Water 113 3.2.2 Rainfall 114 3.2.2.1 Rainfall Shortage 115 3.2.2.2 Rainfall Excess 116 3.2.3 Irrigation 117 3.2.3.1 Surface Irrigation 119 3.2.3.2 Overhead Irrigation 119 3.2.3.3 Sources of Irrigation Water 120 3.3 Water Use Efficiency 122 3.3.1 Reducing Evaporation Losses 122 3.3.2 Increasing Rooting at Depth 122 3.3.3 Deficit Irrigation 124 3.3.4 Osmotic Adjustment 124 3.3.5 Transpiration Efficiency 125 3.3.6 Potassium 125 3.4 Land-Use Efficiency and Water 127 References 128 4 Mild Temperatures 139 4.1 The Temperature Requirement for Wheat 140 4.2 ‘Waiting for Fine Times’ (Snape et al. 2001) 142 4.2.1 Dormancy 142 4.2.2 Cold Acclimation 143 4.2.3 Vernalisation 144 4.2.4 Photoperiodism 145 4.2.5 Earliness per se 147 4.3 Vegetative Growth and Development 147 4.3.1 Germination and Emergence 147 4.3.2 Leaves 148 4.3.3 Tillers 150 4.3.4 Roots 150 4.4 Reproductive Growth and Development 151 4.4.1 Spikelet Formation and Stem Extension 151 4.4.2 Meiosis and Anthesis 151 4.4.2.1 Heat Stress 151 4.4.2.2 Cold Stress 154 4.4.3 Grain Filling and Quality 154 4.5 Global Warming 156 References 157 5 Sunshine 166 5.1 The Light Requirement of Wheat 170 5.1.1 Light Quantity 170 5.1.2 Light Quality 175 5.2 Light Interception 176 5.3 Improving Radiation Use for Increased Land-Use Efficiency 179 References 181 6 Canopy Management 186 6.1 Crop Establishment 186 6.1.1 Sowing Date 186 6.1.2 Plant Populations and Sowing Rate 188 6.2 Crop Nutrition 193 6.2.1 Nitrogen 194 6.2.1.1 The Requirement for Nitrogen 194 6.2.1.2 Nitrogen Fixation 201 6.2.1.3 Nitrogen Efficiencies and Losses 205 6.2.1.4 Recovering and Recycling Fixed Nitrogen 211 6.2.1.5 Optimising Nitrogen Application 214 6.2.2 Phosphorus 218 6.2.3 Sulphur 221 6.2.4 Magnesium 224 6.3 Diseases and their Control 224 6.3.1 The Rusts 226 6.3.1.1 Yellow Rust 226 6.3.1.2 Leaf Rust 227 6.3.1.3 Stem Rust 227 6.3.2 The Blotch Diseases 228 6.3.2.1 Septoria tritici Blotch 228 6.3.2.2 Septoria nodorum Blotch 229 6.3.2.3 Tan Spot 230 6.3.3 Diseases Contributing to Mycotoxins in the Grain 230 6.3.3.1 Ergot 230 6.3.3.2 Fusarium Head Blight (FHB) 231 6.3.4 Fungicides and Fungicide Use 232 6.4 Land-use Efficiency and Canopy Management 238 References 240 7 The Structure and Composition of the Wheat Grain 263 7.1 Grain Development 263 7.1.1 Fertilisation 263 7.1.2 Post-fertilisation 265 7.1.3 Endosperm Development 265 7.1.4 Embryo Development 267 7.2 Structure of the Mature Grain 268 7.3 Major Components of the Mature Grain 271 7.3.1 Carbohydrates 272 7.3.1.1 Monosaccharides, Disaccharides, and Oligosaccharides 272 7.3.1.2 Starch 272 7.3.1.3 Cell Wall Polysaccharides 274 7.3.1.4 Arabinogalactan Peptide (AGP) 276 7.3.2 Proteins 277 7.3.2.1 Grain Protein Content (GPC) 277 7.3.2.2 Grain Protein Deviation 277 7.3.2.3 Essential Amino Acid Composition 278 7.3.2.4 Wheat Grain Proteins 279 7.3.2.5 Gluten Proteins: Gliadins and Glutenins 280 7.3.2.6 Other Proteins of the Prolamin Superfamily 287 7.3.2.7 Other Storage Proteins 291 7.3.2.8 Other Inhibitors and Putative Defensive Proteins 292 7.3.2.9 Xylanases and Xylanase Inhibitors 293 7.3.3 Lipids 293 7.3.4 Minor Components: Minerals, Vitamins, and Phytochemicals 294 7.4 Gradients in Composition within the Starchy Endosperm 295 References 296 8 Components and Mechanisms that Determine Grain Processing Properties 301 8.1 Grain Hardness and Vitreousness 301 8.1.1 Friabilin and Puroindolines 302 8.1.2 Other Proteins that Affect Grain Hardness 303 8.1.3 Role of Lipids 304 8.1.4 When and How is Grain Softness Established? 304 8.1.5 Vitreousness 305 8.2 Dough Viscoelasticity 305 8.2.1 Wheat Gluten and Dough Viscoelasticity 305 8.2.2 HMW Subunits, Dough Strength, and Breadmaking Quality 307 8.2.3 Effects of Other Gluten Proteins on Dough Quality 308 8.2.4 Molecular Basis for the Role of the HMW Subunits in Gluten Structure and Properties 308 8.3 Functional Properties of Starch 309 8.3.1 Starch Gelatinisation 310 8.3.2 Starch Damage 310 8.3.3 Starch Retrogradation and Staling 311 8.3.4 Waxy and High Amylose Starches 311 8.4 Other Functional Components 311 8.4.1 Arabinoxylan 311 8.4.2 Functional Properties of Lipids in Dough 312 8.4.3 Water Absorption: Effects of Starch, Protein, and Fibre 312 8.5 Effects of Crop Nutrition and Environmental Factors on Grain Composition and Quality 313 8.5.1 Nitrogen Fertilisation 313 8.5.2 Sulphur Availability 314 8.5.2.1 Sulphur Nutrition, Asparagine Content, and Acrylamide Formation 315 8.5.3 Temperature and Water Availability 316 8.5.4 Carbon Dioxide Concentration 317 References 318 9 The Role of Wheat in Diet and Health 321 9.1 Contribution of Wheat to the Human Diet 321 9.2 Dietary Fibre 321 9.2.1 Proposed and Approved Benefits of Dietary Fibre 321 9.2.2 Wheat Grain Fibre 324 9.2.2.1 Cell Wall Polysaccharides 324 9.2.2.2 Fructans 325 9.2.2.3 Resistant Starch 325 9.2.2.4 High Amylose Starch 325 9.2.3 Mechanism of Action of Dietary Fibre 326 9.2.3.1 Role of Food Structure and Breakdown 326 9.2.3.2 Role of Luminal Viscosity 327 9.2.3.3 Role of Prebiotic Activity 327 9.3 Micronutrients and Phytochemicals 327 9.3.1 Iron and Zinc 327 9.3.2 Selenium 330 9.3.3 B Vitamins 330 9.3.4 Phytochemicals 331 9.3.4.1 Phenolics 331 9.3.4.2 Terpenoids 333 9.3.5 Betaine and Choline 333 9.3.6 Health Benefits of Phytochemicals 335 9.3.7 Environmental Effects on the Concentrations of Phytochemicals and Minerals 337 9.4 Adverse Effects of Wheat on Health 338 9.4.1 Wheat as Part of the Western Diet 338 9.4.2 Allergy and Intolerance to Wheat 338 9.4.3 Allergy 338 9.4.4 Coeliac Disease and Related Intolerances 340 9.4.5 Other Adverse Reactions to Wheat 341 9.4.6 FODMAPs and Gastro-Intestinal Disorders 341 9.4.7 Bloating 342 9.5 Producing Healthier Wheat Products by Processing 342 9.5.1 Debranning 342 9.5.2 Flour Particle Size 342 9.5.3 Fermentation 343 9.5.4 Sprouting 344 9.5.5 Enzyme Treatments 344 9.5.6 Conclusions: Processing for Improved Health Benefits 344 9.6 Fungal Toxins in Wheat 345 9.6.1 Ergot 345 9.6.2 Fusarium Mycotoxins 345 9.6.3 Mycotoxins from Storage Fungi 347 9.6.4 Removing Fungal Toxins by Processing 347 References 348 10 Wheat Genetics and Improvement 357 10.1 Genetic Background to Wheat Breeding 357 10.2 Technologies for Wheat Genetics and Breeding 358 10.2.1 Aneuploid Lines 358 10.2.2 Doubled Haploid Lines, Recombinant Inbred Lines, and Near-Isogenic Lines 359 10.2.3 Marker-Assisted Selection (MAS) 360 10.2.4 Genome-Wide Association Genetics (GWAS) and Genomic Selection (GS) 360 10.2.5 Intermated Populations (MAGIC and NAM) 361 10.2.6 Hybrid Wheat 361 10.2.7 Perennial Wheat 362 10.3 Sources and Exploitation of Genetic Diversity 363 10.3.1 Gene Banks 363 10.3.2 Land Races 363 10.3.3 Wild Relatives 364 10.3.4 Rye Translocations 365 10.3.5 Synthetic Wheats 366 10.3.6 Ancient Wheats 366 10.3.7 Tritordeum: A Novel Cereal Derived from Wheat 367 10.3.8 Mutagenesis and TILLING 367 10.4 Impact of Breeding on Genetic Diversity in Wheat 369 10.4.1 Minerals 369 10.4.2 Protein Content 370 10.4.3 Wheat Proteins that Trigger Adverse Reactions 371 10.4.4 Dietary Fibre 371 10.4.5 Other Components 372 10.5 Are Ancient Wheats More Healthy than Modern Wheats? 372 10.5.1 Wheat Proteins that Trigger Adverse Reactions 373 10.5.2 Other Components 373 10.6 Wheat Biotechnology 374 10.6.1 Genetic Transformation 374 10.6.1.1 DNA Delivery 375 10.6.1.2 Selection of Transformed Plants 375 10.6.1.3 Targeting and Regulating Gene Expression 376 10.6.1.4 Gene Editing 376 10.6.2 Regulation, Impact and Consumer Acceptance of Genetic Transformation and Genome Editing in Wheat and Other Crops 377 10.7 Applications of Biotechnology to Wheat Improvement 378 10.7.1 Input Traits 379 10.7.1.1 Potential Yield 379 10.7.1.2 Improving Nitrogen-Use Efficiency (NUE) 379 10.7.1.3 Resistance to Abiotic Stresses 380 10.7.1.4 Resistance to Pests and Pathogens 380 10.7.2 Output Traits: Grain Quality 380 10.7.2.1 Dough Strength 380 10.7.2.2 Grain Texture 382 10.7.2.3 Increasing Mineral Micronutrients 382 10.7.2.4 Reducing Adverse Effects 383 10.7.2.5 ‘Improving’ Grain Polysaccharides 384 References 385 11 Epilogue: Wheat in Conflict and in Peace 394 Reference 396 Index 397
£141.26
John Wiley & Sons Inc Use of Hydrocolloids to Control Food Appearance
Book SynopsisUse of Hydrocolloids to Control Food Appearance, Flavor, Texture, and Nutrition A thoroughly up-to-date and forward-looking presentation of the use of hydrocolloids in food In Use of Hydrocolloids to Control Food Appearance, Flavor, Texture, and Nutrition, a team of distinguished food researchers combines comprehensive and authoritative discussions on the conventional use of hydrocolloids to influence shape, structure and organoleptic properties of foods with exciting and emerging areas of innovation, such as texturing for 3D printing and enhancement of food nutrition. The book explores the four principal quality factors of food: appearance, flavor, texture and nutrition, and introduces students and food technologists to the myriad uses of hydrocolloids. It also presents illustrations of relevant commercial food products that rely on hydrocolloids for their appeal, as well as recipes exemplifying the unique abilities of particular hydrocolloids. Readers will also find: A thorough introduction to the use of hydrocolloids to control food size and shape, including the manipulation of select geometrical properties of foods A comprehensive exploration of the use of hydrocolloids to modulate food color and gloss, including the psychological impact of those properties Practical discussions pertaining to the modification of food taste and odor using hydrocolloids A thorough description of the ways in which hydrocolloids are used to improve crispy, crunchy and crackly foods Perfect for food scientists working in product development and food engineers, Use of Hydrocolloids to Control Food Appearance, Flavor, Texture, and Nutrition is sure to earn a place in the libraries of research chefs, as well as food chemists, food microbiologists and food technologists.Table of ContentsPreface xiii Acknowledgments xxi About the Authors xxiii 1 Use of Hydrocolloids to Control Food Size and Shape 1 1.1 Introduction 1 1.2 The Attractive Shape of Foods 1 1.2.1 Triangular and Prism- Shaped Foods 1 1.2.2 Rectangular and Cube- Shaped Foods 4 1.2.3 Circular and Spherical- Shaped Foods 4 1.3 Selected Geometrical Properties of Foods 6 1.3.1 Size 6 1.3.2 Characterization of Size 6 1.3.3 Size Reduction 7 1.3.4 Energy Requirements for Size Reduction of Solid Materials 8 1.4 Size Enlargement and Reduction Processes 10 1.4.1 Definition of Forming and Its Aims 10 1.4.2 Confectionery Molders 10 1.4.3 Pie- Casing Formers 10 1.4.4 Hydrocolloids in Food Fillings 11 1.4.5 Cutting and Shaping Spherical Edible Products 12 1.5 Shape – Definition and Implications 12 1.5.1 Shape of a Food Commodity 12 1.5.2 Roundness and Sphericity 12 1.5.3 Average Projected Area and Sphericity of Hydrocolloid Beads 14 1.5.4 How Are Gels Shaped? 15 1.5.5 Silicone Molds to Modify Gel Shapes and Sizes 16 1.6 Miscellaneous Shapes and Sizes of Edible Hydrocolloid Products 17 1.6.1 Edible Hydrocolloid Gel Beads 17 1.6.2 Parameters to Be Considered Upon Formation of Beads Through Capillary Jet Breakage 18 1.6.3 Bead Shape and Its Improvement 20 1.6.4 Shape and Size of Hydrocolloid Beads and Their Estimation 23 1.7 Assorted Specially Shaped and Sized Hydrocolloid Foods 23 1.7.1 Ham Consommé with Alginate Melon Beads 23 1.7.2 Extruded Gel Noodles 24 1.7.3 Cold Gels 24 1.7.4 Knot Foie 24 1.7.5 Shapes of Gummy Worms 25 1.7.6 Gel Films 25 1.8 Foods for the Elderly 26 1.8.1 Effects of Hydrocolloid Addition on the Mastication of Minced Foods 27 1.8.2 Hydrocolloids for the Design of Food for the Elderly 27 1.9 Demonstrating the Use of Hydrocolloids in Controlling Food Size and Shape 28 1.9.1 Agar Spaghetti 31 1.9.2 Commercial Experimental Set to Produce Artificial Salmon Roe 32 References 32 2 Use of Hydrocolloids to Modulate Food Color and Gloss 40 2.1 Introduction 40 2.2 Appearance of Objects 40 2.3 Optical Properties 41 2.4 Color 42 2.4.1 Color of Food Commodities 42 2.4.2 Expressing Color Numerically 42 2.4.3 The Kubelka–Munk Concept 47 2.5 Gloss 48 2.5.1 General Approach 48 2.5.2 What Is Gloss and Why Is It Measured? 48 2.5.3 Gloss Units and What Differences in Gloss Can Be Detected by Humans 49 2.5.4 How Gloss Is Measured and Glossmeter Types 50 2.6 On the Psychological Impact of Food Color and Gloss 51 2.7 Where and When Are Hydrocolloids Utilized to Modulate Food Color and Gloss? 51 2.7.1 Color of Fruit Leathers and Bars 51 2.7.2 Gloss and Transparency of Edible Films 54 2.7.3 High- Gloss Edible Coating 55 2.7.4 Gloss and Transparency of HPMC Films Containing Surfactants as Affected by Their Microstructure 55 2.7.5 Hydrocolloids in Forming Properties of Cocoa Syrups 56 2.7.6 Color of Deep- Fat- Fried Products 56 2.7.7 Spray- Dried Products 58 2.7.8 Interaction of Anthocyanins with Food Hydrocolloids 59 2.8 Demonstrating the Use of Hydrocolloids to Prepare Colored and Glossy Products/ Recipes 60 2.8.1 Teriyaki Fish with Pullulan 63 2.8.2 Neutral Mirror Glaze (nappage neutre) 64 References 65 3 Use of Hydrocolloids to Modify Food Taste and Odor 74 3.1 Introduction 74 3.2 Flavor Perception: Aroma, Taste, and Volatile Compounds 74 3.3 Flavor of Hydrocolloid- Supplemented Value- Added Foods 78 3.3.1 Low- Fat Cheddar Cheese 78 3.3.2 Wholegrain Sorghum Bread 79 3.3.3 Fish Fingers 80 3.3.4 Meat Analogs 80 3.3.5 Spreads 81 3.3.6 Protein Beverages 81 3.4 Interactions of Flavor Compounds with Different Food Ingredients 82 3.4.1 Interactions Between Proteins and Flavor Compounds 82 3.4.2 Interactions Between Starch and Flavor Compounds 83 3.4.3 Interactions Between Hydrocolloids and Flavor Compounds 84 3.5 Effect of Hydrocolloids on Sensory Properties of Selected Model Systems and Beverages 86 3.6 Influence of Hydrocolloids on the Release of Volatile Flavor Compounds 88 3.7 Gels and Flavor 90 3.7.1 Hydrocolloid Gels and Flavor Release 90 3.7.2 Phase- Separated Gels and Aroma Release 91 3.8 The Influence of Flavor Molecules on the Behavior of Hydrocolloids 92 3.9 Demonstrating the Use of Hydrocolloids in Modifying Food Taste/Odor 92 3.9.1 Fried Chicken with Methylcellulose (MC) 95 3.9.2 Gluten- Free Bread with Hydroxypropyl Methylcellulose (HPMC) 96 References 97 4 Use of Hydrocolloids to Control Food Viscosity 107 4.1 Viscosity of Fluids 107 4.1.1 The Field of Flow and Viscosity 107 4.1.2 Laminar Flow and Turbulent Flow 108 4.2 Important and Useful Definitions 111 4.2.1 Dynamic Viscosity and Fluidity 111 4.2.2 Kinematic Viscosity 111 4.2.3 Relative Viscosity 111 4.3 Flow Equations 112 4.3.1 Definitions of Apparent Viscosity, Shear Stress, and Shear Rate 112 4.3.2 The General Equation for Viscosity 112 4.3.3 The Power Equation 113 4.3.4 The Herschel- Bulkley Model 113 4.3.5 Casson Equation 114 4.4 Thickening and Viscosity- Forming Abilities of Hydrocolloids – A General Approach 115 4.5 Hydrocolloids as Viscosity Formers in Foods 116 4.6 Time Dependence of Hydrocolloid Solutions 121 4.7 Fluid Gels 124 4.8 Demonstrating the Use of Hydrocolloids to Control Viscosity in Foods 126 4.8.1 Creamy Italian Dressing 128 4.8.2 French Dressing 128 References 129 5 Use of Hydrocolloids to Improve the Texture of Crispy, Crunchy, and Crackly Foods 136 5.1 Introduction 136 5.2 Definitions of Crispness and Crunchiness 136 5.3 Dependence of Crunchiness and Crispness on Moisture and Oil Content 137 5.4 Mechanical, Acoustical, and Temporal Aspects of Crunchiness and Crispness 140 5.5 Crackly Foods 142 5.6 Methods for Improving the Texture of Crispy and Crunchy Foods Using Hydrocolloids 146 5.6.1 Vacuum Frying 146 5.6.2 Coating and Batter 148 5.7 Enhancement of Food Acoustic Properties Using Various Hydrocolloids 149 5.7.1 Contribution of Inulin to Crispness of Biscuits, Pizza, and Wafers 149 5.7.2 Crispness of Banana Chips 149 5.7.3 Specialty Starches as Functional Ingredients 150 5.7.4 Specialty Starches in Snack Foods 151 5.7.5 Protein- Rich Extruded Snack 152 5.8 Demonstrating the Preparation of Crunchy Products 154 5.8.1 Baked Tortilla Chips 156 5.8.2 Commercial Fabricated Potato Chips 157 5.8.3 Commercial Fabricated Fried Potato 157 References 157 6 Use of Hydrocolloids to Improve the Texture of Hard and Chewy Foods 166 6.1 Texture Definitions 166 6.1.1 Hardness 166 6.1.2 Chewiness 167 6.1.3 Juiciness 167 6.2 Use of Hydrocolloids to Improve Bread Texture 168 6.3 Dairy Products 171 6.3.1 Dairy Foods 171 6.3.2 Cheeses 172 6.3.3 Functionality of Selected Hydrocolloids on Texture of Ice Cream 172 6.4 Fish Products 174 6.5 Further Contributions of Hydrocolloids to Textural Improvement 175 6.6 Other Miscellaneous Applications 176 6.6.1 Rice Starch Pastes 176 6.6.2 Rice Starch–Polysaccharide and Other Mixed Gels 177 6.6.3 Hydrocolloid Effects on Pea Starch 178 6.7 Demonstrating the Use of Hydrocolloids in Creating/Controlling Food Hardness and Chewiness 179 6.7.1 Agar Jelly, Seiryu 182 6.7.2 Low- Concentration Carrageenan Jelly, mizu- Shingen mochi 183 References 183 7 Use of Hydrocolloids to Control the Texture of Multilayered Food Products 192 7.1 Introduction 192 7.2 Multilayered Hydrocolloid- Based Foodstuffs 192 7.2.1 Confectionery Products 192 7.2.2 Cream- Filled Multilayered Food Products 194 7.2.3 Gelled Multilayered Food Products 195 7.2.4 Multilayered Films 197 7.2.5 Nano- Multilayer Coatings 198 7.2.6 Multilayered Liposomes and Capsules 199 7.2.7 Multilayered Particles 199 7.3 Methods to Estimate Properties of Multilayered Products 200 7.3.1 Assessment of Stiffness and Compressive Deformability of Multilayered Texturized Fruit and Gels 200 7.3.2 Calculating the Stress–Strain Relationships of a Layered Array of Cellular Solids 202 7.3.3 Other Techniques to Assess Multilayered Products 205 7.4 Current Systems and Methods to Prepare Multilayered Products 205 7.4.1 Extrusion and Coextrusion 205 7.4.2 Injection Molding 207 7.4.3 3D- Printing and Layered Products 208 7.4.4 Multilayered Emulsions 208 7.5 Further Matters Related to Multilayered Products 209 7.5.1 Natural Food- Grade Emulsifiers and Interfacial Layers 209 7.5.2 Multilayer Adsorption 210 7.5.3 Gelled Double- Layered Emulsions 210 7.6 Complications Related to Multilayered and Colored Products 211 7.7 Future Potential Biotechnological Uses of Multilayered Gels 215 7.8 Demonstrating the Use of Hydrocolloids to Prepare Multilayered Products/ Recipes 216 7.8.1 Multilayered Gelatin Jelly 219 7.8.2 Beer- Like Jelly 219 References 220 8 Hydrocolloids to Control the Texture of Three- Dimensional (3D)-Printed Foods 230 8.1 Introduction 230 8.2 A Brief History of 3D Printing 230 8.3 3D Printing of Foods 231 8.3.1 3D Options in Foods 231 8.3.2 Special Personalized Foods for the Elderly 233 8.4 3D- Printed Food Products 234 8.4.1 Printed Sugar Products 234 8.4.2 Chocolate 235 8.4.3 Pastes, Pizza, Cookies, and Meat 236 8.5 Production of Snacks 237 8.5.1 Cereal- Based 3D Snacks 237 8.5.2 Fruit Snacks 238 8.6 Printability of Food Additives 238 8.6.1 Issues Related to 3D Food Printing 238 8.6.2 Printability of Hydrocolloids 238 8.6.3 Protein Products Applicable for 3D Printing 239 8.6.4 The Effect of 3D Printing on Lipids 240 8.7 Infill Percentage and Pattern 241 8.8 Modifying Food Texture to Suit Personal and Other Requirements by 3D Printing Technology 242 8.9 Hydrocolloids in 3D Printing 243 8.10 3D Printing of Hydrocolloid Foods Served in Restaurants 244 8.11 3D Printing and Laser Cooking 248 8.12 Novel Application for 4D Food Printing 248 References 249 9 Use of Hydrocolloids to Control Food Nutrition 255 9.1 Nutritional Applications of Natural Hydrocolloids 255 9.2 Types of Dietary Fibers 256 9.3 Dietary Fiber as a Versatile Food Component 257 9.4 Food Enriched in β- Glucans 258 9.5 Cereal Polysaccharides as the Foundation for Useful Ingredients in the Reformulation of Meat Products 259 9.6 Health Claims of Hydrocolloids 261 9.7 Miscellaneous Cases of Nutritional and Health Benefits 262 9.7.1 Health Benefits of Lactic Acid Bacteria (LAB) Exopolysaccharides (EPSs) 262 9.7.2 Fat Replacers 264 9.7.3 Benefits of Dietary Fermentable Fibers for Chronic Kidney Disease (CKD) 265 9.8 Demonstrating the Use of Hydrocolloids in Controlling Nutrition 266 9.8.1 Keto Bread Rolls with Inulin 269 References 270 Index 279
£144.00
John Wiley & Sons Inc Probiotics Prebiotics and Synbiotics
Book SynopsisIn Probiotics, Prebiotics and Synbiotics: Technological Advancements Towards Safety and Industrial Applications, a team of distinguished researchers delivers an insightful exploration of various aspects of functional foods. The book includes information about critical facets of the production of these beneficial compounds, recent technological developments in the field, and their present and future commercial potential. The authors describe their mechanisms of action and their applications in several sectors. Probiotics, Prebiotics and Synbiotics is divided into five parts. A general introduction about these substances begins the book and is followed by discussions of common probiotics, prebiotics, and synbiotics. Finally, a treatment of safety issues and regulatory claims, as well as their market potential, rounds out the resource. Perfect for researchers, industry practitioners, and students working in or studying food processing and food microbiology, Table of ContentsList of Contributors xvi Preface xxi 1 Probiotics, Prebiotics and Synbiotics: Opportunities, Health Benefits and Industrial Challenges 1Parmjit Singh Panesar, Anil Kumar Anal and Rupinder Kaur 1.1 Introduction 1 1.2 Probiotics 2 1.2.1 Mechanism of Action 3 1.3 Prebiotics 4 1.3.1 Mechanism of Action 5 1.4 Applications of Synbiotics 5 1.4.1 Diarrhea 5 1.4.2 Lactose Intolerance 5 1.4.3 Modulation of the Immune System 6 1.4.4 Prevention of Colon Cancer 6 1.4.5 Cardiovascular Disease 7 1.4.6 Gut–brain Axis: Role of Probiotics 7 1.5 Current Outlook and Industrial Challenges 8 1.6 Conclusion 8 References 9 2 Isolation, Identification and Characterization of Beneficial Microorganisms from Traditional Fermented Foods 14Phu-Ha Ho, Tuan-Anh Pham, Quoc-Phong Truong, Lan-Huong Nguyen, Tien-Thanh Nguyen, Hang-Thuy Dam, Chinh-Nghia Nguyen, Ha-Anh Nguyen, Quyet-Tien Phi, Hoang Anh Nguyen and Son Chu-Ky 2.1 Introduction 14 2.2 Fermented Food as a Source of Probiotic Microorganisms 14 2.2.1 Fermented Food and Health Benefits 14 2.2.2 Occurrence of Probiotics in Fermented Foods 16 2.2.3 Probiotic Viability in Fermented Food 20 2.3 Probiotic Isolation 22 2.3.1 Traditional Culture-dependent Approach 22 2.3.2 Culturomics Approach 26 2.4 Identification of Probiotic Microorganisms 28 2.4.1 Phenotypic Identification 28 2.4.2 Biochemical Identification 28 2.4.3 Molecular Identification 28 2.4.3.1 Specific Gene Analysis 28 2.4.3.2 Metagenomic Analysis 30 2.4.3.3 Proteomics 30 2.4.3.4 Metabolomics 30 2.5 Characterization of Probiotic Microorganisms 30 2.6 Conclusion 47 Acknowledgements 47 References 47 3 Lactic Acid Bacteria as Potential Probiotics 57Muhammad Bilal Sadiq 3.1 Introduction 57 3.2 Isolation and Identification of Lactic Acid Bacteria 58 3.3 Characterization of Lactic Acid Bacteria 58 3.4 Criteria for Selection of Lactic Acid Bacteria as Potential Probiotic Candidates 59 3.4.1 Evaluation of Gastric Survival 59 3.4.2 Bile Salt Hydrolysis Activity 60 3.4.3 Adhesion to Epithelium 61 3.4.4 Hydrophobicity 61 3.4.5 Aggregation Ability 61 3.4.6 Antimicrobial Potential 61 3.4.7 Amylolytic Property 63 3.4.8 Safety Evaluation 63 3.5 Lactic Acid Bacteria as Sources of Probiotics 63 3.5.1 Fruits and Vegetables 63 3.5.2 Animal Sources 64 3.5.3 Dairy Products 64 3.6 Health Benefits and Probiotic Mechanisms of Lactic Acid Bacteria 65 3.6.1 Host Immunity 65 3.6.2 Beneficial Metabolites 65 3.6.3 Lactose Intolerance 66 3.6.4 Gastric Ulcer 66 3.6.5 Obesity and Diabetes Management 66 3.6.6 Role of Lactic Acid Bacteria Probiotics in Cancer 67 3.7 Industrial Applications of Probiotic Lactic Acid Bacteria 67 3.8 Challenges for Lactic Acid Bacteria as Probiotics 67 3.9 Conclusion and Future Perspectives 68 References 68 4 Non-Lactic Acid Bacteria as Probiotics and their Functional Roles 73Cíntia Lacerda Ramos, Elizabethe Adriana Esteves, Nayara Martins Zille de Miranda, Lauane Gomes Moreno and Rosane Freitas Schwan 4.1 Spore-forming Bacteria 73 4.1.1 Types, Structure and Formation of Spores 74 4.1.1.1 Structure 75 4.1.1.2 Spore Formation 76 4.1.2 Sources and Probiotic Potential of Spore-forming Strains 77 4.1.3 Spore Formers as Gut Microbiota 80 4.1.4 Interaction with the Intestinal Cells 82 4.2 Propionibacteria 84 4.2.1 Phenotypic and Genotypic Characterization 84 4.2.2 Probiotic Properties and Potential Mechanisms of Action 86 4.2.2.1 Immunomodulation 86 4.2.2.2 Microbiota Modulation 89 4.2.2.3 Cancer Modulation 89 4.3 Conclusion and Future Trends 90 References 91 5 Yeasts as Probiotics and their Functional Roles 103Giorgia Perpetuini, Yves Waché and Rosanna Tofalo 5.1 Yeasts: General Considerations and Taxonomy 103 5.2 Saccharomyces boulardii 105 5.3 Mechanism of Action of Yeast Probiotics 107 5.4 Health Benefits of Yeast Probiotics 109 5.4.1 Probiotic Effects 110 5.4.2 Nutritional Effects 111 5.5 Other Yeast Strains with Probiotic Potential 112 5.6 Encapsulation 113 5.7 Conclusion and Future Challenges 114 References 115 6 Determination and Safety Aspects of Probiotic Cultures 122Falguni Patra and Raj Kumar Duary 6.1 Introduction 122 6.2 Assessments of Probiotics in the Gut 123 6.2.1 Direct Method 123 6.2.2 Indirect Method 125 6.3 Dosage for Probiotic Effect 126 6.4 Pathogenicity and Inefficiency of Probiotic Culture 126 6.4.1 Pathogenicity of Probiotics 126 6.4.2 Inefficiency of Probiotics 129 6.5 Safety Assessment of Probiotic Cultures 130 6.5.1 Current Proposal on Probiotic Safety 131 6.5.2 Identification of Individual Strains 134 6.5.3 In vitro studies 135 6.5.4 Animal Studies 138 6.5.5 Human Clinical Studies 140 6.5.6 Antibiotic Resistance – the Probability of Transfer of Resistance 145 6.5.7 Post-marketing Surveillance – Genotoxic Studies, Toxin and Virulence Factors 148 6.6 Conclusion 150 References 150 7 Probiotics in Biodegradation of Microbial Toxins: Principles and Mechanisms 161Ali Akbar, Muhammad Iftikhar Khan and Ghulam Ishaq Khan 7.1 Microbial Toxins 161 7.1.1 Health Benefits 162 7.1.2 Mycotoxins and Probiotics 162 7.2 Dual Interaction between Probiotics and Microbial Toxins 164 7.2.1 Clinical Trials 165 7.2.2 Types of Microbial Adsorbents for Mycotoxin Adsorption 165 7.2.2.1 Lactic Acid Bacteria 165 7.3 Principles and Mechanisms Involved 166 7.3.1 Control of Mycotoxins by Yeast 167 7.4 Conclusion and Future Prospects 168 Acknowledgement 168 References 168 8 Potential of Probiotics as Alternative Sources for Antibiotics in Food Production Systems 172Sarina Pradhan Thapa, Sushil Koirala and Anil Kumar Anal 8.1 Introduction 172 8.2 Use of Antibiotics in the Food System 173 8.3 Classification and Mechanism of Use of Antibiotics 174 8.4 Mechanism of Probiotic Action 175 8.5 Probiotic Approach to Antibiotic Resistance 178 8.6 Probiotics as Alternative Sources for Antibiotics: What Is Known So Far 178 8.7 Conclusion and Future Prospects 180 References 180 9 Probiotic Cereal-based Food and Beverages, their Production and Health Benefits 186Sujitta Raungrusmee, Simmi Ranjan Kumar and Anil Kumar Anal 9.1 Introduction 186 9.2 Probiotics in Cereal-based Food and Beverages 187 9.3 General Information about Probiotics 188 9.4 Mechanism/Pathway for Probiotics in Cereal-based Food and Beverages 189 9.5 Types of Probiotic in Cereal-based Food and Beverages 191 9.6 Traditional and Commercial Probiotic Cereal-based Foods and Beverages 191 9.6.1 Borde 191 9.6.2 Boza 197 9.6.3 Burukutu 197 9.6.4 Bushera 197 9.6.5 Chicha de jora 197 9.6.6 Gowe 198 9.6.7 Kenky 198 9.6.8 Koko 198 9.6.9 Koozh 198 9.6.10 Kunun-zaki 198 9.6.11 Kvass 198 9.6.12 Kwete 199 9.6.13 Mageu 199 9.6.14 Majewu 199 9.6.15 Obiolo 199 9.6.16 Ogi 199 9.6.17 Pito 200 9.6.18 Pozol 200 9.6.19 Sobia 200 9.6.20 Togwa 201 9.6.21 Uji 201 9.6.22 Yosa 201 9.6.23 Commercially Available Cereal-based Functional Foods 201 9.7 Health Benefits 203 9.8 Conclusion 209 References 209 10 Microencapsulation of Probiotics and its Potential Industrial Applications 213Suwan Panjanapongchai, Chaichawin Chavapradit and Anil Kumar Anal 10.1 Introduction 213 10.2 Why We Need Microencapsulation 214 10.3 Encapsulation Techniques 215 10.3.1 Emulsion Technique 215 10.3.2 Extrusion Technique 216 10.3.3 Coacervation Technique 217 10.3.4 Spray Drying 218 10.3.5 Ultrasonic Vacuum Spray Dryer 219 10.3.6 Freeze Drying 219 10.3.7 Spray Freeze Drying 219 10.3.8 Spray Chilling 220 10.3.9 Fluid Bed Coating 220 10.3.10 Electrospraying and Electrospinning 221 10.3.11 Impinging Aerosol Technology 222 10.3.12 Hybridization method 222 10.4 Application of Probiotics in Food Matrices 223 10.4.1 Dairy Products 223 10.4.1.1 Yoghurt 223 10.4.1.2 Cheese 225 10.4.1.3 Desserts 225 10.4.2 Non-dairy Products 226 10.4.2.1 Beverages 226 10.4.2.2 Meat Products 226 10.4.2.3 Bakery Products 227 References 227 11 Prebiotics and their Role in Functional Food Product Development 233Divyani Panwar, Parmjit Singh Panesar and Anuradha Saini 11.1 Introduction 233 11.2 Sources of Prebiotics: Classification and Characteristics 235 11.2.1 Characteristics of Prebiotics 235 11.2.2 Classification of Prebiotics and their Sources 235 11.2.2.1 Galactooligosaccharides 238 11.2.2.2 Fructooligosaccharides 238 11.2.2.3 Xylooligosaccharides 239 11.2.2.4 Lactulose 239 11.2.2.5 Lactosucrose 240 11.2.2.6 Inulin 240 11.2.2.7 Isomaltosoligosaccharides 240 11.3 New and Tailored Prebiotics 241 11.3.1 Human Milk Oligosaccharides 241 11.3.2 Resistant Starch 242 11.3.3 Polyphenols 242 11.3.4 Soybean Oligosaccharides 243 11.3.5 Lactitol 243 11.3.6 Microbial Exopolysaccharides 243 11.3.7 Seaweed Polsaccharides 244 11.4 Production Methods of Prebiotics 244 11.4.1 Galactooligosaccharides 245 11.4.2 Fructooligosaccharides 247 11.4.3 Xylooligosaccharides 247 11.4.4 Lactulose 248 11.5 Mechanism of Action 248 11.6 Health Benefits of Prebiotics 249 11.6.1 Acute Gastroenteritis 249 11.6.2 Reduction in Constipation 250 11.6.3 Reduced Risk of Colon Cancer 254 11.6.4 Obesity 254 11.6.5 Diabetes 255 11.6.6 Mineral Absorption 255 11.6.7 Lipid Metabolism 255 11.7 Safety Aspects of Prebiotics 256 11.8 Global Status of Prebiotics 256 11.9 Conclusion and Future Prospects 258 References 259 12 Galactooligosaccharides as Potential Prebiotics 272Rupinder Kaur and Parmjit Singh Panesar 12.1 Introduction 272 12.2 Galactooligosaccharides 273 12.3 Technologies for Synthesis of Galactooligosaccharides 274 12.3.1 Chemical Technique for Production of GOS 274 12.3.2 Enzymatic Production of GOS 275 12.3.2.1 Glycosyltransferases 276 12.3.2.2 Glycosidases 276 12.4 Biotechnological Strategies for Biotransformation of GOS 277 12.4.1 Factors Affecting GOS Production 279 12.4.2 Production of GOS using Whole Cells 281 12.4.3 Production of GOS using Free Enzyme 286 12.4.4 Production of GOS using Immobilized Enzyme 286 12.4.5 Improvement in GOS Production 287 12.5 Global Status of GOS 288 12.6 Applications of GOS as Prebiotics 290 12.6.1 Stimulation of Health-promoting Bacteria 292 12.6.2 Modulation of Immune System 292 12.6.3 Enhancement of Mineral Absorption 293 12.6.4 Reduction in the Risk of Colon Cancer 294 12.6.5 Inflammatory Bowel Disease 295 12.7 Conclusion and Future Prospects 295 References 296 13 Fructooligosaccharides as Prebiotics, their Metabolism, and Health Benefits 307Orlando de la Rosa, Adriana C. Flores-Gallegos, Juan A. Ascacio-Valdés, Leonardo Sepúlveda, Julio C. Montáñez and Cristóbal N. Aguilar 13.1 Introduction 307 13.2 Chemical Structure and Sources 307 13.3 Prebiotic Concept 308 13.4 Health-promoting Properties 310 13.4.1 Prebiotic Activity 310 13.4.2 Influence of Gut Microbiome 310 13.4.3 Prevention against Colon Cancer and Immunomodulation 313 13.4.4 Impact on Obesity 315 13.4.5 Effects on Serum Lipid and Cholesterol Concentrations 315 13.4.6 Improving Mineral Adsorption 316 13.5 FOS Production 316 13.5.1 FOS Formation Kinetics 318 13.5.2 Biotechnological Production of FOS 320 13.5.3 Enzymatic Synthesis 321 13.5.4 Whole Cell/One-step Fermentation 322 13.5.5 Agro-industrial Residues and Bioresources Employed for FOS Production 323 13.6 FOS Purification 323 13.6.1 Nanofiltration 323 13.6.2 Activated Charcoal 323 13.6.3 Microbial Treatments 324 13.7 New Developments in Food 325 13.8 Conclusion 325 Acknowledgements 326 References 326 14 Lactulose: Production and Potential Applications 338Shweta Kumari, Parmjit Singh Panesar, Divyani Panwar and Gisha Singla 14.1 Introduction 338 14.2 Structure and Properties 338 14.3 Lactulose Production 340 14.3.1 Chemical Methods 341 14.3.2 Biotechnological Methods 345 14.3.2.1 Enzymatic Methods 345 14.3.2.2 Whole Cell Biocatalysts for Lactulose Production 348 14.3.3 Electro-activation Method 349 14.4 Techniques for the Analysis of Lactulose 349 14.5 Applications of Lactulose 350 14.5.1 Food Sectors 351 14.5.1.1 Lactulose as a Bifidus Factor 351 14.5.1.2 Lactulose as a Functional Additive 351 14.5.2 Health Sectors 351 14.5.2.1 Salmonella Carriers 351 14.5.2.2 Constipation and Hepatic Encephalopathy 352 14.5.2.3 Anti-endotoxin Effects 352 14.5.2.4 Colon Carcinogenesis 352 14.5.2.5 Inflammatory Bowel Disease 352 14.5.2.6 Tumor Prevention and Immunology 352 14.5.2.7 Blood Glucose and Insulin 353 14.5.2.8 Diagnostic Applications 353 14.6 Future Developments 353 14.7 Conclusion 353 References 354 15 Isomaltooligosaccharides as Prebiotics and their Health Benefits 361Waraporn Sorndech 15.1 Isomaltooligosaccharide Structure, Properties and Market Trends 361 15.1.1 IMO: Global Patent Trend 364 15.2 Production 365 15.2.1 Enzymatic Production 365 15.2.1.1 Enzymatic Technologies for Formation of Various IMO Structures 366 15.2.1.2 Production Strategies 368 15.3 Technological Developments 368 15.3.1 Microbial Fermentation and Enzyme Genetic Engineering 368 15.3.2 Enzyme Immobilization 369 15.3.3 Enzyme Cocktails 369 15.3.4 Glucose, Fructose and Linear Oligosaccharide Elimination 369 15.4 Health Benefits of IMO 370 15.5 Conclusion 372 References 372 16 Starch and its Derivatives as Potential Source of Prebiotics 378Yudi Pranoto 16.1 Introduction 378 16.2 Starch Digestion 379 16.3 Starch as a Probiotic Food Source 381 16.4 Resistant Starch as a Novel Prebiotic 382 16.5 Health Benefits 389 16.5.1 Hypoglycemic Effects 391 16.5.2 Hypocholesterolemic Effects 391 16.5.3 Prevention of Colon Cancer 392 16.5.4 Prebiotic Effect 393 16.5.5 Preventing Obesity 393 16.5.6 Reduction of Gallstone Formation 394 16.5.7 Mineral Absorption 395 16.6 Future Applications 395 16.6.1 Cheese 397 16.6.2 Pasta Products 398 16.6.3 Battered Fried Products 398 16.6.4 Bakery Products 398 16.6.5 Baked Goods 399 16.6.6 Microencapsulation of Probiotics 399 16.7 Production of RS-rich Ingredients 401 16.8 Conclusion 403 References 404 17 Gut Microbiome as Potential Source for Prevention of Metabolic-Related Diseases 407Nuntarat Boonlao, Krisha Pant and Anil Kumar Anal 17.1 Introduction 407 17.2 Gut Microbiome and Host Interaction 408 17.2.1 Microbial Composition and Colonization 408 17.2.2 Non-bacterial Growth in the Intestine 409 17.2.3 Next Generation Probiotics 409 17.2.4 Host Cell and Microbes – Symbiotic Relationship 410 17.3 Gut Microbes and Diet Interaction 410 17.3.1 Carbohydrate 413 17.3.2 Proteins 413 17.3.3 Complex Carbohydrate/Fibers 413 17.3.4 Fat 414 17.3.5 Probiotics 414 17.3.6 Phenolic Compounds 414 17.4 Gut Microbiome and Metabolism Regulation 415 17.4.1 Gut Microbiome and Brain 415 17.4.1.1 Neural Pathways 415 17.4.1.2 Metabolites 416 17.4.2 Gut Microbiome and Immune System 416 17.4.3 Gut and Regulation of Metabolism 416 17.4.4 Gut Microbiome and COVID-19 417 17.5 Role of Gut Microbiome on Metabolic Diseases 417 17.5.1 Gut Barrier and Inflammation 417 17.5.2 Microbial Metabolites 419 17.5.2.1 Bile Acid 419 17.5.2.2 Trimethylamine-N-oxide (TMAO) 420 17.6 Gut Microbiome and Metabolic Diseases 421 17.6.1 Obesity 421 17.6.2 Type 2 Diabetes Mellitus 422 17.7 Modulation of Gut Microbiome as Target for Prevention of Metabolic Diseases 423 17.7.1 Role of Dietary Intervention 423 17.7.2 Role of Probiotics and Prebiotics 424 17.8 Possible Mechanisms of Gut Microbiome in Prevention of Metabolic Diseases 425 17.8.1 Roles of Short Chain Fatty Acids 425 17.8.2 Role of Bile Salt Hydrolase 426 17.8.3 Role on Intestinal Barrier Function 427 17.9 Conclusion and Future Perspective 427 References 427 18 Overall Safety Considerations and Regulatory Oversight for Probiotics-based Foods and Beverages 441Sushil Koirala, Sarina Pradhan Thapa and Anil Kumar Anal 18.1 Introduction 441 18.2 Safety Considerations 443 18.2.1 Non-pathogenicity 443 18.2.2 Virulome Factors 445 18.2.3 Absence of Antibiotic Resistance 445 18.3 Regulatory Framework and Labeling Claims Associated with Probiotic-based Foods and Beverages 446 18.3.1 Key Market Insights 448 18.3.2 Regional and Country Analysis 449 18.3.2.1 USA 449 18.3.2.2 Europe 450 18.3.2.3 Japan 452 18.3.2.4 China 453 18.3.2.5 Brazil 453 18.3.2.6 Mexico 454 18.3.2.7 India 454 18.3.2.8 Thailand 454 18.3.2.9 Malaysia 455 18.3.2.10 Singapore 455 18.4 Conclusion and Future Expectations 456 References 456 Index 462
£138.56
John Wiley & Sons Inc BiopolymerBased Food Packaging
Book SynopsisBiopolymer-Based Food Packaging Explore the latest developments and advancements in biopolymer-based food packaging In Biopolymer-Based Food Packaging: Innovations and Technology Applications, a team of accomplished researchers delivers a complete, systematic, and sequential account of the contemporary developments in the application of biopolymers for sustainable food packaging. This book introduces the fabrication, characterization as well as benefits arising from the enhanced functionalities of biopolymer-based food packaging materials. The authors introduce various polysaccharide, protein, and microbial polymer-based food packaging films and coatings, as well as biopolymer-based blends and nanocomposites. Importance of these materials as active and intelligent food packaging systems is also introduced. Finally, the book explores biopolymer-based edible food packaging, and its efficacy in extending the shelf-life of perishable food items using sustainabTable of ContentsList of Contributors xv Preface xix 1 An Overview of Natural Biopolymers in Food Packaging 1Santosh Kumar, Indra Bhusan Basumatary, Avik Mukherjee, and Joydeep Dutta 1.1 Introduction 1 1.2 History and Background 4 1.3 Classification 6 1.3.1 Polysaccharide-Based Biopolymers 6 1.3.2 Protein-Based Biopolymers 11 1.3.3 Lipid-Based Biopolymers 13 1.3.4 Biopolymers Synthesized from Bio-derived Monomers 14 1.4 Advantages and Disadvantages 15 1.5 Properties and Applications 16 1.6 Conclusion and Perspectives 17 References 21 2 Biopolymers: The Chemistry of Food and Packaging 29Rajib Majumder, Arpita Das, Avik Mukherjee, and Santosh Kumar 2.1 Introduction 30 2.2 Biopolymers, Packaging Surfaces, and the Chemistry of Foods 31 2.2.1 Biopolymers 31 2.2.2 Polysaccharide-Based Biopolymers 32 2.2.2.1 Starch and Derivatives 32 2.2.2.2 Cellulose and Derivatives 33 2.2.2.3 Chitin and Derivatives 33 2.2.2.4 Alginate and Pectin 34 2.2.2.5 Xanthan Gum 34 2.2.3 Protein-Based Biopolymers 35 2.2.3.1 Gelatin 35 2.2.3.2 Collagen 35 2.2.3.3 Soy Protein 36 2.2.3.4 Whey Protein 36 2.2.4 Aliphatic Polyester-Based Biopolymers 36 2.3 Properties 37 2.3.1 Physicochemical Properties 37 2.3.1.1 Density 42 2.3.1.2 Crystallinity 42 2.3.1.3 Melting Temperature (Tm) 43 2.3.1.4 Glass Transition Temperature (Tg) 44 2.3.1.5 Film-Forming Property 44 2.3.1.6 Solubility 44 2.3.1.7 Transparency 45 2.3.1.8 Thermal Stability 45 2.3.2 Mechanical Properties 45 2.3.3 Barrier Properties 46 2.3.4 Bio-activities 47 2.3.5 Biodegradability 49 2.4 Interactions Between Food and Packaging 50 2.4.1 Migration 50 2.4.2 Permeation 50 2.4.3 Sorption 51 2.5 Surface Properties of Packages and Food 52 2.5.1 Hydrophilicity and Hydrophobicity 52 2.5.2 Contact Angle 52 2.5.3 Wettability 53 2.6 Conclusion and Future Perspectives 53 References 54 3 Technologies for Biopolymer-Based Films and Coatings 66Anjali Khuntia, N. Sai Prasanna, and Jayeeta Mitra 3.1 Introduction 67 3.2 Fabrication Techniques for Films 68 3.2.1 Solvent Casting or Wet Process 68 3.2.1.1 Film-Forming Solution (FFS) 69 3.2.1.2 Film Casting or Film Coating 71 3.2.1.3 Film Drying 71 3.2.2 Extrusion or Dry Process 71 3.2.3 Electrohydrodynamic Technique 76 3.2.4 Comparison and Application of Different Fabrication Techniques 76 3.3 Coating Methods 76 3.3.1 Dipping 77 3.3.2 Brushing 77 3.3.3 Spraying 77 3.3.4 Electrospraying 78 3.3.5 Layer-by-Layer (LBL) Electrostatic Deposition 78 3.3.6 Vacuum Impregnation (VI) 79 3.4 Properties 79 3.4.1 Physical Properties 79 3.4.1.1 Thickness 79 3.4.1.2 Density 80 3.4.2 Water Absorption Capacity and Sorption Analysis 80 3.4.3 Contact Angle/Wetting Tension 82 3.4.4 Mechanical Properties 82 3.4.4.1 Tensile 84 3.4.4.2 Puncture Tests 85 3.4.5 Permeability 88 3.4.5.1 Water Vapor Permeability 88 3.4.5.2 Gas Permeability 92 3.4.6 Optical Properties 93 3.4.7 Rheological Properties 93 3.4.7.1 Viscosity Tests 94 3.4.7.2 Melt Index Test 94 3.4.8 Thermal Properties 95 3.4.8.1 Differential Scanning Calorimetry 95 3.4.8.2 Thermogravimetric Analysis 95 3.4.8.3 Thermomechanical Analysis 96 3.4.8.4 Dynamic Mechanical Thermal Analysis 97 3.5 Applications 98 3.5.1 Composite Films or Multilayer Packaging 99 3.5.2 Nanostructured Film 99 3.5.2.1 Nanocomposite Films 99 3.5.2.2 Nanolaminated Films 101 3.6 Conclusion and Perspectives 101 References 101 4 Chitosan-Based Films and Coatings 110Gitanjali Gautam, Ruchi Rani, Laxmikant S. Badwaik, and Charu Lata Mahanta 4.1 Introduction 110 4.2 Sources, Structure, and Properties 111 4.2.1 Sources 111 4.2.2 Structure 112 4.2.3 Properties 114 4.3 Isolation, Characterization, and Modifications 115 4.3.1 Isolation 115 4.3.1.1 Extraction from Crustaceous Shells 115 4.3.1.2 Extraction from Fungal Cell Wall and Mushrooms 116 4.3.1.3 Extraction from Insect Cuticles 117 4.3.1.4 Extraction from Terrestrial Animal Exoskeletons 118 4.3.2 Characterization 119 4.3.3 Modifications 119 4.4 Chitosan-Based Composite Films and Coatings 123 4.4.1 Gelatin-Based Edible Films and Coatings 123 4.4.2 Protein-Based Edible Films and Coatings 124 4.4.3 Starch-Based Edible Films and Coatings 125 4.4.4 Alginate-Based Edible Films and Coatings 125 4.5 Using Essential Oils as Antimicrobial Agent 126 4.5.1 Rosemary (Rosmarinus officinalis) 127 4.5.2 Cinnamon (Cinnamomum verum) 127 4.5.3 Oregano (Origanum vulgare) 127 4.5.4 Clove (Syzygium aromaticum L.) 128 4.5.5 Thyme (Thymus vulgaris) 128 4.6 Antimicrobial Activities 128 4.7 Effects on the Quality of Fruits and Vegetables 130 4.8 Effects on the Quality of Meat, Fish, and Seafood 130 4.9 Conclusion and Perspectives 137 References 138 5 Starch-Based Edible Films and Coatings 147Priyadarshini, S.R., Srinivasan Krishnamoorthy, J.A. Moses, and C. Anandharamakrishnan 5.1 Introduction 148 5.2 Source, Structure, and Characteristics of Starch Granules 148 5.3 Physicochemical, Rheological, and Functional Properties 150 5.4 Chemical and Physical Modifications 152 5.4.1 Chemical Modifications 152 5.4.1.1 Crosslinking 152 5.4.1.2 Grafting 153 5.4.1.3 Esterification 153 5.4.1.4 Etherification 153 5.4.1.5 Oxidization 153 5.4.1.6 Cationic Modification 153 5.4.1.7 Dual Modification 154 5.4.2 Physical Modifications 154 5.4.2.1 Pregelatinized Starch 154 5.4.2.2 Annealing 154 5.4.2.3 Heat Moisture Treatment 154 5.4.2.4 Heat Drying 155 5.4.2.5 Osmotic Pressure Treatment 155 5.2.2.6 Freezing 155 5.2.2.7 Thermal Inhibition 155 5.4.2.8 Non-Thermal Modifications 155 5.5 Starch-Based Bionanocomposite Films and Coatings 156 5.6 Characterization 159 5.6.1 Film Thickness 159 5.6.2 Particle Size Determination 159 5.6.3 Scanning Electron Microscopy (SEM) 159 5.6.4 Fourier Transform Infrared Spectroscopy (FTIR) 160 5.6.5 X-ray Diffraction (XRD) 162 5.7 Applications 164 5.8 Recent Developments and Future Directions 168 5.9 Conclusion and Perspectives 169 References 170 6 Protein-Based Films and Coatings 178Manashi Das Purkayastha and Santosh Kumar 6.1 Introduction 179 6.2 Types, Structures, and Properties 180 6.2.1 Casein 180 6.2.2 Whey 180 6.2.3 Gluten 181 6.2.4 Soy Protein 182 6.2.5 Collagen and Gelatin 182 6.2.6 Zein 183 6.3 Improvement in Physicochemical Properties of Proteins 183 6.3.1 Plasticizers 184 6.3.2 Physical and Chemical Crosslinking 185 6.4 Protein-Based Nanocomposites and Their Various Properties 187 6.5 Fabrication Techniques 192 6.5.1 Direct Casting 192 6.5.2 Coating 192 6.5.3 Spread Coating 193 6.5.4 Spin Coating 194 6.5.5 Spray Coating or Spraying 194 6.5.6 Dip Coating or Immersion Coating 194 6.5.7 Fluidized-Bed Coating 195 6.5.8 Pan Coating or Panning 195 6.5.9 Layer-by-Layer Assembly 195 6.5.10 Electrospinning 196 6.5.11 Extrusion 196 6.5.12 Compression Molding 198 6.5.13 Lamination 199 6.6 Applications 200 6.6.1 As Carrier of Antimicrobial Agents 201 6.6.2 As Carrier of Antioxidants 203 6.6.3 As Carrier of Flavoring Compounds 204 6.6.4 As Carrier of Live Microorganisms 206 6.7 Conclusion and Perspectives 208 References 209 7 Microbial Polysaccharides (MPs) in Food Packaging 225C. Shashikumar, Sudip Mitra, and Siddhartha Singha 7.1 Introduction 225 7.2 Production 227 7.3 Extraction and Purification 230 7.4 Characterization 230 7.4.1 Chemical Structure 234 7.4.2 Physicochemical Properties 239 7.4.2.1 Xanthan 239 7.4.2.2 Scleroglucan 239 7.4.2.3 Hyaluronic Acid or Hyaluronan 239 7.4.2.4 Xylinan or Acetan 239 7.4.2.5 Dextran 240 7.4.2.6 Gellan 241 7.4.2.7 Curdlan 242 7.4.2.8 Bacterial Cellulose 243 7.4.2.9 Pullulan 243 7.4.2.10 Alginate 243 7.4.2.11 Levan 244 7.4.2.12 β-Glucan 244 7.4.2.13 FucoPol 244 7.4.2.14 Kefiran 245 7.4.2.15 Polyhydroxyalkanoate 245 7.4.3 Film Formability and Properties Relevant for Packaging 245 7.5 Strategies for Tailoring MP Structures for Packaging Film or Coat Applications 249 7.6 Applications and Their Commercialization Status 251 7.7 Conclusion and Perspectives 255 References 256 8 Polylactic Acid (PLA)-Based Composites in Food Packaging 264M. Sukumar, K. Sudharsan, and Radha Krishnan K. 8.1 Introduction 264 8.1.1 Production of Lactic Acid 266 8.1.2 Properties 267 8.1.3 PLA Composites as Food Packaging Materials 269 8.2 Isolation and Purification 272 8.3 PLA-Based Antimicrobial Nanocomposites 274 8.4 Applications 276 8.5 Conclusion and Perspectives 277 References 278 9 Antimicrobial Agents in Films and Coatings 282Yashaswini Premjit, Gulshan Kumar Malik, and Jayeeta Mitra 9.1 Introduction 283 9.2 Classification 284 9.2.1 Natural Antimicrobials 284 9.2.1.1 Plant-Based Antimicrobials 290 9.2.1.2 Microbial-Based Antimicrobials 291 9.2.1.3 Animal-Based Antimicrobials 292 9.2.2 Chemical Antimicrobials 293 9.2.2.1 Nitrites 293 9.2.2.2 Chlorine Dioxide 293 9.2.3 Antimicrobial Nanostructures 294 9.2.3.1 Nanocarriers for Antimicrobials 294 9.2.3.2 Silver Nanoparticles 294 9.2.3.3 Chitosan Nanostructures 294 9.2.3.4 Nanoclays 294 9.2.3.5 Metal Oxide Nanoparticles 295 9.3 Choice of Materials 295 9.4 Methods of Addition 299 9.4.1 Antimicrobial Edible Coatings 299 9.4.2 Antimicrobial Films 303 9.4.3 Antimicrobial Pads 305 9.4.4 Antimicrobial Sachets 306 9.4.5 Modified Atmospheric Packaging 307 9.5 Effect on Packaging Film Properties 308 9.5.1 Effect on Mechanical Properties 308 9.5.2 Effect on Barrier Properties 310 9.5.3 Effect on Appearance, Color, and Transparency 310 9.5.4 Effect on Surface Hydrophilicity/Hydrophobicity of Films 313 9.6 Mechanisms of Action 313 9.6.1 Essential Oils 313 9.6.2 Organic Acids 314 9.6.3 Animal-Based Antimicrobials 314 9.6.4 Antimicrobial Peptides 315 9.6.5 Antimicrobial Nanoparticles 315 9.6.5.1 TiO2 315 9.6.5.2 ZnO 316 9.6.5.3 Ag NPs 316 9.7 Release Kinetics from Packaging Systems to Food 317 9.8 Food Regulations 319 9.9 Commercialization 320 9.10 Conclusion and Perspectives 320 References 322 10 Nanomaterials in Food Packaging 336Santosh Kumar, Avik Mukherjee, Sweety Kalita, Namrata Singh, Vimal Katiyar Atanu Mitra, and Dipankar Halder 10.1 Introduction 336 10.2 Nanomaterials and Food Packaging Concepts 337 10.3 Applications 339 10.3.1 Supplementing Packaging Characteristics 339 10.3.1.1 Nanoclay 342 10.3.1.2 Graphene 345 10.3.1.3 Organic Nanofillers 345 10.3.2 Antimicrobial Packaging 346 10.3.3 Extending Shelf-Life of Food 347 10.3.4 Inducing Smartness/Intelligence 351 10.4 Migration to Packaged Food Items 353 10.5 Environmental and Safety Aspects 354 10.5.1 Impact on Human Health and the Environment 354 10.5.2 Regulations on Use in the Food Sector 356 10.6 Conclusion and Perspectives 357 References 358 11 Silver and Zinc Oxide Nanoparticles in Films and Coatings 368Abhishek Roy, K. Dharmalingam, and R. Anandalakshmi 11.1 Introduction 368 11.2 Antimicrobial Properties 369 11.3 Biopolymer-Based Silver Nanocomposites 375 11.4 ZnO Nanostructures in Biopolymers 377 11.5 Applications of Silver Bionanocomposites 379 11.6 Applications of ZnO Bionanocomposites 383 11.7 Conclusion and Perspectives 384 References 385 12 Plant-Based Active Compounds in Food Packaging 394N. Arul Manikandan, Kannan Pakshirajan, and G. Pugazhenthi 12.1 Introduction 394 12.2 Plant-Based Active Compounds 396 12.2.1 Simple Phenolic Compounds 396 12.2.2 Flavones, Flavanols, and Flavonoids 396 12.2.3 Quinones 396 12.2.4 Tannins 397 12.2.5 Coumarins 398 12.2.6 Alkaloids 398 12.2.7 Terpenes 398 12.3 Active Components to Control Microbial Spoilage 398 12.3.1 Turmeric 405 12.3.2 Cinnamon 405 12.3.3 Lemongrass 405 12.3.4 Neem 406 12.3.5 Coriander 406 12.3.6 Garlic 406 12.3.7 Rosemary 406 12.3.8 Grapefruit Seed 407 12.3.9 Aloe Vera 407 12.3.10 Oregano 407 12.4 Active Materials to Control Food Oxidation (Food Antioxidants) 408 12.4.1 Quercetin 408 12.4.2 Carnosic Acid 409 12.4.3 Ellagic Acid 410 12.4.4 Ferulic Acid 410 12.4.5 α-Tocopherol 411 12.5 Polymer-Based Composites 411 12.6 Conclusion and Perspectives 415 References 415 13 Essential Oils in Active Films and Coatings 422K. Dharmalingam, Abhishek Roy, and R. Anandalakshmi 13.1 Introduction 422 13.2 Classifications and Components 423 13.3 Properties and Characteristics 424 13.4 Encapsulation 425 13.5 Biopolymer-Essential Oil Composites 428 13.6 Applications 432 13.7 Conclusion and Perspectives 438 References 439 14 Edible Films and Coatings 445Indra Bhusan Basumatary, Sweety Kalita, Vimal Katiyar, Avik Mukherjee, and Santosh Kumar 14.1 Introduction 445 14.2 Biopolymers 447 14.2.1 Polysaccharides 447 14.2.2 Proteins 448 14.2.3 Lipids 450 14.3 Natural Active Components 450 14.3.1 Plant Extracts 450 14.3.2 Antimicrobial Peptides 452 14.3.3 Probiotics 453 14.4 Nanomaterials 453 14.4.1 Inorganic Nanomaterials 453 14.4.2 Organic Nanomaterials 455 14.5 Extending Shelf-Life of Food 456 14.5.1 Fruits and Vegetables 456 14.5.2 Meat, Poultry, and Fish 459 14.5.3 Milk and Dairy Products 460 14.6 Conclusion and Perspectives 460 References 465 Index 476
£153.85
John Wiley & Sons Inc Ethylene in Plant Biology
Book SynopsisETHYLENE IN PLANT BIOLOGY Comprehensive resource detailing the role of ethylene in plant development regulation, gene regulation, root development, stress tolerance, and more Ethylene in Plant Biology presents ethylene research from leading laboratories around the globe to allow readers to gain strong foundational coverage of the topic and aid in further ethylene research as it pertains to plant biology. The work covers general ideas as well as more specific and technical knowledge, detailing the overall role of ethylene in plant biology as a gaseous plant hormone that has emerged as an important signaling molecule which regulates several steps of a plant's life cycle. The ideas covered in the work range from discovery of ethylene, to its wide roles in plant growth and development, all the way to niche topics such as stress acclimation. Written by highly qualified authors in fields directly related to plant biology and research, the work is divided into 20 chapters, with each chapter cTable of ContentsList of Contributors v Preface ix 1 Ethylene Implication in Root Development 1 Aditi Gupta, Anshu Rastogi, and Manjul Singh v 2 Crosstalk of Ethylene and Other Phytohormones in the Regulation of Plant Development 17 Savita Bhardwaj, Dhriti Sharma, Sadaf Jan, Rattandeep Singh, Renu Bhardwaj, and Dhriti Kapoor 3 Ethylene and Regulation of Metabolites in Plants 32 Savita Bhardwaj, Tunisha Verma, and Dhriti Kapoor 4 Ethylene as a Multitasking Regulator of Abscission Processes 49 Agata Kućko, Timothy J. Tranbarger, Juan D. Alché, and Emilia Wilmowicz 5 Ethylene: A Powerful Coordinator of Drought Responses 82 Emilia Wilmowicz, Agata Kućko, Sebastian Burchardt, and Jacek Karwaszewski 6 Current Understanding of Ethylene and Fruit Ripening 109 Shubhra Gupta, Kapil Gupta, Jasminkumar Kheni, and Jogeswar Panigrahi Copyrighted Material 7 Ethylene and ROS Crosstalk in Plant Developmental Processes 125 Kumar Chandra- kuntal 8 Role of Ethylene in Flower and Fruit Development 178 Cecilia Martínez, Alicia García, and Manuel Jamilena 9 Ethylene and Nutrient Regulation in Plants 220 Badar Jahan, Zebus Sehar, Harsha Gautam, Mehar Fatma, Noushina Iqbal, Asim Masood, and Nafees A. Khan 10 Plant Metabolism Adjustment in Exogenously Applied Ethylene under Stress 246 Niharika, N.B. Singh, Ajey Singh, and Shubhra Khare 11 Role of ET and ROS in Salt Homeostasis and Salinity Stress Tolerance and Transgenic Approaches to Making Salt- Tolerant Crops 259 Neeraj Kumar Dubey, Kapil Gupta, Surendra Pratap Singh, Jogeswar Panigrahi , and Satendra Pal Singh 12 Ethylene and Phytohormone Crosstalk in Plant Defense Against Abiotic Stress 277 Nimisha Amist and N.B. Singh 13 Mechanism for Ethylene Synthesis and Homeostasis in Plants: Current Updates 291 Rachana Tripathi, Nisha Agrawal, and Meeta Jain 14 Ethylene and Nitric Oxide Under Salt Stress: Exploring Regulatory Interactions 312 Noushina Iqbal, Peer Saffeullah, and Shahid Umar 15 Ethylene and Metabolic Reprogramming under Abiotic Stresses 345 Nisha Agrawal, Rachana Tripathi, and Meeta Jain 16 Regulation of Thermotolerance Stress in Crops by Plant Growth- Promoting Rhizobacteria Through Ethylene Homeostasis 363 Priyanka Gogoi, Parishmita Gogoi, Archana Yadav, and Ratul Saikia 17 Ethylene: Signaling, Transgenics, and Applications in Crop Improvement 374 Pragati Kumari, Rahul Thakur, Arvind Gupta, Vinay Kumar, Archana Thakur, and Saurabh Yadav 18 Role of Ethylene in Combating Biotic Stress 388 Shivam Jasrotia and Raman Jasrotia 19 Ethylene and Nitric Oxide Crosstalk in Plants under Abiotic Stress 398 Juhie Joshi- Paneri, Kanchan Jumrani, Sunita Kataria, Anita Dubey, and Meeta Jain 20 Polyamine Metabolism and Ethylene Signaling in Plants 420 Ekhlaque A. Khan, Zahra Souri, and Víctor García- Gaytán Index 437
£130.50
John Wiley & Sons Inc Electromagnetic Technologies in Food Science
Book SynopsisA comprehensive source of in-depth informationprovidedon existing and emerging food technologies based on theelectromagneticspectrum Electromagnetic Technologies in Food Scienceexamines various methodsemployedin food applications that are based on the entire electromagnetic (EM) spectrum. Focusing on recent advances and challenges in food science and technology, thisis anup-to-date volumethatfeaturesvitalcontributionscomingfrom an international panel of expertswho havesharedboth fundamentaland advanced knowledgeof informationonthedosimetry methods,and on potential applications ofgamma irradiation, electron beams, X-rays, radio and microwaves, ultraviolet, visible, pulsed light, and more. Organized into four parts, the text begins with an accessible overview of the physics of the electromagnetic spectrum, followed by discussion onthe application of the EM spectrum to non-thermal food processing. The physics of infrared radiation, microwaves, and other advanced heating methods are thendeTable of ContentsList of Contributors xv Foreword xix Preface xxi 1 Physics of the Electromagnetic Spectrum 1 Michael Vollmer 1 Introduction 1 2 Description of Electromagnetic Waves 2 2.1 Properties of Waves 2 2.2 Spectrum of Electromagnetic Waves 5 3 Propagation of Electromagnetic Waves: Geometrical Versus Wave Optics 7 4 Description of Particle Properties of Electromagnetic Radiation 10 5 Exponential Attenuation of Electromagnetic Radiation in Matter 11 6 Microscopic Structure of Matter and Origin of EM Radiation 14 6.1 UV–VIS and Atomic Spectra 14 6.2 IR and Molecular Spectra 16 6.3 X- Rays and Excitations of Inner Electrons in Atoms 18 6.4 γ- Rays and Nuclear Spectra 19 6.5 Blackbody Radiation: Generating UV, VIS, and IR Radiation from Hot Objects 20 6.6 Generation of Microwave and RF EM Waves 21 7 Interaction of EM Radiation with Food 23 7.1 Low Frequencies: RF and Microwaves 23 7.2 IR Radiation 24 7.3 Visible and UV Radiation 25 7.4 X- Rays and γ- Radiation 27 7.4.1 Atomic Photo Effect 27 7.4.2 Compton Effect 28 7.4.3 Pair Generation Effect 28 7.4.4 Probabilities for Absorbing High- Energy Radiation 29 7.4.5 Consequence of Absorption of High- Energy Photons by Matter 29 8 Outlook 31 References 31 2 Dosimetry in Food Irradiation 33 Bhaskar Sanyal and Sunil K. Ghosh 1 Introduction 33 2 Fundamentals of Dosimetry 34 2.1 What is Dosimetry 35 2.2 Absorbed Dose 35 2.3 Physical Aspects of Radiation Absorption 36 2.3.1 Photoelectric Effect 36 2.3.2 Compton Scattering 36 2.3.3 Pair Production 36 2.3.4 Interaction of Charged Particles 37 3 Dosimetry Systems for Food Irradiation Application 37 3.1 Characterization of Dosimetry Systems 39 3.1.1 Calibrating the Dosimetry System 39 3.1.2 Establishing Traceability 39 3.1.3 Determining Batch Homogeneity 40 3.1.4 Determining Uncertainty in the Measured Dose Value 40 3.1.5 Understanding and Quantifying Effects of the Influencing Quantities 40 3.2 Specific Dosimetry Systems for Food Irradiation Applications 41 3.2.1 Chemical Dosimeter (Fricke and Ceric- cerous Sulphate) 41 3.2.2 Alanine Dosimeter 42 3.2.3 Radiochromic Dosimeter 42 3.3 Role of Product Density in the Absorbed Dose 43 4 Dosimetry in Food Irradiation Facility 43 4.1 Dosimetry in Radionuclide- Based Irradiation Facility 44 4.1.1 Dose Mapping Experiment 44 4.1.2 Routine Processing of Food Product 46 4.2 Dosimetry in Linear Accelerator (LINAC) Facility 46 5 Emerging Field of Dosimetry in Low- Energy Accelerator Irradiator for Surface Treatment of Food 49 6 Conclusion and Future Outlook 50 References 51 3 Gamma Irradiation 53 Xuetong Fan and Brendan A. Niemira 1 Introduction 53 2 Characteristics and Generation of γ- rays 54 3 Compton Effect 56 4 Basic Effects on Food: Interaction of γ-rays with Matter 57 5 Dose Unit, Dose Rate, and Dose Distribution 59 6 γ-ray Facility 60 7 Applications of γ-ray Radiation in Foods 60 7.1 Improving Microbial Safety 61 7.2 Preservation of Food 63 7.3 Phytosanitary Treatment 64 7.4 Applications on Low- Moisture Foods 64 7.5 Potential Uses of γ Irradiation for Degradation of Mycotoxin and Allergen 65 8 Factors Impacting the Efficacy of γ- rays 66 8.1 Temperature 66 8.2 Atmosphere 66 8.3 Water Activity 67 8.4 Composition of Foods (Antioxidants) 67 9 Conclusion 67 Acknowledgments 68 References 68 4 Electron Beams 74 Rajeev Bhat, Benny P. George, and Vicente M. Gómez- López 1 Introduction 74 2 Accelerator as a Source of Ionizing Radiation 76 3 Working Principle of EB Accelerator 77 4 Types of Industrial Electron Accelerators 77 5 Classification of Industrial Electron Beam (EB) Accelerators 78 6 Absorbed Dose 78 7 Radiation Dosimetry 79 7.1 Theoretical Aspect of EB Dosimetry 79 7.2 Practical Aspect of EB Dosimetry 79 7.3 Dosimetry Systems 80 7.4 Calibration of Dosimetry Systems 81 7.4.1 Performance Check of Measuring Instruments 81 7.4.2 Calibration of Routine Dosimeters 81 7.4.3 Establishing Measurement Traceability to National/International Standards 82 8 Scanning Characteristics of the Electron Beam Accelerator 82 9 Depth Dose Profile of Electron Beam 82 10 Process Validation of Industrial EB Accelerator 83 10.1 Installation Qualification (IQ) 84 10.2 Operational Qualification (OQ) 85 10.3 Performance Qualification (PQ) 85 10.4 Routine Monitoring 86 11 EB Irradiation in Food Applications 86 11.1 Mechanism 93 12 Legislations on Electron Beams Application 93 13 Conclusions and Future Outlook 96 Acknowledgements 97 Conflict of Interest Statement 97 References 97 5 X- Rays 105 Francesco E. Ricciardi, Amalia Conte, and Matteo A. Del Nobile 1 Introduction 105 1.1 Thermal and Non- thermal Technologies 105 1.2 Irradiation Technology 107 1.3 X- Rays 109 2 Mechanism of Action of X- Rays 109 3 Case Study 111 3.1 Seafood Products 111 3.2 Fresh and Dried Fruit 115 3.3 Dairy Products 116 3.4 Meat- Based Foods 118 4 Effects of X- Rays on Packaging 119 5 Regulation of X- Ray Irradiation 120 6 Conclusion and Future Outlook 122 References 122 6 Ultraviolet Light 128 Sandra N. Guerrero, Mariana Ferrario, Marcela Schenk, Daniela Fenoglio, and Antonella Andreone 1 Introduction 128 2 Characterization of UV- C Dose 130 3 Rational Use of the Hurdle Approach in the Design of Food Preservation Technologies 134 3.1 UV- C light–based Hurdle Combinations 136 3.1.1 Heat 136 3.1.2 UV- C Combined with Other Novel Technologies 153 3.1.3 UV- C Combined with the Addition of Natural Antimicrobials 162 3.1.4 UV- C Combined with Sanitizers 164 4 Conclusions and Future Perspectives 170 Acknowledgments 171 References 171 7 Visible Light 181 Laura M. Hinds, Mysore L. Bhavya, Colm P. O’Donnell, and Brijesh K. Tiwari 1 Introduction 181 2 Sources 182 3 Quantifying Light Treatment 183 4 Applications of Visible Light in the Food Industry 184 4.1 Postharvest Handling 184 4.2 Food Safety 186 5 Challenges and Limitations 194 6 Conclusion 194 References 194 8 Pulsed Light 200 Vicente M. Gómez- López, Rajeev Bhat, and José A. Pellicer 1 Introduction 200 2 Pulsed Light as a Technology Based on the Electromagnetic Spectrum 201 3 Photochemistry and Photophysics Laws 202 4 Factors Affecting Efficacy 203 5 Pulsed Light Systems 204 6 Effect on Microorganisms 205 6.1 Action Spectrum 205 6.2 Inactivation Mechanism 205 6.3 Photoreactivation 206 6.4 Sublethal Injury 207 6.5 Viable but Non- culturable State 207 7 Inactivation of Enzymes 207 8 Inactivation of Allergens 208 9 Effect on Lipids 209 10 Effect on Health- Related Compounds 209 11 Effect on Vitamin d 210 12 Effect on Pesticides 210 13 Energy Efficiency 211 14 Legislations (Regulations and Safety) of Pulsed Light 211 15 Conclusions and Future Outlook 212 Conflict of Interest Statement 212 References 212 9 Infrared Radiation 220 Yvan Llave and Noboru Sakai 1 Introduction 220 2 Fundamentals and Theory of Infrared Radiation 221 2.1 Principles of Infrared Radiation Heating 221 2.1.1 Infrared Wavelength 221 2.1.2 Basics Laws of Infrared Radiation 222 2.2 Characteristics of Thermal Radiation 224 2.2.1 Types of Infrared Radiation 224 2.2.2 Heat Generation 224 2.2.3 Sources of Infrared Heating 224 2.3 Special Features of Infrared Radiation 226 2.3.1 Factors Related to the Penetration of IR 226 2.3.2 Advantages of IR Processing 226 2.3.3 Limitations of Infrared Radiation Processing 227 2.4 Interaction of Infrared Radiation with Food 227 2.4.1 Fundamentals of Interaction with Foods 227 2.4.2 Selective Infrared Radiation Absorption of Foods 228 3 Infrared Radiative Properties of Food Materials 229 3.1 Attenuation of Radiation 229 3.2 Properties Related to the Radiative Heat Transfer of Foods 230 4 Applications of Infrared Radiation in Food Processing 230 4.1 Traditional Applications for Foods 230 4.1.1 Infrared Radiation Drying 230 4.1.2 Infrared Radiation Pasteurization 231 4.1.3 Infrared Radiation Grilling, Broiling, and Roasting 231 4.1.4 Infrared Radiation Blanching 231 4.1.5 Infrared Radiation Baking 235 4.1.6 Infrared Radiation Cooking 235 4.2 Rough Rice Drying 235 4.3 Fruit and Vegetable Peeling 236 4.4 Disinfestation and Pest Management 236 4.5 Surface Disinfection in the Food Industry 238 5 Integrated Heating Technologies 238 5.1 Infrared Radiation and Convective Heating 239 5.2 Infrared Radiation and Microwave Heating 240 5.3 Infrared Radiation and Freeze- Drying 241 5.4 Infrared Radiation and Vacuum Drying 241 6 Mathematical Modeling and Simulations 242 6.1 Basics of Computer Simulations of Infrared Radiation Processes 242 6.1.1 Moisture Transfer 243 6.1.2 Heat Transfer 243 6.1.3 Boundary Conditions 243 6.2 Heat and Mass Transfer Modeling of the Infrared Radiation Heating of Foods 244 6.3 Computer Simulations of Novel IR Heating Applications of Foods 244 7 Future Research to Enhance Practical Applications of Infrared Heating 247 8 Conclusions and Future Outlook 247 References 248 10 Microwaves 254 Rifna E. Jerome and Madhuresh Dwivedi 1 Introduction 254 2 Microwave Heating Mechanism and Principle 256 2.1 Dielectric Properties of Food Product 256 2.2 Factors Affecting Microwave Heating 259 2.2.1 Moisture Content and Temperature Dependency 259 2.2.2 Effect of Composition of Food Product 259 2.2.3 Effect of Microwave Frequency 260 2.2.4 Product Parameters 260 2.3 Non- uniformity in Temperature Distribution 260 3 Microwave Application in Food Industries 261 3.1 Microwave- Assisted Cooking and Baking 261 3.2 Microwave- assisted Drying 262 3.3 Microwave- Assisted Blanching 263 3.4 Microwave- Assisted Microbial Inactivation 263 3.5 Microwave- Assisted Extraction 264 4 Safety of Food Processed in Microwave for Consumers 265 5 Merits and De- merits of Microwave Heating Applications 265 6 Conclusion and Outlook 266 References 266 11 Radio Frequency 272 Shunshan Jiao, Eva Salazar, and Shaojin Wang 1 Introduction 272 2 Principle of RF Heating 273 2.1 Dielectric Properties 273 2.2 Governing Equation 274 2.3 Penetration Depth 275 3 Applications of RF Heating in Food Processing 275 3.1 Thawing 275 3.2 Drying 277 3.3 Disinfestation 279 3.3.1 For Fresh Fruits 279 3.3.2 For Grains 281 3.3.3 For Dried Fruits and Nuts 282 3.4 Microbial Inactivation 283 3.4.1 For Fruits and Vegetables 283 3.4.2 For Meat, Poultry Dairy, and Aquatic Products 283 3.4.3 For Grains, Nuts, and Spices 284 3.5 Enzyme Inactivation 285 3.5.1 Blanching 285 3.5.2 Stabilization 287 4 Conclusions and Future Outlook 288 References 289 12 Infrared Spectroscopy 298 Daniel Cozzolino 1 Introduction 298 2 The Electromagnetic Radiation 299 3 Sample Presentation 301 4 Mid- Infrared Spectroscopy – Instrumentation 302 5 Near- Infrared Spectroscopy – Instrumentation 303 6 Portability (Handheld Instruments) 304 7 Hyperspectral and Multispectral Image 304 8 Conclusions and Outlook 306 Acknowledgments 307 Conflict of Interest 307 References 307 13 Raman Spectroscopy 310 Dana Alina Magdas and Camelia Berghian- Grosan 1 Introduction 310 2 Raman Applications in Food and Beverages Studies 311 2.1 Honey 311 2.2 Edible Oils 315 2.3 Wines 321 2.4 Fruit Spirits 325 3 Conclusions and Future 328 Contribution Statement 329 Acknowledgments 329 Conflict of Interest 329 References 329 14 Visible Light Imaging 337 Maimunah Mohd Ali and Norhashila Hashim 1 Introduction 337 2 Principle of Visible Light Imaging 338 2.1 Development and Instrumentation 338 2.2 Hardware- Orientated Color System 339 2.3 Image Processing and Analysis 340 3 Applications of Visible Light Imaging in Food 341 3.1 Fruits and Vegetables 341 3.2 Meat, Fish, and Poultry 344 3.3 Nuts, Grains, and Dairy Products 347 3.4 Fats and Oils 349 3.5 Processed Foods 351 4 Advantages and Limitations 353 5 Future Trends 354 6 Conclusions and Outlook 355 Acknowledgment 356 Conflict of Interest 356 References 356 15 Hyperspectral Imaging 363 Antoni Femenias and Sonia Marín 1 Introduction 363 2 Fundamentals of the Hyperspectral Imaging 364 3 Image Calibration 366 4 Spectral Pre- processing 367 5 Model Calibration 367 6 Characteristic Wavelengths Extraction 369 7 Model Validation 369 8 Application of HSI for Plant Products Quality Assessment 370 8.1 Discrimination According to Quality Parameters 371 8.2 Quantification of Quality Parameters 374 9 Application of HSI for Safety Assessment in Fruits and Vegetables 376 10 Application of HSI for Microbiological Quality and Safety Assessment in Cereals, Nuts, and Dried ruits 377 10.1 Assessment of Fungal Damage 377 10.2 Assessment of Mycotoxin Contamination 379 10.2.1 Aflatoxins 379 10.2.2 Fusarium Toxins 382 11 Conclusions and Future Outlook 383 Acknowledgments 383 References 384 16 Future Challenges of Employing Electromagnetic Spectrum 391 Bibhuti B. Mishra and Prasad S. Variyar 1 Introduction 391 2 Challenges in γ Irradiation Processing of Food 393 2.1 Sources of Radiation: Cobalt 60 and Cesium 137, Electron Beam, and X- ray 393 2.2 Scope for Future Research in γ Radiation 394 2.3 Economic Considerations for Setting Up Facilities 396 3 Challenges in Using UV Light for Processing of Food 396 3.1 Design of UV Processing Equipment 397 3.2 UV for Disinfestation of Contact Surfaces in Food Processing Facilities 398 4 Challenges in Using Infrared (IR) for Processing of Food 398 4.1 Limitations of Infrared Processing 399 4.2 Selection of Infrared Emitters for Drying Applications 399 4.3 Future Scopes for IR Lamp Design Features 399 4.4 Novel IR Filament Material 400 4.5 Future of IR Drying 400 4.6 Scopes for Near- infrared (NIR) Spectroscopy in Industrial Food Processing 401 5 Challenges in Microwave Processing of Food 402 5.1 Microwave Cooking 402 5.2 Microwave Blanching 403 5.3 Microwave Pasteurization/Sterilization 403 5.4 Microwave- assisted Drying 403 5.5 Microwave- assisted Freeze Drying 404 5.6 Future of Applications of Microwave 404 6 Future Scopes for Radiofrequency Processing of Food 404 6.1 Improvement of RF- H Uniformity 405 6.2 Future Research on RF Heating Applications in Food 405 7 Current Problems and Future Prospects of Tetrahertz (THz) Technology 406 8 Regulations for Use of EM Spectrum 406 9 Conclusion and Outlook 407 References 408 Index 411
£148.45
John Wiley & Sons Inc Polylactic acid Synthesis Structures Properties
Book SynopsisTable of ContentsList of Contributors xix Preface xxiii Author Biographies xxvii Part I Chemistry and Production of Lactic Acid, Lactide, and Poly(Lactic Acid) 1 1 Production and Purification of Lactic Acid and Lactide 3Wim Groot, Jan van Krieken, Olav Sliekersl, and Sicco de Vos 1.1 Introduction 3 1.2 Lactic Acid 4 1.2.1 History of Lactic Acid 4 1.2.2 Physical Properties of Lactic Acid 4 1.2.3 Chemistry of Lactic Acid 4 1.2.4 Production of Lactic Acid by Fermentation 5 1.2.5 Downstream Processing/Purification of Lactic Acid 8 1.2.6 Quality/Specifications of Lactic Acid 10 1.3 Lactide 10 1.3.1 Physical Properties of Lactide 10 1.3.2 Production of Lactide 11 1.3.3 Purification of Lactide 13 1.3.4 Quality and Specifications of Polymer-Grade Lactide 14 1.3.5 Concluding Remarks on Polymer-Grade Lactide 16 References 16 2 Aqueous Solutions of Lactic Acid 19Carl T. Lira and Lars Peereboom 2.1 Introduction 19 2.2 Structure of Lactic Acid 19 2.3 Vapor Pressure of Anhydrous Lactic Acid and Lactide 19 2.4 Oligomerization in Aqueous Solutions 20 2.5 Equilibrium Distribution of Oligomers 21 2.6 Vapor–Liquid Equilibrium 23 2.7 Density of Aqueous Solutions 25 2.8 Viscosity of Aqueous Solutions 25 2.9 Summary 26 References 26 3 Industrial Production of High-Molecular-Weight Poly(Lactic Acid) 29Anders Södergård, Mikael Stolt, and Saara Inkinen 3.1 Introduction 29 3.2 Lactic-Acid-Based Polymers by Polycondensation 30 3.2.1 Direct Condensation 31 3.2.2 Solid-State Polycondensation 32 3.2.3 Azeotropic Dehydration 33 3.3 Lactic Acid-Based Polymers by Chain Extension 34 3.3.1 Chain Extension with Diisocyanates 34 3.3.2 Chain Extension with Bis-2-Oxazoline 36 3.3.3 Dual Linking Processes 36 3.3.4 Chain Extension with Bis-Epoxies 36 3.4 Lactic-Acid-Based Polymers by Ring-Opening Polymerization 37 3.4.1 Polycondensation Processes 37 3.4.2 Lactide Manufacturing 37 3.4.3 Ring-Opening Polymerization 39 References 40 4 Design and Synthesis of Different Types of Poly(Lactic Acid)/Polylactide Copolymers 45Ann-Christine Albertsson, Indra Kumari Varma, Bimlesh Lochab, Anna Finne-Wistrand, Sangeeta Sahu, and Kamlesh Kumar 4.1 Introduction 45 4.2 Comonomers with Lactic Acid/Lactide 47 4.2.1 Glycolic Acid/Glycolide 47 4.2.2 Poly(Alkylene Glycol) 48 4.2.3 δ-Valerolactone and β-Butyrolactone 51 4.2.4 ε-Caprolactone 51 4.2.5 1,5-Dioxepan-2-One 52 4.2.6 Trimethylene Carbonate 52 4.2.7 Poly(N-Isopropylacrylamide) 52 4.2.8 Alkylthiophene (P3AT) 53 4.2.9 Polypeptide 53 4.3 Functionalized PLA 54 4.4 Macromolecular Design of Lactide-Based Copolymers 55 4.4.1 Graft Copolymers 57 4.4.2 Star-Shaped Copolymers 59 4.4.3 Periodic Copolymers 60 4.5 Properties of Lactide-Based Copolymers 62 4.6 Degradation of Lactide Homo-and Copolymers 63 4.6.1 Drug Delivery from Lactide-Based Copolymers 64 4.6.2 Radiation Effects 65 References 65 5 Preparation, Structure, and Properties of Stereocomplex-Type Poly(Lactic Acid) 73Neha Mulchandani, Yoshiharu Kimura, and Vimal Katiyar 5.1 Introduction 73 5.2 Stereocomplexation in Poly(Lactic Acid) 73 5.3 Crystal Structure of sc-PLA 74 5.4 Formation of Stereoblock PLA 75 5.4.1 Single-Step Process 75 5.4.2 Stepwise ROP 76 5.4.3 Chain Coupling Method 77 5.5 Stereocomplexation in Copolymers 79 5.5.1 Stereocomplexation in Random and Alternating Lactic Acid or Lactide-Based Polymers 79 5.5.2 sc-PLA–PCL Copolymers 80 5.5.3 sc-PLA–PEG Copolymers 80 5.6 Stereocomplex PLA-Based Composites 81 5.7 Advances in Stereocomplex-PLA 82 5.8 Conclusions 83 References 83 Part II Properties 87 6 Structures and Phase Transitions of PLA and Its Related Polymers 89Hai Wang and Kohji Tashiro 6.1 Introduction 89 6.2 Structural Study of PLA 89 6.2.1 Preparation of Crystal Modifications of PLA 89 6.2.2 Crystal Structure of the α Form 91 6.2.3 Crystal Structure of the δ Form 92 6.2.4 Crystal Structure of the β Form 93 6.2.5 Structure of the Mesophase 94 6.3 Thermally Induced Phase Transitions 95 6.3.1 Phase Transition in Cold Crystallization 95 6.3.2 Phase Transition in the Melt Crystallization 95 6.3.3 Mechanically Induced Phase Transition 96 6.4 Microscopically-viewed Structure-Mechanical Properties of PLA 98 6.5 Structure and Formation of PLLA/PDLA Stereocomplex 100 6.5.1 Reconsideration of the Crystal Structure 100 6.5.2 Experimental Support of P3 Structure Model 103 6.5.3 Formation Mechanism of Stereocomplex 104 6.6 PHB and Other Biodegradable Polyesters 106 6.6.1 Poly(3-Hydroxybutyrate) (PHB) 106 6.6.2 Polyethylene Adipate (PEA) 109 6.7 Future Perspectives 110 Acknowledgements 110 References 110 7 Optical and Spectroscopic Properties 115Isabel M. Marrucho 7.1 Introduction 115 7.2 Absorption and Transmission of UV–Vis Radiation 115 7.3 Refractive Index 118 7.4 Specific Optical Rotation 119 7.5 Infrared and Raman Spectroscopy 119 7.5.1 Infrared Spectroscopy 120 7.5.2 Raman Spectroscopy 125 7.6 1H and 13C NMR Spectroscopy 127 References 131 8 Crystallization and Thermal Properties 135Luca Fambri and Claudio Migliaresi 8.1 Introduction 135 8.2 Crystallinity and Crystallization 136 8.3 Crystallization Regime 140 8.4 Fibers 142 8.5 Commercial Polymers and Products 144 8.6 Degradation and Crystallinity 146 Acknowledgments 148 References 148 9 Rheology of Poly(Lactic Acid) 153John R. Dorgan 9.1 Introduction 153 9.2 Fundamental Chain Properties from Dilute Solution Viscometry 154 9.2.1 Unperturbed Chain Dimensions 154 9.2.2 Real Chains 154 9.2.3 Solution Viscometry 155 9.2.4 Viscometry of PLA 156 9.3 Processing of PLA: General Considerations 158 9.4 Melt Rheology: An Overview 159 9.5 Processing of PLA: Rheological Properties 160 9.6 Conclusions 165 Appendix 9.A Description of the Software 166 References 166 10 Mechanical Properties 169Mohammadreza Nofar, Gabriele Perego, and Gian Domenico Cella 10.1 Introduction 169 10.2 General Mechanical Properties and Molecular Weight Effect 170 10.2.1 Tensile and Flexural Properties 170 10.2.2 Impact Resistance 171 10.2.3 Hardness 172 10.3 Temperature Effect 172 10.4 Relaxation and Aging 173 10.5 Annealing 174 10.6 Orientation 176 10.7 Stereoregularity 179 10.8 Self-Reinforced PLA Composites 180 10.9 PLA Nanocomposites 180 10.10 Copolymerization 181 10.11 Plasticization 181 10.12 PLA Blends 182 10.13 Conclusions 186 References 186 11 Mass Transfer 191Uruchaya Sonchaeng and Rafael Auras 11.1 Introduction 191 11.2 Background on Mass Transfer in Polymers 193 11.3 Mass Transfer Properties of Neat PLA Films 194 11.3.1 Mass Transfer of Gases 194 11.3.2 Mass Transfer of Oxygen 199 11.3.3 Mass Transfer of Water Vapor 201 11.3.4 Mass Transfer of Organic Vapors 203 11.4 Mass Transfer Properties of Modified PLA 205 11.4.1 PLA Stereocomplex and PLA Blends 206 11.4.2 PLA Nanocomposites 207 11.4.3 Other PLA Modifications 207 11.4.4 PLA in Other Forms 207 11.5 Final Remarks 208 Acknowledgments 208 References 208 12 Migration and Interaction with Contact Materials 217Herlinda Soto-Valdez and Elizabeth Peralta 12.1 Introduction 217 12.2 Migration Principles 217 12.3 Legislation 218 12.4 Migration and Toxicological Data of Lactic Acid, Lactide, Dimers, and Oligomers 219 12.4.1 Lactic Acid 219 12.4.2 Lactide 224 12.4.3 Oligomers 225 12.5 EDI of Lactic Acid 226 12.6 Other Potential Migrants from PLA 227 12.7 Conclusions 227 References 228 Part III Processing and Conversion 231 13 Processing of Poly(Lactic Acid) 233Loong-Tak Lim, Tim Vanyo, Jed Randall, Kevin Cink, and Ashwini K. Agrawal 13.1 Introduction 233 13.2 Properties of PLA Relevant to Processing 233 13.3 Modification of PLA Properties by Process Aids and Other Additives 235 13.4 Drying and Crystallizing 237 13.5 Extrusion 239 13.6 Injection Molding 241 13.7 Film and Sheet Casting 245 13.8 Stretch Blow Molding 249 13.9 Extrusion Blown Film 251 13.10 Thermoforming 252 13.11 Melt Spinning 254 13.12 Solution Spinning 258 13.13 Electrospinning 261 13.14 Filament Extrusion and 3D-Printing 265 13.15 Conclusion: Prospects of PLA Polymers 266 References 267 14 Blends 271Ajay Kathuria, Sukeewan Detyothin, Waree Jaruwattanayon, Susan E. M. Selke, and Rafael Auras 14.1 Introduction 271 14.2 PLA Nonbiodegradable Polymer Blends 272 14.2.1 Polyolefins 272 14.2.2 Vinyl and Vinylidene Polymers and Copolymers 279 14.2.3 Rubbers and Elastomers 285 14.2.4 PLA/PMMA Blends 287 14.3 PLA/Biodegradable Polymer Blends 289 14.3.1 Polyanhydrides 289 14.3.2 Vinyl and Vinylidene Polymers and Copolymers 289 14.3.3 Aliphatic Polyesters and Copolyesters 297 14.3.4 Aliphatic–Aromatic Copolyesters 303 14.3.5 Elastomers and Rubbers 305 14.3.6 Poly(Ester Amide)/PLA Blends 307 14.3.7 Polyethers and Copolymers 307 14.3.8 Annually Renewable Biodegradable Materials 309 14.4 Plasticization of PLA 322 14.5 Conclusions 326 References 327 15 Foaming 341Laurent M. Matuana 15.1 Introduction 341 15.2 Plastic Foams 341 15.3 Foaming Agents 342 15.3.1 Physical Foaming Agents 342 15.3.2 Chemical Foaming Agents 342 15.4 Formation of Cellular Plastics 343 15.4.1 Dissolution of Blowing Agent in Polymer 343 15.4.2 Bubble Formation 343 15.4.3 Bubble Growth and Stabilization 344 15.5 Plastic Foams Expanded with Physical Foaming Agents 344 15.5.1 Microcellular Foamed Polymers 344 15.5.2 Solid-State Batch Microcellular Foaming Process 345 15.5.3 Microcellular Foaming in a Continuous Process 353 15.6 PLA Foamed with Chemical Foaming Agents 358 15.6.1 Effects of CFA Content and Type 358 15.6.2 Effect of Processing Conditions 359 15.7 Mechanical Properties of PLA Foams 360 15.7.1 Batch Microcellular Foamed PLA 360 15.7.2 Extrusion of PLA 361 15.7.3 Microcellular Injection Molding of PLA 362 15.8 Foaming of PLA/Starch and Other Blends 362 References 363 16 Composites 367Tanmay Gupta, Vijay Shankar Kumawat, Subrata Bandhu Ghosh, Sanchita Bandyopadhyay-Ghosh, and Mohini Sain 16.1 Introduction 367 16.2 PLA Matrix 367 16.3 Reinforcements 368 16.3.1 Natural Fiber Reinforcement 368 16.3.2 Synthetic Fiber Reinforcement 370 16.3.3 Organic Filler Reinforcement 370 16.3.4 Inorganic Filler Reinforcement 371 16.3.5 Laminated/Structural Composites 372 16.4 Nanocomposites 374 16.5 Surface Modification 375 16.5.1 Filler Surface Modification 375 16.5.2 Compatibilizing Agent 376 16.5.3 Composite Surface Modification 377 16.6 Processing 377 16.6.1 Conventional Processing 377 16.6.2 3D Printing 378 16.7 Properties 379 16.7.1 Mechanical Properties 379 16.7.2 Thermal Properties 382 16.7.3 Flame Retardancy 382 16.7.4 Degradation 383 16.7.5 Shape Memory Properties 383 16.8 Applications 384 16.8.1 Biomedical Applications 385 16.8.2 Packaging Applications 387 16.8.3 Automotive Applications 387 16.8.4 Sensing and Other Electronic Applications 388 16.9 Future Developments and Concluding Remarks 390 References 390 17 Nanocomposites: Processing and Mechanical Properties 411Suprakas Sinha Ray 17.1 Introduction 411 17.2 Nanoclay-Containing PLA Nanocomposites 412 17.3 Carbon-Nanotubes-Containing PLA Nanocomposites 414 17.4 Graphene-Containing PLA Nanocomposites 416 17.5 Nanocellulose-Containing PLA Nanocomposites 417 17.6 Other Nanoparticle-Containing PLA Nanocomposites 418 17.7 Mechanical Properties of PLA-Based Nanocomposites 419 17.8 Possible Applications and Future Prospects 421 Acknowledgment 422 References 422 18 Mechanism of Fiber Structure Development in Melt Spinning of PLA 425Nanjaporn Roungpaisan, Midori Takasaki, Wataru Takarada, and Takeshi Kikutani 18.1 Introduction-Fundamentals of Structure Development in Polymer Processing 425 18.2 High-speed Melt Spinning of PLLAs with Different d-Lactic Acid Content 426 18.2.1 Wide-angle X-ray Diffraction 426 18.2.2 Birefringence 427 18.2.3 Differential Scanning Calorimetry 428 18.2.4 Modulated-DSC and Lattice Spacing 429 18.3 High-speed Melt-Spinning of Racemic Mixture of PLLA and PDLA 430 18.3.1 Stereocomplex Crystal 430 18.3.2 Melt Spinning of PLLA/PDLA Blend 430 18.3.3 WAXD 431 18.3.4 Differential Scanning Calorimetry 432 18.3.5 In Situ WAXD upon Heating 432 18.4 Bicomponent Melt Spinning of PLLA and PDLA 433 18.4.1 Sheath-Core and Islands-in-the-Sea Configurations 433 18.4.2 Birefringence 434 18.4.3 DSC 434 18.4.4 Post Annealing 435 18.5 Concluding Remarks 436 References 437 Part IV Degradation, Environmental Impact, and End of Life 439 19 Photodegradation and Radiation Degradation 441Wataru Sakai and Naoto Tsutsumi 19.1 Introduction 441 19.2 Mechanisms of Photodegradation 441 19.2.1 Photon 441 19.2.2 Photon Absorption 442 19.2.3 Photochemical Reactions of Carbonyl Groups 443 19.3 Mechanism of Radiation Degradation 443 19.3.1 High-Energy Radiation 443 19.3.2 Basic Mechanism of Radiation Degradation 444 19.4 Photodegradation of PLA 444 19.4.1 Fundamental Mechanism 444 19.4.2 Photooxidation Degradation 446 19.4.3 High-Energy Photo-Irradiation 447 19.4.4 Photosensitized Degradation of PLA 447 19.4.5 Photodegradation of PLA Blends 449 19.5 Radiation Degradation of PLA 449 19.6 Irradiation Effects on Biodegradability 451 19.7 Modification and Composites of PLA 452 References 452 20 Thermal Degradation 455Haruo Nishida 20.1 Introduction 455 20.2 Thermal Degradation Behavior of PLLA Based on Weight Loss 455 20.2.1 Diverse Mechanisms 455 20.2.2 Factors Affecting the Thermal Degradation Mechanism 456 20.2.3 Thermal Stabilization 457 20.3 Kinetic Analysis of Thermal Degradation 458 20.3.1 Single-Step Thermal Degradation Process 458 20.3.2 Complex Thermal Degradation Process 459 20.4 Kinetic Analysis of Complex Thermal Degradation Behavior 460 20.4.1 Two-Step Complex Reaction Analysis of PLLA in Blends 460 20.4.2 Multistep Complex Reaction Analysis of Commercially Available PLLA 461 20.5 Thermal Degradation Behavior of PLA Stereocomplex: scPLA 463 20.6 Control of Racemization 464 20.7 Conclusions 465 References 465 21 Hydrolytic Degradation 467Hideto Tsuji 21.1 Introduction 467 21.2 Degradation Mechanism 467 21.2.1 Molecular Degradation Mechanism 468 21.2.2 Material Degradation Mechanism 479 21.2.3 Degradation of Crystalline Residues 485 21.3 Parameters for Hydrolytic Degradation 488 21.3.1 Effects of Surrounding Media 488 21.3.2 Effects of Material Parameters 490 21.4 Structural and Property Changes During Hydrolytic Degradation 498 21.4.1 Fractions of Components 498 21.4.2 Crystallization 498 21.4.3 Mechanical Properties 499 21.4.4 Thermal Properties 499 21.4.5 Surface Properties 500 21.4.6 Morphology 500 21.5 Applications of Hydrolytic Degradation 500 21.5.1 Material Preparation 500 21.5.2 Recycling of PLA to Its Monomer 502 21.6 Conclusions 503 References 503 22 Enzymatic Degradation 517Ken’ichiro Matsumoto, Hideki Abe, Yoshihiro Kikkawa, and Tadahisa Iwata 22.1 Introduction 517 22.1.1 Definition of Biodegradable Plastics 517 22.1.2 Enzymatic Degradation 517 22.2 Enzymatic Degradation of PLA Films 519 22.2.1 Structure and Substrate Specificity of Proteinase K 519 22.2.2 Enzymatic Degradability of PLLA Films 519 22.2.3 Enzymatic Degradability of PLA Stereoisomers and Their Blends 520 22.2.4 Effects of Surface Properties on Enzymatic Degradability of PLLA Films 521 22.3 Enzymatic Degradation of Thin Films 525 22.3.1 Thin Films and Analytical Techniques 525 22.3.2 Crystalline Morphologies of Thin Films 525 22.3.3 Enzymatic Adsorption and Degradation Rate of Thin Films 526 22.3.4 Enzymatic Degradation of LB Film 526 22.3.5 Application of Selective Enzymatic Degradation 529 22.4 Enzymatic Degradation of Lamellar Crystals 530 22.4.1 Enzymatic Degradation of PLLA Single Crystals 530 22.4.2 Thermal Treatment and Enzymatic Degradation of PLLA Single Crystals 532 22.4.3 Single Crystals of PLA Stereocomplex 533 22.5 Recent Advances in Characterization of Enzymes that Degrade PLAs Including PDLA and Related Copolymers 534 22.5.1 αβ-Hydrolase 535 22.5.2 Lipases and Cutinase-Like Enzymes 535 22.5.3 Polyhydroxyalkanoate Depolymerases 536 22.5.4 Enhancement of Biodegradability of PLAs 536 22.5.5 Control of Enzymatic Degradation of PLAs 537 22.6 Future Perspectives 537 References 537 23 Environmental Footprint and Life Cycle Assessment of Poly (Lactic Acid) 541Amy E. Landis, Shakira R. Hobbs, Dennis Newby, Ja’Maya Wilson, and Talia Pincus 23.1 Introduction to LCA and Environmental Footprints 541 23.1.1 Life Cycle Assessment 541 23.1.2 Uncertainty in LCA 542 23.2 Life Cycle Considerations for PLA 542 23.2.1 The Life Cycle of PLA 542 23.2.2 Energy Use and Global Warming 544 23.2.3 Environmental Trade-Offs 544 23.2.4 Waste Management 545 23.2.5 End of Life 546 23.3 Review of Biopolymer LCA Studies 546 23.3.1 Cradle-to-Gate and Cradle-to-Grave LCAs 546 23.3.2 End-of-Life LCAs 547 23.4 Improving PLA’s Environmental Footprint 553 23.4.1 Agricultural Management 553 23.4.2 Feedstock Choice 554 23.4.3 Energy 554 23.4.4 Design for End of Life 555 References 555 24 End-of-Life Scenarios for Poly(Lactic Acid) 559Anibal Bher, Edgar Castro-Aguirre, and Rafael Auras 24.1 Introduction 559 24.2 Transition from a Linear to a Circular Economy for Plastics 559 24.3 Waste Management System 561 24.4 End-of-Life Scenarios for PLA 564 24.4.1 Prevention and Source Reduction 565 24.4.2 Reuse 566 24.4.3 Recycling 566 24.4.4 Biodegradation 569 24.4.5 Incineration with Energy Recovery 572 24.4.6 Landfill 573 24.5 LCA of End-of-Life Scenario for PLA 574 24.6 Final Remarks 575 References 575 Part V Applications 581 25 Medical Applications 583Shuko Suzuki and Yoshito Ikada 25.1 Introduction 583 25.2 Minimal Requirements for Medical Devices 583 25.2.1 General 583 25.2.2 PLA as Medical Implants 584 25.3 Preclinical and Clinical Applications of PLA Devices 585 25.3.1 Fibers 585 25.3.2 Meshes 588 25.3.3 Bone Fixation Devices 589 25.3.4 Micro-and Nanoparticles, and Thin Coatings 595 25.3.5 Scaffolds 597 25.4 Conclusions 598 References 598 26 Packaging and Consumer Goods 605Hayati Samsudin and Fabiola Iñiguez-Franco 26.1 Introduction: Polylactic Acid (PLA) in Packaging and Consumer Goods 605 26.2 Food and Beverage 606 26.2.1 Evolution of PLA in the Food and Beverage Market 606 26.2.2 Growing Interest in PLA Serviceware 607 26.3 Distribution Packaging 612 26.4 Other Consumer Goods : Automotive 613 26.5 Other Consumer Goods 613 26.6 Challenges and Final Remarks 614 References 615 27 Textile Applications 619Masatsugu Mochizuki 27.1 Introduction 619 27.2 Manufacturing, Properties, and Structure of PLA Fibers 619 27.2.1 PLA Fiber Manufacture 619 27.2.2 Properties of PLA Fibers and Textile 619 27.2.3 Effects of Structure on Properties 620 27.2.4 PLA Stereocomplex Fibers 621 27.3 Key Performance Features of PLA Fibers 621 27.3.1 Biodegradability and the Biodegradation Mechanism 621 27.3.2 Moisture Management 623 27.3.3 Antibacterial/Antifungal Properties 623 27.3.4 Low Flammability 624 27.3.5 Weathering Stability 624 27.4 Potential Applications 625 27.4.1 Geotextiles 625 27.4.2 Industrial Fabrics 625 27.4.3 Filters 626 27.4.4 Towels and Wipes 626 27.4.5 Home Furnishings 627 27.4.6 Clothing and Personal Belongings 627 27.4.7 3D-Printing Filament 628 27.5 Conclusions 628 References 628 28 Environmental Applications 631Akira Hiraishi and Takeshi Yamada 28.1 Introduction 631 28.2 Application to Water and Wastewater Treatment 631 28.2.1 Application as Sorbents 631 28.2.2 Application to Nitrogen Removal 633 28.3 Application to Methanogenesis 637 28.3.1 Anaerobic Digestion 637 28.3.2 Methanogenic Microbial Community 637 28.4 Application to Bioremediation 638 28.4.1 Significance of PLA Use 638 28.4.2 Bioremediation of Organohalogen Pollution 638 28.4.3 Other Applications 639 28.5 Concluding Remarks and Prospects 640 Acknowledgments 641 References 641 Index 645
£171.00
John Wiley & Sons Inc Biomolecules from Natural Sources
Book SynopsisBiomolecules from Natural Sources An up-to-date exploration of new and novel biomolecules In Biomolecules from Natural Sources: Advances and Applications, a team of accomplished researchers delivers up-to-date information on various bioresources, bioprocessing, production, mechanisms of action for selective bioactivity, biochemistry, targeted therapeutic roles and the advancements made on their bioactive potentials of new and novel biomolecules. The book presents recent trends in new and novel biomolecules and their identification, characterization, and potential applications. The selected contributions canvas a variety of breakthroughs in the understanding and applications of naturally derived biomolecules. Biomolecules from Natural Sources: Advances and Applications is an exhaustive collection of research and information, as well as an insightful and interdisciplinary treatment of a rapidly developing field. Readers will also find: A thorTable of ContentsPreface vii List of Contributors ix 1 Glycolipids: From Biosynthesis to Biological Activity toward Therapeutic Application 1Maria H. Ribeiro, Eva Fahr, and Sara Lopes 2 Natural Polymer Types and Applications 31Amro Abd Al Fattah Amara 3 Mushroom Pigments and Their Applications 82Maura Téllez-Téllez and Gerardo Díaz-Godínez 4 Pharmacological Potential of Pigments 101M. C. Pagano, E. J. A. Corrêa, N. F. Duarte, and B. K. Yelikbayev 5 Bioactive Compounds: Encapsulation, Delivery, and Applications Using Albumins as Carriers 113Flavia F. Visentini, Adrian A. Perez, Joana B. Ferrado, María Laura Deseta, and Liliana G. Santiago 6 The Protein Structure, Function and Specificity: PhaC Synthases Type I, II, III and IV as a Model 181Amro Abd Al Fattah Amara 7 Extremozyme-Based Technology for Biofuel Generation: Bioactivity and Stability Performances 214Amal Souii, Afwa Ghorrab, Khouloud Hammami, Ahmed Slaheddine Masmoudi, Ameur Cherif, and Mohamed Neifar 8 The Role of Divalent Cations in Antibiotic Sensitivity: A Molecular Aspect 252Amro Abd Al Fattah Amara 9 Biomolecules from Vegetable Wastes 278Begoña de Ancos and Concepción Sánchez-Moreno 10 Retention of Natural Bioactive Compounds of Berry Fruits during Surface Decontamination Using an Eco-friendly Sanitizer 309María P. Méndez-Galarraga, Franco Van de Velde, Andrea M. Piagentini, and María Elida Pirovani 11 Biomolecules from Basil – Pharmacological Significance 322Ivayla Dincheva and Ilian Badjakov 12 Himalayan Peony (Paeonia emodi Royle): Enlightening Bioactive Compounds and Biological Applications towards Sustainable Use 345Prabhakar Semwal, Sakshi Painuli, Natália Cruz-Martins, and Ashish Thapliyal 13 Health Properties of Dietary Monoterpenes 362Rafael Chelala Moreira, Kele A.C. Vespermann, Gustavo Molina, Juliano Lemos Bicas, and Mario Roberto Marostica Junior 14 Biomolecules Derived from Whey: Strategies for Production and Biological Properties 390M. C. Perotti, C. I. Vénica, I. V. Wolf, M. A. Vélez, G. H. Peralta, A. Quiberoni, and C. V. Bergamini 15 EPS from Lactobacilli and Bifidobacteria: Microbial Metabolites with Both Technological and Health-Promoting Properties 433Elisa C. Ale, Melisa A. Puntillo, María F. Rojas, and Ana G. Binetti 16 Characterization of Bacteriocins Produced by Lactic Acid Bacteria of Industrial Interest 458Silvina Alicia Pujato, Andrea del Luján Quiberoni, and Daniela Marta Guglielmotti Index 470
£143.95
John Wiley & Sons Inc Microbes in the Food Industry
Book SynopsisMicrobes in the Food Industry This newest volume in the groundbreaking new series, Bioprocessing in Food Science, focuses on the latest processes, industrial applications, and leading research on microbes in the food industry, for engineers, scientists, students, and other industry professionals. Microbes in the Food Industry, the latest volume in the series, Bioprocessing in Food Science, is focused on different aspects in food microbiology, food science and related subjects for individuals in the food industry, researchers, academics, and students. Microbes are key components of the food processing industry, and this book concentrates on topics that incorporate ideas and applications from various fields to address concerns relating to food safety, quality, and sensory attributes. Researchers around the globe will be able to use this information as a guide in establishing the direction of future research on food processing considering various aspects related to microbes. The maiTable of ContentsPreface xv 1 Food Microbiology: Fundamentals and Techniques 1Raina Jain, Prashant Bagade, Kalpana Patil-Doke and Ganesh Ramamurthi 1.1 Introduction 1 1.2 Food Microbiology: A Historical Perspective 2 1.3 Beneficial Microbes in Food 4 1.4 Harmful Microbes in Food 8 1.5 Classical Food Microbiological Techniques 16 1.6 Advances in Food Microbiological Techniques 21 1.7 Regulations Governing Food Microbiology 30 1.8 Conclusions 33 2 Fermented Foods in Health and Disease Prevention 39Monalisa Sahoo, Pramod Aradwad, Nikita Sanwal, Jatindra Kumar Sahu, Vivek Kumar and S. N. Naik 2.1 Fermentation 40 2.2 Traditional Fermented Food 45 2.3 Application of Fermentation to Food 45 2.4 Effects of Fermentation on Nutrients 54 2.5 Health Benefits of Fermented Foods and Beverages 60 2.6 Food Safety and Quality Control 63 2.7 Conclusions and Future Perspectives 66 3 Probiotic Dairy Foods 87Gökçe Eminoglu, H. Ceren Akal and H. Barbaros Ozer 3.1 Introduction 87 3.2 Classification and Phylogenetic Properties of Probiotic Microorganisms 90 3.3 Probiotics in the Dairy Matrix 100 3.4 Probiotic Dairy Products 102 4 Dairy Probiotic Products 139Callebe Camelo Silva, Silvani Verruck, Marco Di Luccio, Tatiana C. Pimentel, Marcia Cristina Silva, Erick Almeida Esmerino and Adriano Gomes da Cruz 4.1 Introduction 140 4.2 Fermented Milks 141 4.3 Conclusions and Perspectives 190 5 Design Schematics, Operational Characteristics and Process Applications of Bioreactors 217Vishwajeet Gaikwad, Anil Panghal, Shubham Jadhav, Sunil Kundu, Namita Singh and Navnidhi Chhikara 5.1 Introduction 218 5.2 Fermenter Design and Operations 220 5.3 Fermenter Configuration 223 5.4 Types of Fermenter 227 5.5 Factors Influencing Operation of Fermenters 238 5.6 Conclusion 241 6 Enzymes in Food Industry and Their Regulatory Oversight 249Megha Dhingra and Jasvir Singh 6.1 Introduction 250 6.2 Production of Enzymes 250 6.3 Applications of Enzymes in Food Industry 258 6.4 Safety Evaluation of Enzymes 263 6.5 Global Regulatory Frameworks 269 6.6 Regulatory Framework in India 270 7 Functional and Nutraceutical Potential of Fruits and Vegetables 275Samandeep Kaur, Umexi Rani and Parmjit Singh Panesar 7.1 Introduction 276 7.2 Biochemistry of Fruits and Vegetables 277 7.3 Nutritional Composition of Fruits and Vegetable By-Products 287 7.4 Extraction of Bioactives from Fruits and Vegetables 288 7.5 Processing Methods Used for Development of Functional Foods from Fruits and Vegetables 297 7.5.1 Fermentation 297 7.6 Fruits and Vegetable-Based Nutraceuticals 304 7.7 Influence of Processing Methods on Functional Ingredients 307 7.8 Influence of Storage on Functional Ingredients 309 7.9 Future of Functional Foods 311 8 Microbes as Bio-Factories for the Valorization of Fruit and Vegetable Processing Wastes 321Shivali Banerjee and Amit Arora 8.1 Introduction 322 8.2 Microbial Bio-Processing of Fruit and Vegetable Wastes 322 8.3 Valuable Commodities from Fruit and Vegetable Waste 325 8.4 Technical Challenges, Economics and Future Prospective 339 8.5 Conclusion 340 9 Solid-State Fermentation 355Manish Tiwari, Rashmin Dhingani, Nandani Goyal, Bhavesh Joshi and R.V. Prasad 9.1 Introduction 356 9.2 History of Solid-State Fermentation (SSF) 359 9.3 Factors Affecting SSF 360 9.4 Types of Solid-State Fermentation 365 9.5 Application of SSF Carried Out on Inert Support Materials 368 9.6 Modern Aspects of Solid-State Fermentation 373 9.7 Challenges to SSF 384 9.8 Conclusions 385 10 Pigments Produced by Fungi and Bacteria from Extreme Environments 393Graciéle Cunha Alves de Menezes, Tiago Daniel Madureira de Medeiros, Igor Gomes de Oliveira Lima, Maurício Bernardo da Silva, Aline Cavalcanti de Queiroz, Alysson Wagner Fernandes Duarte, Valéria Maia de Oliveira, Luiz Henrique Rosa and Juliano Lemos Bicas 10.1 Introduction 394 10.2 Extreme Environments 397 10.3 Extremophilic Microorganisms 398 11 Commercially Available Databases in Food Microbiology 441Priyanka Rohilla, Anju Kumari, Sapna Birania and Monika 11.1 Introduction 442 11.2 Functions of a Databases 442 11.3 Need for Databases 443 11.4 Predictive Microbiology in Foods 444 11.5 Predictive Microbiology and Its Models 446 11.6 Rapid Methods of Data Generation 448 11.7 Predictive Models 449 11.8 Guidelines for Modeling the Shelf Life of Foods 459 11.9 Databases in Foods 460 11.10 QMRA (Quantitative Microbial Risk Assessment) 462 11.11 Other Databases 463 11.12 Future Prospects 463 References 464 Index 469
£169.16
John Wiley & Sons Inc Thermal Food Engineering Operations
Book SynopsisTable of ContentsPreface xvii 1 Novel Thermal Technologies: Trends and Prospects 1Amrita Preetam, Vipasha, Sushree Titikshya, Vivek Kumar, K.K Pant and S N Naik 1.1 Introduction 1 1.2 Novel Thermal Technologies: Current Status and Trends 3 1.2.1 Environmental Impact of Novel Thermal Technologies 6 1.2.2 The Objective of Thermal Processing 8 1.2.3 Preservation Process 9 1.3 Types of Thermal Technologies 11 1.3.1 Infrared Heating 12 1.3.1.1 Principal and Mechanism 12 1.3.1.2 Advantages of IR Heating 13 1.3.1.3 Applications of IR Heating 14 1.3.2 Microwave Heating 14 1.3.2.1 Principal and Mechanism 14 1.3.2.2 Advantages of Microwave in Food Industry 17 1.3.2.3 Application of Microwave in Food Processing Technologies 19 1.3.3 Radiofrequency (RF) Heating 24 1.3.3.1 Principal and Mechanism 24 1.3.3.2 Advantages and Disadvantages 26 1.3.3.3 Applications 27 1.3.4 Ohmic Heating 28 1.3.4.1 Principal and Mechanism 28 1.3.4.2 Advantages and Disadvantages 31 1.3.4.3 Applications 33 1.4 Future Perspective of Novel Thermal Technologies 36 1.5 Conclusion 36 References 37 2 Microbial Inactivation with Heat Treatments 45Sushree Titikshya, Monalisa Sahoo, Vivek Kumar and S.N Naik 2.1 Introduction 45 2.2 Innovate Thermal Techniques for Food Reservation 47 2.3 Inactivation Mechanism of Targeted Microorganism 48 2.3.1 Action Approach and Inactivation Targets 49 2.4 Environmental Stress Adaption 50 2.4.1 Sublethal Injury 50 2.5 Resistance of Stress 51 2.5.1 Oxidative Stress 51 2.5.2 Osmotic Stress 52 2.5.3 Pressure 52 2.6 Various Techniques for Thermal Inactivation 52 2.6.1 Infrared Heating 52 2.6.1.1 Principle and Mechanism 52 2.6.1.2 Application for Inactivation in Food Sector 53 2.6.2 Microwave Heating 57 2.6.2.1 Principle and Mechanism 57 2.6.2.2 Application for Inactivation in Food Sector 58 2.6.3 Radiofrequency Heating 59 2.6.3.1 Principle and Mechanism 59 2.6.3.2 Application for Inactivation in Food Sector 60 2.6.4 Instant Controlled Pressure Drop Technology (DIC) 60 2.6.4.1 Principle and Mechanism 60 2.6.4.2 Application for Inactivation in Food Sector 61 2.6.5 Ohmic Heating 62 2.6.5.1 Principle and Mechanism 62 2.6.5.2 Application for Inactivation in Food Sector 63 2.7 Forthcoming Movements of Thermal Practices in Food Industry 64 2.8 Conclusion 65 References 66 3 Blanching, Pasteurization and Sterilization: Principles and Applications 75Monalisa Sahoo, Sushree Titikshya, Pramod Aradwad, Vivek Kumar and S N Naik 3.1 Introduction 76 3.2 Blanching: Principles & Mechanism 76 3.2.1 Types of Blanching 76 3.2.1.1 Hot Water Blanching 76 3.2.1.2 Steam Blanching 80 3.2.1.3 High Humidity Hot Air Impingement Blanching (HHAIB) 81 3.2.1.4 Microwave Blanching 81 3.2.1.5 Ohmic Blanching 85 3.2.1.6 Infrared Blanching 86 3.2.2 Application of Blanching 89 3.2.2.1 Inactivation of Enzymes 89 3.2.2.2 Enhancement of Product Quality and Dehydration 90 3.2.2.3 Toxic and Pesticides Residues Removal 90 3.2.2.4 Decreasing Microbial Load 90 3.2.2.5 Reducing Non-Enzymatic Browning Reaction 91 3.2.2.6 Peeling 91 3.2.2.7 Entrapped Air Removal 91 3.2.2.8 Enhancing Bioactive Extraction Efficiency 91 3.2.2.9 Other Applications 92 3.3 Pasteurization: Principles & Mechanism 92 3.3.1 Thermal Pasteurization 92 3.3.2 Traditional Thermal Pasteurization 93 3.3.3 Microwave and Radiofrequency Pasteurization 93 3.3.4 Ohmic Heating Pasteurization 94 3.3.5 Application of Pasteurization 98 3.4 Sterilization: Principles, Mechanism and Types of Sterilization 98 3.4.1 Conventional Sterilization Methods 99 3.4.2 Advanced Retorting 100 3.4.3 Microwave-Assisted Thermal Sterilization 101 3.4.4 Pressure-Assisted Thermal Sterilization 103 3.5 Conclusions 104 References 104 4 Aseptic Processing 117Malathi Nanjegowda, Bhaveshkumar Jani and Bansee Devani 4.1 Introduction 118 4.2 Aseptic Processing 118 4.3 Principle of Thermal Sterilization 121 4.3.1 Effect of Thermal Treatment on Enzymes 123 4.3.2 Effect of Thermal Treatments on Nutrients and Quality 123 4.3.3 Effect of Thermal Treatments on the Cooking Index (C0) 124 4.3.4 Effect of Heat Treatments on Chemical Reactions in Food 124 4.4 Components of Aseptic Processing 124 4.4.1 Equipment Used in Aseptic/UHT Processing 124 4.4.1.1 Indirect Heat Exchanger 125 4.4.1.2 Direct Heat Exchanger 126 4.4.1.3 Ohmic Heating (OH) 126 4.5 Aseptic Packaging 127 4.5.1 Types of Packaging Materials Used in Aseptic Processing 127 4.5.2 Methods and Requirements of Decontamination of Packaging Materials 128 4.6 Applications of Aseptic Processing and Packaging 128 4.6.1 Milk Processing 133 4.6.2 Non-Milk Products Processing 135 4.7 Advantages of Aseptic Processing and Packaging 136 4.8 Challenges of Aseptic Processing and Packaging 137 4.9 Conclusion 137 References 138 5 Spray Drying: Principles and Applications 141Sukirti Joshi, Asutosh Mohapatra, Lavika Singh and Jatindra K Sahu 5.1 Introduction 142 5.2 Concentration of Feed Solution 142 5.3 Atomization of Concentrated Feed 143 5.3.1 Principle of Atomization 143 5.3.2 Classification of Atomizers 143 5.3.2.1 Rotary Atomizers 144 5.3.2.2 Pressure Nozzle/Hydraulic Atomizer 144 5.3.2.3 Two‐Fluid Nozzle Atomizer 145 5.4 Droplet‐Hot Air Contact 145 5.5 Drying of Droplets 146 5.6 Particle Separation 148 5.7 Effect of Process Parameters on Product Quality 148 5.7.1 Process Parameters of Atomization 150 5.7.2 Parameters of Spray‐Air Contact and Evaporation 151 5.7.2.1 Spray Angle 151 5.7.2.2 Aspirator Flow Rate 151 5.7.2.3 Inlet Air Temperature 151 5.7.2.4 Outlet Air Temperature 152 5.7.2.5 Glass Transition Temperature 152 5.7.2.6 Residence Time 153 5.8 Classification of Spray Dryer 153 5.8.1 Open-Cycle Spray Dryer 153 5.8.2 Closed-Cycle Spray Dryer 154 5.8.3 Semi‐Closed Cycle Spray Dryer 154 5.8.4 Single‐Stage Spray Dryer 154 5.8.5 Two‐Stage Spray Dryer 154 5.8.6 Short‐Form Spray Dryer 154 5.8.7 Tall‐Form Spray Dryer 154 5.9 Morphological Characterization of Spray-Dried Particles 155 5.10 Application of Spray Drying for Foods 156 5.11 Wall Materials 157 5.11.1 Carbohydrate-Based Wall Materials 158 5.11.1.1 Starch 158 5.11.1.2 Modified Starch 158 5.11.1.3 Maltodextrins 158 5.11.2 Cyclodextrins 159 5.11.3 Gum Arabic 159 5.11.4 Inulin 159 5.11.5 Pectin 160 5.11.6 Chitin and Chitosan 160 5.11.7 Protein-Based Wall Materials 160 5.11.7.1 Whey Protein Isolate 161 5.11.7.2 Skim Milk Powder 161 5.11.7.3 Soy Protein Isolate (SPI) 161 5.12 Encapsulation of Probiotics 162 5.12.1 Choice of Bacterial Strain 162 5.12.2 Response to Cellular Stresses 163 5.12.3 Growth Conditions 164 5.12.4 Effect of pH 164 5.12.5 Harvesting Technique 165 5.12.6 Total Solid Content of the Feed Concentrate 165 5.13 Encapsulation of Vitamins 165 5.14 Encapsulation of Flavours and Volatile Compounds 166 5.14.1 Selective Diffusion Theory 166 5.15 Conclusion and Perspectives 170 References 170 6 Solar Drying: Principles and Applications 179Baher M A Amer 6.1 Introduction 179 6.2 Principle of Solar Drying 180 6.3 Construction of Solar Dryer 181 6.4 Historical Classification of Solar Energy Drying Systems 182 6.5 Storing Solar Energy for Drying 185 6.6 Hybrid/Mixed Solar Drying System 186 6.7 Solar Greenhouse Dryer 188 6.8 Solar Drying Economy 188 6.9 New Applications Related to Solar Drying 190 References 192 7 Fluidized Bed Drying: Recent Developments and Applications 197Praveen Saini, Nitin Kumar, Sunil Kumar and Anil Panghal 7.1 Introduction 197 7.2 Principle and Design Considerations of Fluidized Bed Dryer 198 7.2.1 Spouted Bed Dryer 201 7.2.2 Spout Fluidized Bed Dryer 202 7.2.3 Hybrid Drying Techniques 205 7.2.3.1 Microwave-Assisted FBD 205 7.2.3.2 FIR-Assisted FBD 206 7.2.3.3 Heat Pump–Assisted FBD 207 7.2.3.4 Solar-Assisted FBD 207 7.3 Design Alterations for Improved Fluidization Capacity 208 7.3.1 Vibrated Fluidized Bed 208 7.3.2 Agitated Fluidized Bed 209 7.3.3 Centrifugal Fluidized Bed 210 7.4 Energy Consumption in Fluidized Bed Drying 211 7.5 Effect of Fluidized Bed Drying on the Quality 212 7.6 Applications of Fluidized Bed Drying 215 7.7 Concluding Remarks 215 References 215 8 Dehumidifier Assisted Drying: Recent Developments 221Vaishali Wankhade, Vaishali Pande, Monalisa Sahoo and Chirasmita Panigrahi 8.1 Introduction 221 8.2 Absorbent Air Dryer 222 8.2.1 Working Principle of Adsorption Air Dryer 223 8.2.2 Design Considerations and Components of the Absorbent Air Drier 223 8.2.2.1 Desiccant Drying System 223 8.2.3 Performance Indicators of Desiccant Air Dryer System 226 8.2.3.1 Low Temperature Drying With No Temperature Control and Air Circulation System 227 8.2.3.2 Low Temperature Drying With Air Circulation and Temperature Control 228 8.3 Heat Pump–Assisted Dehumidifier Dryer 228 8.3.1 Working Principles of a Heat Pump–Assisted Dehumidifier Dryer 229 8.3.2 Performance Indicators of Heat Pump–Assisted Dehumidifier Dryer 231 8.4 Applications of Dehumidifier-Assisted Dryers in Agriculture and Food Processing 233 8.5 Concluding Remarks 234 References 234 9 Refractance Window Drying: Principles and Applications 237Peter Waboi Mwaurah, Modiri Dirisca Setlhoka and Tanu Malik 9.1 Introduction 238 9.2 Refractance Window Drying System 239 9.2.1 History and Origin 239 9.2.2 Components and Working of the Dryer 240 9.2.3 Principle of Operation 242 9.3 Heat Transfer and Drying Kinetics 244 9.3.1 Drying Rate and Moisture Reduction Rate 245 9.4 Effect of Process Parameters on Drying 245 9.4.1 Effect of Temperature of the Hot Circulating Water 245 9.4.2 Effect of Product Inlet Temperature and Thickness 246 9.4.3 Effect of Residence Time 247 9.4.4 Effect of Ambient Air Temperature (Air Convection) 247 9.5 Comparison of Refractance Window Dryer with Other Types of Dryers 247 9.6 Effect of Refractance Window Drying on Quality of Food Products 248 9.6.1 Effects on Food Color 249 9.6.2 Effects on Bioactive Compounds 250 9.6.2.1 Carotene Retention 251 9.6.2.2 Ascorbic Acid Retention 252 9.6.2.3 Anthocyanin Retention 252 9.7 Applications of Refractance Window Drying in Food and Agriculture 253 9.7.1 Applications of Refractance Window Drying in Preservation of Heat-Sensitive and Bioactive Compounds 253 9.7.2 Applications of Refractance Window Drying on Food Safety 254 9.8 Advantages and Limitations of Refractance Window Dryer 255 9.9 Recent Developments in Refractance Window Drying 255 9.10 Conclusion and Future Prospects 256 References 257 10 Ohmic Heating: Principles and Applications 261Sourav Misra, Shubham Mandliya and Chirasmita Panigrahi 10.1 Introduction 261 10.2 Basic Principles 263 10.3 Process Parameters 265 10.3.1 Electrical Conductivity 265 10.3.2 Electrical Field Strength 266 10.3.3 Frequency and Waveform 267 10.3.4 Product Size, Viscosity, and Heat Capacity 267 10.3.5 Particle Concentration 267 10.3.6 Ionic Concentration 267 10.3.7 Electrodes 268 10.4 Equipment Design 268 10.5 Application 270 10.5.1 Blanching 276 10.5.2 Pasteurisation/Sterilization 276 10.5.3 Extraction 277 10.5.4 Dehydration 278 10.5.5 Fermentation 279 10.5.6 Ohmic Thawing 280 10.6 Effect of Ohmic Heating on Quality Characteristics of Food Products 280 10.6.1 Starch and Flours 280 10.6.1.1 Water Absorption Index (WAI) and Water Solubility Index (WSI) 280 10.6.1.2 Pasting Properties 280 10.6.1.3 Thermal Properties 281 10.6.2 Meat Products 282 10.6.3 Fruits and Vegetable Products 282 10.6.3.1 Electrical Properties 282 10.6.3.2 Soluble Solids Content and Acidity 282 10.6.3.3 Vitamins 283 10.6.3.4 Flavor Compounds 284 10.6.3.5 Phenolic Compounds 284 10.6.3.6 Colour Properties 284 10.6.3.7 Change in Chlorophyll Content 285 10.6.3.8 Textural Properties 285 10.6.3.9 Sensory Properties 286 10.6.4 Dairy Products 286 10.6.5 Seafoods 290 10.7 Advantages of Ohmic Heating 290 10.8 Disadvantages of Ohmic Heating 291 10.9 Conclusions 291 References 292 11 Microwave Food Processing: Principles and Applications 301Jean-Claude Laguerre and Mohamad Mazen Hamoud-Agha 11.1 Introduction 301 11.2 Principles of Microwave Heating 302 11.2.1 Nature of Microwaves 302 11.2.1.1 Propagation of EM Waves in Free Space 302 11.2.1.2 Propagation of EM Waves in Matter 306 11.2.2 Mechanism of Microwave Heating 309 11.2.2.1 Dielectric Characteristic of a Material 309 11.2.2.2 Waves-Product Interactions 312 11.2.3 Transmission and Absorption of a Wave in a Material 316 11.2.3.1 Expression of Transmitted Power 316 11.2.3.2 Penetration Depths 317 11.2.3.3 Power Dissipation 319 11.3 Applications 320 11.3.1 Microwave Baking 320 11.3.2 Microwave Blanching 323 11.3.3 Microwave Tempering and Thawing 326 11.3.4 Microwave Drying 328 11.3.4.1 Microwave-Assisted Hot Air Drying 329 11.3.4.2 Microwave-Assisted Vacuum Drying 330 11.3.4.3 Microwave-Assisted Freeze-Drying 330 11.3.5 Microwave Pasteurization and Sterilization 331 References 334 12 Infrared Radiation: Principles and Applications in Food Processing 349Puneet Kumar, Subir Kumar Chakraborty and Lalita 12.1 Introduction 350 12.2 Mechanism of Heat Transfer 351 12.2.1 Principles of IR Heating 351 12.2.1.1 Planck’s Law 352 12.2.1.2 Wien’s Displacement Law 352 12.2.1.3 Stefan–Boltzmann’s Law 352 12.2.2 Source of IR Radiations 353 12.2.2.1 Natural Source 354 12.2.2.2 Artificial Sources 354 12.3 Factors Affecting the Absorption of Energy 356 12.3.1 Characteristics of Food Materials 357 12.3.1.1 Composition 357 12.3.1.2 Layer Thickness 357 12.3.2 IR Parameters 357 12.3.2.1 Wavelength of IR Rays 358 12.3.2.2 IR Intensity 358 12.3.2.3 Depth of Penetration 358 12.3.3 Advantages of IR Heating Over Conventional Heating Methods 359 12.4 Applications of IR in Food Processing 359 12.4.1 Drying 360 12.4.2 Peeling 361 12.4.3 Blanching 363 12.4.4 Microbial Decontamination 364 12.5 IR-Assisted Hybrid Drying Technologies 366 12.5.1 IR-Freeze-Drying 366 12.5.2 Hot Air-Assisted IR Heating 367 12.5.3 Low-Pressure Superheated Steam Drying with IR 368 12.6 Conclusion 368 References 369 13 Radiofrequency Heating 375Chirasmita Panigrahi, Monalisha Sahoo, Vaishali Wankhade and Siddharth Vishwakarma 13.1 Introduction 376 13.2 History of RF Heating 377 13.3 Principles and Equipment 378 13.3.1 Basic Mechanism of Dielectric Heating 378 13.3.1.1 Basic Mechanism and Working of Radiofrequency Heating 379 13.3.1.2 Basic Mechanism and Working of Microwave Heating 380 13.3.2 Factors of Food Affecting the Performance of RF Processing 380 13.3.2.1 Permittivity and Loss Factor 380 13.3.2.2 Power Density and Penetration Depth 381 13.3.2.3 Wave Impedance and Power Reflection 382 13.3.3 Comparison of RF Heating With Other Methods 383 13.3.4 Lab Scale and Commercial Scale of RF Equipment 385 13.3.4.1 Radiofrequency Processing of Food at Lab Scale 386 13.3.4.2 Radiofrequency Processing of Food at Industrial Scale 387 13.4 Applications in Food Processing 388 13.4.1 Drying 388 13.4.2 Thawing 393 13.4.3 Roasting 394 13.4.4 Baking 394 13.4.5 Disinfestation 395 13.4.6 Blanching 395 13.4.7 Pasteurization/Sterilization 396 13.5 Technological Constraints, Health Hazards, and Safety Aspects 399 13.6 Commercialization Aspects and Future Trends 402 13.7 Conclusions 404 References 404 14 Quality, Food Safety and Role of Technology in Food Industry 415Nartaj Singh and Prashant Bagade 14.1 Introduction 416 14.1.1 Food Quality 417 14.1.1.1 Primary and Secondary Food Processing 419 14.1.1.2 Historical Trends in Food Quality 421 14.1.1.3 Food Quality Standards and its Requirements 423 14.1.1.4 Role of Technology in Building Food Quality Within the Industry 440 14.1.1.5 Regulations and their Requirements 444 14.1.2 Food Safety 445 14.1.2.1 Primary and Secondary Food Production 445 14.1.2.2 Historical Trends in Food Safety 446 14.1.2.3 Food Safety Standards and its Requirements 447 14.1.2.4 Role of Technology in Building Food Safety Within Industry 450 14.2 Future Trends in Quality and Food Safety 451 14.3 Conclusion 453 References 453 Index 455
£169.16
John Wiley & Sons Fermentative Nutraceuticals
Book Synopsis
£169.16
John Wiley & Sons Inc The Chemistry of Beer
Book SynopsisThe Chemistry of BEER An Engaging Introduction to Chemistry with a Popular Theme From the earliest civilizations to our own day, brewing beer has driven science and technology. In ancient times, brewing was the most advanced biotechnical process. In the modern world, the study of alcoholic fermentation was the springboard for the new science of biochemistry. The Chemistry of Beer: The Science in the Suds, 2nd Edition explains the scientific basis of each brewing step as we understand it today. Readers of this second edition will find: Updates and revisions include a new chapter on beer-related products such as hard seltzer, flavored malt beverages, and non-alcoholic beer Streamlined language and structure to help clarify the chemistry Over 200 illustrations, now in full color throughout Complete glossary and index Question sets at the end of each chapter to check for understanding Online solutions manuaTrade Review" ... explains beer chemistry with a refreshing combination of rigor and accessability." -- Zymurgy, Nov-Dec 2022 issueTable of ContentsPreface to the Second Edition vii Reading Notes viii Acknowledgments viii About the Author ix 1 Introduction 1 Chapter 1 Overview 1 Brief History 1 The World of Beer 11 Beer and Technology 14 Beer and Chemistry 18 Alcohol and Prohibition 23 Beer Tradition 25 Chapter 1 Highlights 27 Chapter 1 Sources 27 Chapter 1 Questions 30 2 What is Beer? 33 Chapter 2 Overview 33 Beer Composition 33 Beer Ingredients 33 Beer as Food 37 How Beer is Made 39 Chapter 2 Highlights 46 Chapter 2 Sources 47 Chapter 2 Questions 47 3 Chemistry Basics 51 Chapter 3 Overview 51 Atoms 51 Compounds 54 Names of Chemical Compounds 60 Molecular Shape 62 Polarity and Electronegativity 65 Intermolecular Forces 67 Molecular Kinetics 70 Chemical Reactions and Equations 71 Oxidation Numbers 72 Amount of Substance (Moles) 74 Mixtures 75 Composition of Mixtures 75 Mass Relationships in Compounds 77 Chapter 3 Highlights 78 Chapter 3 Sources 79 Chapter 3 Questions 79 4 Water 85 Chapter 4 Overview 85 The Water Molecule 85 Acids and Bases 87 pH 89 pH—A Closer Look 91 Ions and Beer 92 Measuring Alkalinity 93 Measuring Hardness 93 Water Treatment 97 Osmosis—A Closer Look 98 Hydrates—A Closer Look 102 Chapter 4 Highlights 103 Chapter 4 Sources 103 Chapter 4 Questions 104 5 Introduction to Organic Chemistry 107 Chapter 5 Overview 107 Structural Formulas 107 Functional Groups 109 Using the Functional Group Guide 120 Naming Organic Compounds 121 Chapter 5 Highlights 123 Chapter 5 Sources 124 Chapter 5 Questions 124 6 Carbohydrates 129 Chapter 6 Overview 129 Monosaccharides 129 Chirality 131 Absolute Configurations—A Closer Look 132 Disaccharides 136 Polysaccharides 137 Know Your Carbohydrates 140 Testing Carbohydrates 141 Chapter 6 Highlights 141 Chapter 6 Source 142 Chapter 6 Questions 142 7 Milling and Mashing 145 Chapter 7 Overview 145 Milling 145 Mashing 146 Enzymes and Proteins 149 Amylase Mechanism 155 Mashing Process 156 Dextrins, Light Beer, and Malt Liquor 159 Chapter 7 Highlights 159 Chapter 7 Sources 160 Chapter 7 Questions 160 8 Wort Separation and Boiling 163 Chapter 8 Overview 163 Wort Separation 163 Boiling 166 Hops 167 Chilling 172 Chapter 8 Highlights 173 Chapter 8 Sources 174 Chapter 8 Questions 174 9 Fermentation 177 Chapter 9 Overview 177 Energy and Bonds 177 Energy from ATP 179 Glycolysis 180 Ethanol Synthesis 182 Aerobic and Anaerobic Reactions 185 Flavor Compounds 186 Chapter 9 Highlights 188 Chapter 9 Sources 188 Chapter 9 Questions 189 10 Tests and Measurements 193 Chapter 10 Overview 193 Measurement in Chemistry 193 Brewing Measurements 197 Carbohydrate Calculations 200 Temperature 201 Color 204 Light and Color—A Closer Look 204 Alcohol Concentration 205 pH 208 Carbonation 210 Sensory Analysis 210 Chapter 10 Highlights 211 Chapter 10 Sources 211 Chapter 10 Questions 212 11 The Chemistry of Flavor and Style 215 Chapter 11 Overview 215 Flavor 215 Flavor Compounds 221 Off-Flavors 232 Brewing Water and Flavor 236 Beer Styles 236 Chapter 11 Highlights 240 Chapter 11 Sources 241 Chapter 11 Questions 242 12 Beer-Related Products 245 Chapter 12 Overview 245 Non-Alcohol/Low Alcohol Beer 245 Cider 251 Flavored Malt Beverages 252 Hard Seltzer 252 Mead 252 Sake 253 Kombucha 254 Vinegar 254 Chapter 12 Highlights 255 Chapter 12 Sources 256 Chapter 12 Questions 257 13 Haze and Foam 259 Chapter 13 Overview 259 Surfaces 259 Surfactants 261 Haze 261 Foam 265 Gases–A Closer Look 265 Gases and Liquids 268 Foam Issues 273 Nitrogen and Widgets 273 Chapter 13 Highlights 275 Chapter 13 Sources 275 Chapter 13 Questions 276 14 Beer Flavor Stability and Packaging 279 Chapter 14 Overview 279 Typical Flavor Changes 279 The Role of Oxygen 280 Staling Prevention 283 Beer Packaging 285 Bottling and Canning 289 Microbe Reduction 290 Chapter 14 Highlights 290 Chapter 14 Sources 291 Chapter 14 Questions 292 15 Brewing at Home and as a Career 295 Chapter 15 Overview 295 Homebrewing Methods 295 Safety Issues 296 Cleaning and Sanitation 297 About Yeast 298 Full Mash Brewing 298 Extract Brewing 310 Bottling 311 Using Liquid Yeast 315 Getting Started Cheap 316 Brewing Lager Beer 317 Brewing as a Career 318 Chapter 15 Highlights 319 Chapter 15 Sources 320 Chapter 15 Questions 321 Glossary 323 Index 357
£37.00
John Wiley & Sons Inc Renewable Energy Innovations
Book SynopsisRENEWABLE ENERGY INNOVATIONS This critical text, designed for microbiologists, biotechnologists, entrepreneurs, process engineers, chemical engineers, electrical engineers, physicists, and environmentalists, assesses the current knowledge about lab-scale and large-scale production of renewable and sustainable fuels, chemicals, and materials. Global warming is having a huge impact on the world's ecosystem. Glaciers have shrunk, ice on rivers and lakes is breaking up early, and plant and animal ranges have relocated. On a worldwide scale, the threat posed by climate change and pollution is obvious. A green and sustainable future necessitates using renewable resources to produce fuels, chemicals, and materials. This book investigates diverse bioprocesses that are crucial to everyday life, including the key concerns regarding the generation of biofuels, energy, and food securities, along with waste management. Commercial interest in biotechnological processes has risen to prodTable of Contents1 Microbial Fuel Cells -- A Sustainable Approach to Utilize Industrial Effluents for Electricity Generation 1Manisha Verma and Vishal Mishra Abbreviation 2 1.1 Introduction 2 1.2 History of Microbial Fuel Cell 3 1.3 Principle of Microbial Fuel Cell 4 1.4 Material Used in MFC System 5 1.5 Electrogenic Microorganisms 14 1.6 Electron Transport Mechanism in MFCs 16 1.7 Configuration of MFC 17 1.8 Applications of Microbial Fuel Cell 21 1.9 Future Perspectives 27 1.10 Conclusion 27 2 Nanotechnologies in the Renewable Energy Sector 41Yogesh Kumar Sharma, Yogesh Kumar, Sweta Sharma and Meenal Gupta 2.1 Introduction 42 2.2 Fundamentals of Renewable Energy Sources 44 2.3 Storage of Energy in Electrical Devices 52 2.4 Nanotechnology in Energy Storage Devices 56 2.5 Nanomaterials for Rechargeable Batteries 65 2.6 Nanomaterials in Fuel Cells 69 2.7 Conclusion 76 2.8 Future Scope 76 3 Sustainable Approach in Utilizing Bioenergy Commonly for Industrial Zones by Limiting Overall Emission Footprint 83Prashanth Kumar S, Mainak Mukherjee, Rhea Puri and Shrey Singhal 3.1 Introduction 84 3.2 Co-Firing Plants in Small- and Medium-Scale Industries 85 3.3 Impact of Usage of Biogas for Steam Generation 87 3.4 Case Scenarios for Promoting Industrial Uptake 91 3.5 Conclusion 93 4 Recycling of Plastic Waste into Transportation Fuels and Value-Added Products 97Shashank Pal and Shyam Pandey 4.1 Introduction 97 4.2 Plastic Waste: A Global Challenge 99 4.3 Future Projection of the Waste Plastic 100 4.4 Plastic Waste Effect on Environment and Ecology 101 4.5 Plastic Waste Management 103 4.6 Parameters Affect the Pyrolysis Process 108 4.7 Value-Added Products from Plastic Waste Pyrolysis 112 4.8 Application in Transportation Sector 114 4.9 Conclusion 115 5 An Outlook on Oxygenated Fuel for Transportation 123Shashank Pal, Shyam Pandey, Ram Kunwar and P.S. Ranjit 5.1 Introduction 123 5.2 Oxygenated Fuel 127 6 Greenhouse Gas (GHG) Emissions and Its Mitigation Technology in Transportation Sector 159Swapnil Bhurat, Manas Jaiswal, P. S. Ranjit, Ram Kunwer, S. K. Gugolothu and Khushboo Bhurat 6.1 Introduction 160 6.2 Mitigation Technologies 163 6.3 Conclusion 176 7 Advanced Techniques for Bio-Methanol Production 181Cecil Antony, Praveen Kumar Ghodke, Saravanakumar Thiyagarajan, Dinesh Mohanakrishnan and Amit Kumar Sharma 7.1 Introduction 182 7.2 Scope of Biofuel 183 7.3 Types of Biofuels 183 7.4 Why Biomethanol 184 7.5 Methanol Properties 184 7.6 Source of Bio-Methanol 184 7.7 Production of Methanol 185 7.8 Gasification 186 7.9 Pyrolysis 186 7.10 Liquefaction 187 7.11 Syngas to Methanol 188 7.12 Biomethanol from MSW 188 7.13 Energy Efficiency of a Process 192 7.14 Biological Conversion of Methanol 193 7.15 Anaerobic Digestion 193 7.16 Methanotrophic Bacteria 193 7.17 Production of Methanol from Methanotrophic Bacteria (Methanotrophs) 194 7.18 Large-Scale Production of Methanol from Waste Biomass 195 7.19 Challenges Associated with Methanol Production Using Methanotrophic Bacteria at the Industrial Level 197 7.20 Role of Ammonia-Oxidizing Bacteria (AOB) 197 7.21 Future Prospective and Conclusion 198 8 Biodiesel Production: Advance Techniques and Future Prospective 205Satyajit Chowdhury, Romsha Singh, Saket Kumar Shrivastava and Jitendra S. Sangwai 8.1 Introduction 206 8.2 Biodiesel and Its Properties 208 8.3 Synthesis of Biodiesel 209 8.4 Modern Methods for the Development of Prospects 221 8.5 Future Prospects and Policies 225 8.6 Conclusions 227 9 Biomass to Biofuel: Biomass Sources, Pretreatment Methods and Production Strategies 233Margavelu Gopinath, Chandrasekaran Muthukumaran, Madhusudhanan Manisha, Murugesan Nivedha and Krishnamurti Tamilarasan 9.1 Introduction 234 9.2 Biomass Sources in India 234 9.3 Lignocellulosic Biomass 239 9.4 Biomass Pretreatment Methods 240 9.5 Biomass to Biofuel Conversion Technologies 248 9.6 Types of Biofuel 254 9.7 Conclusion 258 10 Opportunity and Challenges in Biofuel Productions through Solar Thermal Technologies 267Praveen Kumar Ghodke, Cecil Antony and Amit Kumar Sharma 10.1 Introduction 267 10.2 Solar Pyrolysis of Biomass Feedstocks 269 10.3 Production of Bio-Oil by Solar Pyrolysis 271 10.4 Conclusions 282 11 Algae Biofuels: A Promising Fuel of the Transport Sector 289P.S. Ranjit, S. S. Bhurat, Sukanchan Palit, M. Sreenivasa Reddy, Shyam Pandey and Shashank Pal 11.1 Introduction 289 11.2 Biofuels in the Transport Sector 291 11.3 Modes of Biofuels in Practice 294 11.4 Algae Biofuel -- A Promising Energy Source 297 11.5 Microalgae Growth Conditions 307 11.6 Harvesting of Algae 309 11.7 Biofuel Extraction Techniques from Microalgae 311 11.8 Algae Biofuel as a Transport Fuel 313 11.9 Conclusion 318 12 A Review of Chemical and Physical Parameters of Biodiesel vs. Diesel: Their Environmental and Economic Impact 329Pradeep Kumar, Kalpna, Hariom Sharma, Mukesh Chand and Hament Panwar 12.1 Introduction 329 12.2 Historical Background 331 12.3 Current Status of Biodiesel 333 12.4 Sources of Biodiesel 334 12.5 Advantages of Biodiesel Over Diesel 335 12.6 Biodiesel as Safer and Cleaner Fuel 336 12.7 Major Negative Aspects to Use of Biodiesel 338 12.8 Chemical and Physical Properties of Biodiesel 338 12.9 Biodiesel Applications 340 12.10 Conclusion and Future Prospective 341 13 An Indian Viewpoint on Promoting Hydrogen-Powered Vehicles: Focussing on the Scope of Fuel Cells 345Mainak Mukherjee, Jaideep Saraswat and Amit Kumar Sharma 13.1 Introduction 346 13.2 Can Hydrogen Be the Way Forward? 348 13.3 The Inception of Fuel Cells (FCs) and PEMFCs in Particular 349 13.4 FCEVs v/s Existing Automobile Infrastructure in India 350 13.5 The Green Policy Push for Hydrogen and Associated Technologies in India 353 13.6 Pervasive Challenges of PEMFC Technology 353 13.7 Conclusion and Recommendations 357 14 Microalgae as Source of Bioenergy 361Dimitra Karageorgou and Petros Katapodis 14.1 Introduction 361 14.2 Microalgae Bioenergy Production Options 363 14.3 Conclusions 374 15 Hazards and Environmental Issues in Biodiesel Industry 383Tattaiyya Bhattacharjee, Paulami Ghosh and Surajit Mondal 15.1 Introduction 384 15.2 Life Cycle Analysis of Biodiesel 391 15.3 Causes of Occurrence 392 15.4 Future Risk and Opportunities 396 15.5 Lessons Learnt for Prevention of Hazards 398 15.6 Conclusion 399 References 400 Index 403
£169.16
John Wiley & Sons Inc Harvesting Food from Weeds
Book SynopsisTable of ContentsPreface xiii 1 Chenopodium Species 1 Priyanka Kundu and Prerna Gupta 1.1 Introduction 2 1.2 Chenopodium Varieties 4 1.3 Growth and Plantation 4 1.4 Health Effects 5 1.5 Medicinal Values 7 1.6 Anti-Nutritional Factors 11 1.7 Methods of Elimination of Anti-Nutritional Factors 12 1.8 Traditional Food Products 13 1.9 Future Scope 15 1.10 Conclusion 15 References 16 2 Herbs of Asteraceae Family: Nutritional Profile, Bioactive Compounds, and Potentials in Therapeutics 21 Chinaza Godswill Awuchi and Sonia Morya 2.1 Introduction 22 2.2 Future Prospects 46 2.3 Conclusion 46 References 47 Appendix A: Comprehensive List of Plants in Asteraceae Family 57 3 Tribulus terrestris: Pharmacological and Nutraceutical Potential 79 Jyoti Singh, Jaspreet Kaur, Mansehaj Kaur, Anvi Rana, Prasad Rasane and Sawinder Kaur 3.1 Introduction 79 3.2 Chemical Composition and Active Constituents Possessed by Tribulus terrestris 83 3.3 Nutritional and Antinutritional Content of Leaves of Tribulus terrestris 84 3.4 Medicinal Benefits of TT Extracts 86 3.5 Ayurvedic Importance and Recommendations 87 3.6 Biological Activities of Tribulus terrestris 87 3.7 Pharmacological Profiling of Tribulus terrestris 96 3.8 Mechanisms of Action of Tribulus terrestris 100 3.9 Effects of Herbal Supplements with Medication Effects 101 3.10 Herb-Drug Interconnection 103 3.11 Toxicity and Dosage 104 3.12 Conclusion 105 References 106 4 Eleusine Indica 113 Piyush Kashyap, Deep Shikha, Sunakshi Gautam and Umexi Rani 4.1 Origin and History 114 4.2 Botanical Explanation 114 4.3 Production, Development, and Maturation 115 4.4 Nutritional Profile 116 4.5 Bioactives: Pharmacology and Bioactive 117 4.6 Pharmacology 119 4.7 Health Benefits 132 4.8 Future Prospectus and Conclusion 136 References 136 5 Hemp (Cannabis sativa L.) Agronomic Practices, Engineering Properties, Bioactive Compounds and Utilization in Food Processing Industry 143 Vipul Mittal, Anil Panghal and Ravi Gupta 5.1 Introduction 144 5.2 Hemp Taxonomic Classification 146 5.3 Agronomic Practices/Growing Condition for Hemp Cultivation 147 5.4 Hemp Phytomorphology 149 5.5 Hemp Plant Parts 150 5.6 Bioactive Compounds 152 5.7 Pharmacological Properties 162 5.8 Processing Technologies (Methods and Effects) 167 5.9 Conclusion and Prospects for the Future 172 References 173 6 Ocimum Species 183 Deep Shikha and Piyush Kashyap 6.1 Origin and History 184 6.2 Botanical Distribution 185 6.3 Production 186 6.4 Development and Maturation 187 6.5 Nutritional Profile 188 6.6 Bioactive Compounds 189 6.7 Pharmacological Aspect 201 6.8 Health Benefits 205 6.9 Industrial Utilization 206 6.10 Conclusion and Future Prospectus 207 References 207 7 Role of Bioactive Compounds of Bauhinia variegata and their Benefits 217 Deepika Kaushik, Mukul Kumar, Ravinder Kaushik and Ashwani Kumar 7.1 Introduction 218 7.2 Origin and Distribution of Bauhinia variegata 219 7.3 Cultivation 219 7.4 Morphology 219 7.5 Composition 221 7.6 Bioactive Compound of Bauhinia variegta 222 7.7 Role and Structure of Bioactive Compounds of Bauhinia variegta 223 7.8 Traditional Uses as a Food 225 7.9 Therapeutic Value of Bauhinia variegata 238 7.10 Health Benefits of Bauhinia variegatata 255 7.11 Other Uses 257 8 Hibiscus cannabinus 267 Deep Shikha, Piyush Kashyap, Abhimanyu Thakur and Madhusudan Sharma 8.1 Origin and History 268 8.2 Botanical Description 269 8.3 Production 271 8.4 Development and Maturation 272 8.5 Nutritional Profile 273 8.6 Bioactive Compounds 278 8.7 Pharmacology 300 8.8 Health Benefits 309 8.9 Industrial Use 310 8.10 Conclusion and Future Prospectus 316 References 317 9 Dhatura: Nutritional, Phytochemical, and Pharmacological Properties 327 K.M. Manju, Ritu Sindhu, Priyanka Rohilla and Rohit Kumar 9.1 Introduction 327 9.2 Botanical Description 328 9.3 Nutritional Properties and Phytochemistry 330 9.4 Properties of Plant 332 9.5 Applications 341 9.6 Toxic Effects of Datura Plant 341 9.7 Conclusion 342 References 343 10 Bioactive Properties and Health Benefits of Amaranthus 351 Nisha Singhania, Rajesh Kumar, Pramila, Sunil Bishnoi, Aradhita B. Rayand Aastha Diwan 10.1 Introduction 352 10.2 Species 353 10.3 Plant Physiology and Environmental Factors for Growth of Amaranth 354 10.4 Edible Part and Uses 356 10.5 Nutritional Properties 356 10.6 Non-Nutritional Compounds 368 10.7 Medicinal Properties 369 10.8 Conclusion 376 References 377 11 Corchorus Species: Health Benefits and Industrial Importance 385 Kavya Ganthal, Nehal Sharma and Narinder Kaur 11.1 Introduction 385 11.2 Various Species of Corchorus 388 11.3 Future Scope 403 References 403 Index 407
£162.00
John Wiley & Sons Inc Microbiological Identification Using MaldiTof and
Book SynopsisMicrobiological Identification using MALDI-TOF and Tandem Mass Spectrometry Detailed resource presenting the capabilities of MALDI mass spectrometry (MS) to industrially and environmentally significant areas in the biosciences Microbiological Identification using MALDI-TOF and Tandem Mass Spectrometry fulfills a need to bring the key analytical technique of MALDI mass spectrometric analysis into routine practice by specialists and non-specialists, and technicians. It informs and educates established researchers on the development of techniques as applied to industrially significant areas within the biosciences. Throughout the text, the reader is presented with recognized and emerging techniques of this powerful and continually advancing field of analytical science to key areas of importance. While many scientific papers are reporting new applications of MS-based analysis in specific foci, this book is unique in that it draws together an incredibly diverse Table of ContentsList of Contributors xix Preface xxiii 1 Progress in the Microbiological Applications of Mass Spectrometry: from Electron Impact to Soft Ionization Techniques, MALDI- TOF MS and Beyond 1 Emmanuel Raptakis, Ajit J. Shah, Saheer E. Gharbia, Laila M.N. Shah, Simona Francese, Erika Y. Tranfield, Louise Duncan, and Haroun N. Shah 1.1 Introduction 1 1.1.1 Algorithms Based upon Traditional Carbohydrate Fermentation Tests 1 1.1.2 Dynamic Changes in the Chemotaxonomic Era (c. 1970–1985) through the Lens of the Genus Bacteroides 2 1.1.3 Microbial Lipids as Diagnostic Biomarkers; Resurgence of Interest in MALDI- TOF MS with Advances in Lipidomics 3 1.2 The Dawn of MALDI- TOF MS: Establishing Proof of Concept for Diagnostic Microbiology 7 1.2.1 Development of a MALDI- TOF MS Database for Human Infectious Diseases 10 1.2.2 The Dilemma with Clostridium difficile: from Intact Cells to Intracellular Proteins, MALDI- TOF MS Enters a New Phase 13 1.3 Linear/Reflectron MALDI- TOF MS to Tandem Mass Spectrometry 15 1.3.1 Tandem MALDI- TOF Mass Spectrometry 17 1.3.2 Electrospray- based Mass Analysers 18 1.3.3 Tandem Mass Spectrometry 18 1.3.4 Mass Spectrometry- based Proteomics 19 1.3.5 Case Study: LC- MS/MS of Biothreat Agents, Proteomes of Pathogens and Strain- level Tying Using Bottom- up and Top- down Proteomics 19 1.3.6 Discovery Proteomics 21 1.3.7 Targeted Proteomics 22 1.3.8 Top- down Proteomics 23 1.3.9 Targeted Protein Quantitation 24 1.4 The Application of MALDI- MS Profiling and Imaging in Microbial Forensics: Perspectives 25 1.4.1 MALDI- MSP of Microorganisms and their Products 26 1.5 Hydrogen/Deuterium Exchange Mass Spectrometry in Microbiology 27 1.6 The Omnitrap, a Novel MS Instrument that Combines Many Applications of Mass Spectrometry 29 References 35 2 Machine Learning in Analysis of Complex Flora Using Mass Spectrometry 45 Luis Mancera, Manuel J. Arroyo, Gema Méndez, Omar Belgacem, Belén Rodríguez-Sánchez, and Marina Oviaño 2.1 Introduction 45 2.2 An Improved MALDI- TOF MS Data Analysis Pipeline for the Identification of Carbapenemase- producing Klebsiella pneumoniae 47 2.2.1 Motivation 47 2.2.2 Materials and Methods 47 2.2.3 Spectra Acquisition 50 2.2.4 Results 51 2.2.5 Discussion 54 2.3 Detection of Vancomycin- Resistant Enterococcus faecium 55 2.3.1 Motivation 55 2.3.2 Materials and Methods 56 2.3.3 Results and Discussion 59 2.4 Detection of Azole Resistance in Aspergillus fumigatus Complex Isolates 59 2.4.1 Introduction 59 2.4.2 Material and Methods 60 2.4.3 Results 60 2.4.4 Discussion 64 2.5 Peak Analysis for Discrimination of Cryptococcus neoformans Species Complex and their Interspecies Hybrids 64 2.5.1 Motivation 64 2.5.2 Material and Methods 65 2.5.3 Results and Discussion 65 2.6 Conclusions 66 References 67 3 Top- down Identification of Shiga Toxin (and Other Virulence Factors and Biomarkers) from Pathogenic E. coli using MALDI- TOF/TOF Tandem Mass Spectrometry 71 Clifton K. Fagerquist 3.1 Introduction 71 3.2 Decay of Metastable Peptide and Protein Ions by the Aspartic Acid Effect 72 3.3 Energy Deposition during Desorption/Ionization by MALDI 75 3.4 Protein Denaturation and Fragmentation Efficiency of PSD 76 3.5 Arginine and its Effect on Fragment Ion Detection and MS/MS Spectral Complexity 79 3.6 Inducing Gene Expression in Wild- type Bacteria for Identification by Top- Down Proteomic Analysis 82 3.7 Top- down Proteomic Identification of B- Subunit of Shiga Toxin from STEC Strains 83 3.8 Furin- digested Shiga Toxin and Middle- down Proteomics 85 3.9 Top- down Identification of an Immunity Cognate of a Bactericidal Protein Produced from a STEC Strain 87 3.10 Lc- Maldi- Tof/tof 88 3.11 Conclusions 89 References 94 4 Liquid Atmospheric Pressure (LAP) – MALDI MS(/MS) Biomolecular Profiling for Large- scale Detection of Animal Disease and Food Adulteration and Bacterial Identification 97 Cristian Piras and Rainer Cramer 4.1 Introduction 97 4.2 Background to LAP- MALDI MS 98 4.3 Bacterial Identification by LAP- MALDI MS 102 4.4 Food Adulteration and Milk Quality Analysis by LAP- MALDI MS 105 4.5 Animal Disease Detection by LAP- MALDI MS 108 4.6 Antibiotic Resistance Detection of Microbial Consortia by Lap- Maldi Ms 110 4.7 Future Directions for LAP- MALDI MS Applications 113 References 114 5 Development of a MALDI- TOF Mass Spectrometry Test for Viruses 117 Ray K. Iles, Jason K. Iles, and Raminta Zmuidinaite 5.1 Introduction 117 5.2 Understanding the Systems Biology of the Virus and Viral Infections 120 5.3 Understanding the Nature of Viral Proteins and Molecular Biology 121 5.4 Virion Protein Solubilization and Extraction 123 5.5 Sampling and Virion Enrichment 123 5.6 Peak Identification: Quantification and Bioinformatics 125 5.7 Promise and Pitfalls of Machine Learning Bioinformatics 126 5.8 Accelerating MALDI- TOF Assay Protocol Development Using Pseudotypes/ pseudoviruses 128 5.9 Understanding the Operational Parameters of your MALDI- TOF MS 130 5.10 Understanding the Operational Requirements of the Clinical Testing Laboratory: Validation and International Accreditation 131 5.10.1 Limitation and Advantages of CLIA LDTs 131 5.11 MALDI- TOF MS Screening Test for SARS- CoV- 2s 132 5.11.1 Prepare Positive Control 132 5.11.2 Prepare Gargle- saliva Samples 132 5.11.3 Viral Particle Enrichment 132 5.11.4 Dissolution of Virions and Solubilization of Viral Proteins 133 5.11.5 Maldi- Tof Ms 133 5.12 CLIA LDT Validation of a MALDI- TOF MS Test for SARS- CoV- 2 133 5.12.1 Limit of Detection 134 5.12.2 Interfering Substances and Specificity 134 5.12.3 Clinical Performance Evaluation 136 5.12.3.1 Establishing Operational Cut- off Values 137 5.12.3.2 Direct comparison with an RT- PCR SARS- CoV- 2 test 138 5.12.3.3 Internal Sampling Quality Control 138 5.12.3.4 Daily System Quality Control 138 5.12.4 Reproducibility 139 5.12.5 Stability 139 5.12.6 Validation Disposition 141 5.12.6.1 Global Biosecurity 141 References 142 6 A MALDI- TOF MS Proteotyping Approach for Environmental, Agricultural and Food Microbiology 147 Hiroto Tamura 6.1 Introduction 147 6.2 Serotyping of Salmonella enterica Subspecies enterica 151 6.3 Discrimination of the Lineages of Listeria monocytogenes and Species of Listeria 161 6.4 Discrimination of the Bacillus cereus Group and Identification of Cereulide 167 6.5 Identification of Alkylphenol Polyethoxylate- degrading Bacteria in the Environment 171 6.6 Conclusions and Future Perspectives 173 References 175 7 Diversity, Transmission and Selective Pressure on the Proteome of Pseudomonas aeruginosa 183 Louise Duncan, Ajit J. Shah, Malcolm Ward, Radhey S. Gupta, Bashudev Rudra, Alvin Han, Ken Bruce, and Haroun N. Shah 7.1 Introduction: Diversity 183 7.1.1 P. aeruginosa: from ‘Atypical’ to Diverse 183 7.1.2 Phenotypical Diversity in Isolates from Different Environments 183 7.1.2.1 Clinical Isolates 183 7.1.2.2 Environmental Isolates 184 7.1.2.3 Veterinary Isolates 184 7.1.2.4 Comparing P. aeruginosa Phenotypical Profiles from Different Environments 184 7.1.2.5 Antibiotic Resistance in P. aeruginosa from Different Environments 186 7.1.3 The Relationship Between Phenotypical and Proteomic Diversity 186 7.1.4 Techniques and Practical Considerations for Studying Proteomic Diversity 186 7.1.5 Proteomic Diversity and MS Applications 189 7.2 Transmission 189 7.2.1 The History of P. aeruginosa Transmission 189 7.2.2 Proteomics and P. aeruginosa Transmission 191 7.2.3 The Impact of Proteomic Diversity on Transmission 191 7.3 Selective Pressures on the Proteome 192 7.3.1 Tandem MS Systems for Studying Selected Proteomes 192 7.3.2 Microenvironment Selection 192 7.3.2.1 The Human Body and CF Lung 192 7.3.2.2 The Natural Environment 192 7.3.3 Antimicrobial Selection 193 7.4 Conclusions on Studies of the Proteome 193 7.5 Genomic Studies on Pseudomonas aeruginosa Strains Revealing the Presence of Two Distinct Clades 195 7.5.1 Phylogenomic Analysis Reveals the Presence of Two Distinct Clades Within P. aeruginosa 196 7.5.2 Identification of Molecular Markers Distinguishing the Two P. aeruginosa Clades 198 7.6 Final Conclusions 201 References 201 8 Characterization of Biodegradable Polymers by MALDI- TOF MS 211 Hiroaki Sato 8.1 Introduction 211 8.2 Structural Characterization of Poly(ε- caprolactone) Using Maldi- Tof Ms 212 8.3 Biodegradation Profiles of a Terminal- modified PCL Observed by Maldi- Tof Ms 216 8.4 Bacterial Biodegradation Mechanisms of Non- ionic Surfactants 218 8.5 Advanced Molecular Characterization by High- resolution MALDI- TOF MS Combined with KMD Analysis 221 8.6 Structural Characterization of High- molecular- weight Biocopolyesters by High- resolution MALDI- TOF MS Combined with KMD Analysis 225 References 228 9 Phytoconstituents and Antimicrobiological Activity 231 Philip L. Poole and Giulia T.M. Getti 9.1 Introduction to Phytochemicals 231 9.2 An Application to Bacteriology 233 9.2.1 Allicin Leads to a Breakdown of the Cell Wall of Staphylococcus aureus 234 9.3 Applications to Parasitology 239 9.3.1 Drug Discovery 239 9.3.2 Parasite Characterization 240 9.4 A Proteomic Approach: Leishmania Invasion of Macrophages 240 9.5 Intracellular Leishmania Amastigote Spreading between Macrophages 243 9.6 Potential Virus Applications 244 Acknowledgements 246 References 246 10 Application of MALDI- TOF MS in Bioremediation and Environmental Research 255 Cristina Russo and Diane Purchase 10.1 Introduction 255 10.2 Microbial Identification: Molecular Methods and MALDI- TOF MS 257 10.2.1 PCR- based Methods 258 10.2.2 Maldi- Tof Ms 260 10.3 Combination of MALDI- TOF MS with Other Methods for the Identification of Microorganisms 261 10.4 Application of MALDI- TOF MS in Environmental and Bioremediation Studies 263 10.4.1 The Atmospheric Environment 263 10.4.2 The Aquatic Environment 263 10.4.3 The Terrestrial Environment 265 10.4.4 Bioremediation Research Applications 266 10.5 Microbial Products and Metabolite Activity 268 10.6 Challenges of Environmental Applications 270 10.7 Opportunities and Future Outlook 271 10.8 Conclusions 272 References 273 11 From Genomics to MALDI- TOF MS: Diagnostic Identification and Typing of Bacteria in Veterinary Clinical Laboratories 283 John Dustin Loy and Michael L. Clawson 11.1 Introduction 283 11.2 Genomics 284 11.3 Defining Bacterial Species Through Genomics 286 11.4 Maldi- Tof Ms 287 11.5 Combining Genomics with MALDI- TOF MS to Classify Bacteria at the Subspecies Level 290 11.6 Data Exploration with MALDI- TOF MS 292 11.7 Validation of Typing Strategies 294 11.8 Future Directions 294 References 295 12 MALDI- TOF MS Analysis for Identification of Veterinary Pathogens from Companion Animals and Livestock Species 303 Dorina Timofte, Gudrun Overesch, and Joachim Spergser 12.1 Veterinary Diagnostic Laboratories and the MALDI- TOF Clinical Microbiology Revolution 303 12.1.1 MALDI- TOF MS: Reshaping the Workflow in Clinical Microbiology 304 12.1.2 Identification of Bacterial Pathogens Directly from Clinical Specimens 305 12.1.3 Prediction of Antimicrobial Resistance 307 12.1.4 Impact in Veterinary Hospital Biosecurity and Epidemiological Surveillance 308 12.2 Identification of Campylobacter spp. and Salmonella spp. in Routine Clinical Microbiology Laboratories 309 12.2.1 General Aspects on the Importance of Species/Subspecies and Serovar Identification of Campylobacter spp. and Salmonella spp. 309 12.2.2 General Aspects on Influence of Media/Culture Environment on Bacterial Species Identification by MALDI- TOF MS 311 12.2.3 Possibilities and Limits of Identification of Campylobacter spp. by Maldi- Tof Ms 312 12.2.3.1 Thermophilic Campylobacter spp. 312 12.2.3.2 Human- hosted Campylobacter Species 313 12.2.3.3 Campylobacter spp. of Veterinary Importance 313 12.2.4 Possibilities and Limits of Identification of Salmonella spp. by Maldi- Tof Ms 314 12.3 Identification and Differentiation of Mycoplasmas Isolated from Animals 316 12.3.1 Animal Mycoplasmas at a Glance 316 12.3.2 Laboratory Diagnosis of Animal Mycoplasmas 317 12.3.3 MALDI- TOF MS for the Identification of Animal Mycoplasmas 318 References 322 13 MALDI- TOF MS: from Microbiology to Drug Discovery 333 Ruth Walker, Maria E. Dueñas, Alan Ward, and Kaveh Emami 13.1 Introduction 333 13.2 Microbial Fingerprinting 334 13.2.1 Environmental 335 13.2.1.1 Actinobacteria 335 13.2.1.2 Aquatic Microorganisms 335 13.2.2 Terrestrial Microbiology 337 13.2.3 Food and Food Safety 338 13.2.3.1 Food Storage Effect on Identification 338 13.2.3.2 Insects 339 13.3 Mammalian Cell Fingerprinting 339 13.3.1 Differentiation of Cell Lines and Response to Stimuli 339 13.3.2 Cancer Diagnostics 341 13.3.3 Biomarkers 342 13.4 Drug Discovery Using MALDI- TOF 342 13.4.1 Enzymatic Assays 343 13.4.1.1 Targeting Antibiotic Resistance Using MALDI- TOF MS Enzymatic Assays 343 13.4.2 Cellular- based Assays for Drug Discovery 344 13.4.3 Automation in Drug Discovery 345 13.4.4 Assay Multiplexing 345 13.4.5 MS Imaging in Drug Discovery 346 13.4.6 Maldi- 2 346 13.5 Limitations/Challenges, Future Outlook, and Conclusions 347 13.5.1 Sample Preparation Limitations 347 13.5.1.1 Matrix 347 13.5.1.2 Interference from Low- molecular- mass Matrix Clusters 348 13.5.1.3 Buffer Compatibility 348 13.5.1.4 TOF Mass Resolution Limitations 348 13.5.2 Data Analysis and Application of Machine Learning 348 13.6 Future Outlook/Conclusions 349 References 350 14 Rapid Pathogen Identification in a Routine Food Laboratory Using High- throughput MALDI- TOF Mass Spectrometry 359 Andrew Tomlin 14.1 Introduction 359 14.2 MALDI- TOF MS in Food Microbiology 359 14.3 Review of Existing Confirmation Techniques and Comparison to Maldi- Tof Ms 362 14.4 Strain Typing Using MALDI- TOF MS 364 14.5 Verification Trial 365 14.6 Limitations of MALDI- TOF MS Strain Typing and Future Studies 369 14.7 Listeria Detection by MALDI- TOF MS 370 14.8 Trial Sample Preparation Procedure 370 14.9 Initial Trial 374 14.10 Limit of Detection Trial 375 14.11 Method Optimization, Further Prospects, and Conclusions 376 References 379 15 Detection of Lipids in the MALDI Negative Ion Mode for Diagnostics, Food Quality Control, and Antimicrobial Resistance 381 Yi Liu, Jade Pizzato, and Gerald Larrouy-Maumus 15.1 Introduction 381 15.2 Applications of Lipids in Clinical Microbiology Diagnostics 382 15.2.1 Use of Cell Envelope Lipids for Bacterial Identification 382 15.2.2 Detection of Cell Envelope Lipids and their Modifications to Determine Bacterial Drug Susceptibility 384 15.2.3 Detection of Lipids in MALDI Negative Ion Mode for Fungal Identification 387 15.2.4 Detection of Lipids in MALDI Negative Ion Mode for Parasite Identification 387 15.2.5 Detection of Lipids in MALDI Negative Ion Mode for Virus Identification 388 15.3 Applications of the Detection of Lipids in Negative Ion Mode MALDI- MS in Cancer Studies 388 15.3.1 Lipids and MALDI Negative Ion Mode for Diagnosis of Lung Cancer 389 15.3.2 Lipids and MALDI Negative Ion Mode for the Diagnosis of Breast Cancer 390 15.3.3 Lipids and MALDI Negative Ion Mode for Diagnosis of Other Cancers 391 15.3.4 Lipids and MALDI Negative Ion Mode for Drug–Cell Interactions and Prognosis 392 15.4 Applications of the Detection of Lipids and MALDI- MS in Alzheimer’s Disease Studies 392 15.5 Applications of MALDI in Negative Ion Mode and the Detection of Lipids in Toxicology 393 15.6 Lipids and MALDI Negative Ion Mode for Food Fraud Detection 394 15.7 Conclusions and Future Development of Lipids and their Detection in MALDI in Negative Ion Mode 395 Acknowledgments 395 References 397 16 Use of MALDI- TOF MS in Water Testing Laboratories 405 Matthew Jones, Nadia Darwich, Rachel Chalmers, K. Clive Thompson, and Bjorn Nielsen 16.1 Introduction 405 16.2 Application in a Drinking Water Laboratory 408 16.2.1 Introduction 408 16.2.2 Method Validation 409 16.2.2.1 Reference Database Validation 410 16.2.2.2 Method Comparison 411 16.2.2.3 Agar Assessment 412 16.2.3 Application Within Drinking Water Laboratory 412 16.3 Application in Water Hygiene and Environmental Laboratory Testing 413 16.3.1 Introduction 413 16.3.2 Legionella Testing 414 16.3.3 Wastewater and Sewage Sludge Microbiology 415 16.3.4 Healthcare Water Testing 416 16.3.5 Investigative Analysis 417 16.3.6 Method Validation 417 16.3.6.1 Characterization of Intended Use 417 16.3.6.2 Library Assessment 418 16.3.6.3 Assessment of Variables 418 16.3.6.4 Comparison Assessment 419 16.3.6.5 Ongoing Verification 420 16.3.7 Conclusion on Suitability for Use in an Environmental Testing Laboratory 422 16.4 Potential Application for Cryptosporidium Identification 423 References 425 17 A New MALDI- TOF Database Based on MS Profiles of Isolates in Icelandic Seawaters for Rapid Identification of Marine Strains 431 Sibylle Lebert, Viggó Þór Marteinsson, and Pauline Vannier 17.1 Introduction 431 17.2 Selection and Cultivation of the Strains 432 17.3 Genotypic Identification 433 17.4 MALDI- TOF MS Data Acquisition and Database Creation 438 17.5 Verification of the Accuracy of the Home- made Database 441 17.6 Conclusions 448 Funding 448 References 449 18 MALDI- TOF MS Implementation Strategy for a Pharma Company Based upon a Network Microbial Identification Perspective 453 Lynn Johnson, Christoph Hansy, and Hilary Chan 18.1 Introduction 453 18.1.1 Microbial Identifications from a Pharmaceutical Industry Perspective 453 18.1.2 Historical Evolution 453 18.2 Regulatory Requirements/Guidance for Microbial Identification 455 18.3 Strategic Approaches to MALDI- TOF Implementation Within the Modern Microbial Methods Framework 455 18.3.1 Incorporation of MALDI- TOF into a Technical Evaluation Roadmap 455 18.3.2 Initial Implementation Planning Stage 456 18.3.2.1 Roles and Responsibilities (Global/Local, Partners/IT, Stakeholders) 456 18.3.2.2 Considerations When Selecting a Vendor/Model 457 18.3.2.3 Overall Identification Process Flow and MALDI- TOF as the Defined Application 458 18.3.2.4 Benefits of an In- house System for Pharmaceutical Companies Compared with Outsourcing 458 18.3.2.5 The Center of Excellence (CoE) Approach 460 18.3.2.6 Building a Business Case for the MALDI- TOF as a Network Strategy 461 18.3.3 Implementation Strategy – From Feasibility Studies to Global Deployment 463 18.3.3.1 Pilot Trials/Feasibility 463 18.3.3.2 Risk Assessment/Risk- based Validation Approach 463 18.3.3.3 Network Validation Approach 464 18.4 Conclusions 467 18.a Appendix 468 References 470 19 MALDI- TOF MS – Microbial Identification as Part of a Contamination Control Strategy for Regulated Industries 473 Christine E. Farrance and Prasanna D. Khot 19.1 Industry Perspective 473 19.1.1 Introduction to Regulated Industries 473 19.1.2 Contamination Control Strategy 474 19.1.3 Tracking and Trending EM Data 474 19.1.4 Drivers for Microbial Identification 476 19.1.5 Level of Resolution of an Identification 476 19.1.6 Global Harmonization 477 19.1.7 Validation Requirements for Regulated Industries 477 19.1.8 Summary 478 19.2 Technical Perspective 478 19.2.1 Identification Technologies 478 19.2.2 Phenotypic Systems 479 19.2.3 Proteotypic Systems 479 19.2.4 Genotypic Systems 479 19.2.5 The Importance of the Reference Database 480 19.2.6 MALDI- TOF in Regulated Industries 480 19.2.7 Outsourcing 480 19.2.8 Summary 481 19.3 MALDI- TOF MS Microbial Identification Workflow at a High- throughput Laboratory 481 19.3.1 MALDI- TOF MS Principles for Microbial Identification 481 19.3.2 Organism Cultivation for Microbial Identification with MALDI- TOF MS 482 19.3.3 Sample Preparation for Microbial Identification with MALDI- TOF MS 482 19.3.4 Sample Processing Workflow for Microbial Identification 482 19.3.5 Data Interpretation 483 19.3.6 Importance of a Sequence- based Secondary (or Fall- through) Identification System 484 19.4 MALDI- TOF MS Library Development and Coverage 485 19.4.1 Importance of Library Development Under a Quality System 485 19.4.2 Targeted Library Development for Gram- positive Bacteria and Water Organisms 488 19.4.2.1 Case Study 1: Impact of MALDI- TOF MS Library Coverage for Organisms of the Family Bacillaceae 488 19.4.2.2 Case Study 2: Impact of MALDI- TOF MS Library Coverage for Organisms Recovered from Water Systems 489 19.4.3 Supplemental and Custom MALDI- TOF MS Libraries 489 19.5 Comparison of MALDI- TOF MS with Other Microbial Identification Methods 490 19.6 Future Perspectives 490 References 491 20 Identification of Mold Species and Species Complex from the Food Environment Using MALDI- TOF MS 497 Victoria Girard, Valérie Monnin, Nolwenn Rolland, Jérôme Mounier, and Jean-Luc Jany 20.1 Fungal Taxonomy 497 20.1.1 Defining What Is a Fungal Species 497 20.1.2 Fungal Speciation within a Food Context 498 20.1.3 Delimiting Species 498 20.1.4 Foodborne Fungi within the Fungal Tree of Life 499 20.2 Impact of Molds in Food 500 20.2.1 Filamentous Fungi in Fermented Foods 500 20.2.2 Filamentous Fungi with Undesirable Impacts on Food Quality and Safety 500 20.3 Identification of Fungi 505 20.4 Identification of Foodborne Molds Using MALDI- TOF MS 506 20.4.1 Sample Preparation 506 20.4.2 Database Building and Performance of MALDI- TOF for Identification of Foodborne Molds 507 20.4.2.1 Database Building 507 20.4.2.2 Performance of Foodborne Mold Database 508 References 509 Index 515
£126.00
John Wiley & Sons Inc Nanotechnology in Intelligent Food Packaging
Book SynopsisNANOTECHNOLOGY IN INTELLIGENT FOOD PACKAGING This book is a state-of-the-art exposition of nanotechnology and food packaging which is undergoing rapid advancement. This book is specially designed with an emphasis on the state-of-the-art in nanotechnology and food packaging. It offers fascinating techniques for producing smart and active food packaging and also discusses its toxicity and the role that nanosensors play in detecting different pathogens in food packaging. The concluding chapters also explain recent developments concerning the incorporation of health supplements in food packaging and their future role in producing intelligent food packaging. The 16 chapters of this book were contributed by academic and industry experts working in their respective areas of research and are thoughtfully arranged in a systematic fashion that preserves the flow of knowledge. An attempt has been made to include all the information in a single monograph to better understand the topics and technTable of ContentsPreface xvii 1 Nanocomposite and Food Packaging 1Aayeena Altaf, Aamir Hussain Dar, Shafat Ahmad Khan and Anurag Singh 1.1 Introduction 2 1.2 Nanocomposites Based on Biopolymers 3 1.3 Starch Nanocrystals 7 1.4 Nanocomposites Based on Protein 8 1.5 Food Packaging Matrix with Nano Reinforcements 10 1.6 Antimicrobial Nanocomposite Based on Zinc Oxide 13 1.7 Aspects of Food Packaging 17 1.8 Conclusion 18 2 Polymer-Based Nanostructures in Nanopackaging 25Apoorva Sood, Manpreet Kaur and Reena Gupta 2.1 Introduction 26 2.2 Properties of Nanomaterials 26 2.3 Classification of Nanomaterials 29 2.4 Synthesis of Nanomaterials 32 2.5 Polymer-Based Nanostructures 38 2.6 Polymer Nanocomposites 41 2.7 Methods of Synthesis 42 2.8 Characterization of Polymeric Nanomaterials 45 2.9 Applications of Polymeric Nanomaterials 45 2.10 Conclusion 53 3 Role of Green Nanocomposites in Smart/Active Food Packaging 59Samrat K., Sharath R., Chandraprabha M. N., Hari Krishna R. and Kumaraswamy H. M. 3.1 Introduction 60 3.2 Bionanocomposite/Green Nanocomposites 60 3.3 Biopolymers 61 3.4 Nanofillers 61 3.5 Types of Green Nanocomposites 62 3.6 Green Nanocomposite Preparation Methods 63 3.7 Green Nanocomposites for Applications of Food Packaging 64 3.8 Conclusion 70 4 Polymer Nanocomposites as Engineered Food Packaging Materials 79Tugbahan Yilmaz 4.1 Introduction 79 4.2 Synthetic Polymer Nanocomposites as Engineered Food Packaging Materials 82 4.3 Natural Polymer Nanocomposites as Engineered Food Packaging Materials 92 4.4 Conclusions 99 5 Novel Nanostructured Inclusions in Biopolymers to Form Advanced Materials for Packaging in the Food Industry 113Bratin Sengupta 5.1 Introduction 114 5.2 Biopolymers and Biodegradability 115 5.3 Improvement of Biopolymers Using Nanostructured Materials 118 5.4 Concerns of Application of Nanostructured Inclusions in Biopolymers 126 5.5 Conclusions 127 6 Natural Biopolymeric Nanotechnology-Based Food Packaging Materials with Antimicrobial Properties 135Hitesh Chopra, Pooja Mittal, Rupesh K. Gautam and Mohammad Amjad Kamal 6.1 Introduction 136 6.2 Natural Antimicrobials Used in Packaging of Food Products 137 6.3 Types of Various Biopolymers with Antimicrobial Activities 139 6.4 Recent Patents in Field of Nanocomposites Food Packaging Applications 146 6.5 Types of Structures 148 6.6 Conclusion and Future Prospective 150 7 Nanotechnology in Food Packaging and Its Regulatory Aspects 157Pooja Mittal, Anjali Saharan, Ramit Kapoor, Kashish Wilson and Rupesh K. Gautam 7.1 Introduction 158 7.2 Properties of Nanomaterials 161 7.3 Nanomaterials for Food Packaging 161 7.4 Drawbacks of Existing Packaging Materials 164 7.5 Proactive Packaging 164 7.6 Mechanism of Packaging 165 7.7 Smart Packaging 169 7.8 Public Concerns and Regulations for Nanomaterials 170 7.9 Conclusion and Future Prospective 171 8 Nanoencapsulation of Probiotics in Food Packaging 175Gurleen Kaur, Rajinder Kaur, Nitu Rani and Sukhminderjit Kaur 8.1 Introduction 176 8.2 Nanomaterials for Encapsulation of Probiotics 177 8.3 Packaging Material for Nanoencapsulated Probiotics 181 8.4 Techniques Employed for Nanoencapsulation of Probiotics 185 8.5 Recent Advances in Nanoencapsulation of Probiotics 187 8.6 Advantage and Disadvantage of Nanoencapsulation of Probiotics 194 8.7 Conclusion 196 9 Incorporation of Nanocarriers as Antimicrobial Agents in Food Packaging 203Shamkumar P. Deshmukh, Krishna K. Pawar and Dattatray K. Dalavi 9.1 Introduction 204 9.2 Need of Nanocarriers as Antimicrobial Agents in Food Packaging 206 9.3 Biopolymers and Their Nanocomposites as Antimicrobial Nanocarriers for Food Packaging 207 9.4 Lipid-Based Nanocarriers 215 9.5 Nature-Inspired Nanocarriers 219 9.6 Equipment-Based Synthesis of Nanocarriers 222 9.7 Nanostructured Materials 225 9.8 Conclusions 228 10 Toxicological Effects of Nanomaterials Used in Food Packaging 235Rahul Singhal, Deepti Rawat and Bhawna Kaushik 10.1 Introduction 235 10.2 Nanomaterials Employed in Food Packaging 237 10.3 Food Packaging Functionality 238 10.4 Current Market Scenario of Nanomaterials in Packaging Industry 239 10.5 Nanoparticle Migration in Food 242 10.6 Potential Routes for Exposure of NPs 246 10.7 Toxicological Studies of NPs Used in Packaging 248 10.8 Toxicological Effects of NPs 248 10.9 Challenge and Future Prospect 260 10.10 Conclusion 261 11 Recent Advances in Micro- and Nanoencapsulation of Bioactive Compounds and Their Food Applications 271Mehdi Taib, Fouad Damiri, Yahya Bachra, Mohammed Berrada and Lahboub Bouyazza 11.1 Introduction 272 11.2 The Importance of Encapsulating Bioactive Compounds in Food Science 272 11.3 Materials Utilized in Micro and Nanoencapsulation 274 11.4 Nano and Microencapsulation Techniques 275 11.5 Application to Nanoencapsulation for ProducingBioactive Food Ingredients 278 11.6 Conclusion 284 12 Applications of Nanosensors as Pathogen Detectors in Packaged Food 291Samka Peregrine Maishu and Ngwa Celestine Atemenkeh 12.1 Background 292 12.2 Package Foods (Ways of Packaging) 293 12.3 Packaged Food Pathogens 296 12.4 Conventional Detection Techniques for Packaged Food Pathogens 298 12.5 Nanosensors as Pathogen Detectors 300 12.6 Conclusion and Future Perspectives 305 13 Nanotechnology in Packaging for Food Preservation 313Ravish Choudhary, Varun Kumar and Reena Yadav 13.1 Introduction 314 13.2 Types of Packaging 316 13.3 Types of Nanomaterial and Their Advantages in Food Packaging 319 13.4 Advantages of Nanopackaging 330 13.5 Conclusion and Future Aspect 331 14 Food Science Nanotechnologies: Implementations, Recent Developments, and Prospects 343Rokeya Akter, Tanima Bhattacharya and Md. Habibur Rahman 14.1 Introduction 344 14.2 Food Processing and Nanotechnology 346 14.3 Food Packaging for Nanotechnology 347 14.4 Intelligent Food Packaging Systems 348 14.5 Antimicrobial Properties of Nanoparticles 349 14.6 Synergistic Antimicrobial Effects of Nanoparticles 350 14.7 Nutraceutical Delivery and Bioavailability Applications 350 14.8 Food Technology and Nanoencapsulation 351 14.9 Mediated Delivery That is Specific to an Environmental Context 352 14.10 Nanomaterials in Food and Toxicological Aspects 353 14.11 Conclusion and Future Perspectives 354 15 Edible Film on Food With Smart Incorporation of Health-Friendly Supplements 361Animesh Naskar, Ivi Chakraborty, Sebak Ranjan Roy and Tanima Bhattacharya 15.1 Introduction 362 15.2 Advantages and Limitations of Edible Films 363 15.3 Consumer Acceptance 363 15.4 Functions and Property of Film Forming Substances 364 15.5 Film Forming Process 366 15.6 Film/Coat Formulation and Various Components Used in Coating 367 15.7 Applications of Edible Film/Coating 374 15.8 Use of Nanoparticles as Biopolymer and Nanolaminates 376 15.9 Conclusion 376 16 Future of Food Packaging: Intelligent Packaging 383Jincy Abraham 16.1 Introduction 384 16.2 Tools of Intelligent Packaging 386 16.3 Indicators 387 16.4 Tools for Protection Against Theft, Counterfeiting, and Tampering 407 16.5 Nanotechnology in Intelligent Packaging 409 16.6 Safety and Regulatory Issues 411 16.7 Future Trends 413 16.8 The Industrial Internet of Things 413 16.9 Real-Time Capabilities 413 16.10 Cybersecurity 414 16.11 Conclusion 414 References 414 Index 419
£153.00
John Wiley & Sons Inc Materials Science and Engineering in Food Product
Book SynopsisMaterials Science and Engineering in Food Product Development A comprehensive and accessible guide to the food development applications of cutting-edge materials science In Materials Science and Engineering in Food Product Development, distinguished researcher Wing-Fu Lai delivers an authoritative exploration of the roles played by materials science and engineering in food product development. In the book, the authors employ a practical, industrial perspective to illustrate how food products, especially functional foods, can benefit from the incorporation of materials science technologies. The book includes helpful glossary sections in each chapter, as well as important notes to highlight information useful to food manufacturers engaged in the real-world development and manufacture of foods. This book is appropriate for both early and advanced researchers interested in the design, improvement, and engineering of food products using the most current advances in food materials science. Readers will also find: A thorough overview of the most critical advances in food materials scienceComprehensive explorations of a materials science approach to food product design and discussions of techniques for the characterization of food materials and productsPractical discussions of the design and use of hydrogels, polymers, and lipid-based systems for food component encapsulationComprehensive treatments of the optimization of pasting and textural properties of food products by rheological manipulation Perfect for students, researchers, and scholars in the fields of nutritional science, materials engineering, food science, food engineering, and nanotechnology, Materials Science and Engineering in Food Product Development will also benefit food manufacturing professionals during food product development.Table of ContentsContents About the Editor xiv List of Contributors xv Preface xix List of Abbreviations xxi 1 Overview of Different Materials Used in Food Production 1 Nahed A. Abd El-Ghany and Mahmoud H. Abu Elella 1.1 Introduction 1 1.2 Advanced Materials Engineering for Food Product Development 3 1.3 Encapsulation of Food Ingredients for Food Product Development 6 1.4 Food Packaging Approach for Food Product Development 13 1.5 Hydrogel Structures and Their Efficiency in Food Development 17 1.6 Conclusion 18 Glossary 19 References 20 2 Introduction to Food Properties and Techniques in Food Product Development 27 Sara A. Al-Hafiry, Omar A. Alaboudi, Ghada A. Ahmed,and Abdulrahman M. Abdulrahman 2.1 Introduction 28 2.2 Structural Impact on Properties 28 2.3 Food Consumer Demands 31 2.4 Food Properties to Be Improved 31 2.5 Food Materials Synthesis Techniques 34 2.5.3 3D Printing 36 2.6 Concluding Remarks 37 Glossary 37 References 38 3 Basic Concepts of Bulk Rheology in Food Emulsions 41 Carlos Bengoechea, Estefanía Álvarez-Castillo, José Manuel Aguilar, and Antonio Guerrero 3.1 Introduction 41 3.2 Emulsification Process 42 3.3 Rheology of Continuous Phase 44 3.4 Rheology of Emulsions 45 3.5 Microstructure 48 3.6 Destabilization Mechanisms 49 3.7 Concluding Remarks 52 Acknowledgments 52 Glossary 52 References 54 4 Understanding Interfacial Rheology in Food Emulsions 57 Cecilio Carrera, Manuel Felix, María Luisa López-Castejón, and Víctor Manuel Pizones 4.1 Introduction 57 4.2 Interfacial Engineering of Food Emulsifiers 58 4.3 Rheological Techniques for the Characterization of Interfacial Films 60 4.4 Concluding Remarks and Future Perspectives 68 Acknowledgments 69 Glossary 69 References 69 5 Overview of Types of Materials Used for Food Component Encapsulation 73 Zahra Emam-Djomeh, Mohammad Ekrami, and Ali Ekrami 5.1 Introduction 73 5.2 Major Techniques Used for Food Component Encapsulation 74 5.3 Materials Used as Carrier Source for Encapsulation 77 5.4 Protein-Based Carriers 78 5.5 Carbohydrate-Based Carriers 80 5.6 Lipid-Based Carrier 83 5.7 Roles Played by Materials in Food Component Encapsulation 86 5.8 Improved Dispersibility 87 5.9 Addition of Inhibitors 87 5.10 Reducing the Interactions 87 5.11 Control of Light Scattering and Absorption 87 5.12 Increased Bioavailability 87 5.13 Controlled or Targeted Release 88 5.14 Conclusions 88 Glossary 88 Reference 89 6 Design and Use of Microcarriers for the Delivery of Nutraceuticals 93 Maxim V. Kiryukhin, Su Hui Lim, and Cheryl Yingxue Chia 6.1 Introduction 93 6.2 Protection Against Environmental Conditions 96 6.3 Controlled Release by Responsive Carrier Material 100 6.4 Active Enhancement of M&Ns’ Bioavailability Through Microencapsulation 107 6.5 Conclusion 112 Glossary 113 Reference 114 7 Design and Use of Lipid-Based Systems for Food Component Encapsulation 117 Kalpani Y. Perera, Dileswar Pradhan, Shubham Sharma, Amit K. Jaiswal, and Swarna Jaiswal 7.1 Introduction 117 7.2 Lipid-Based Nano Delivery Systems for Food Component Encapsulation 121 7.3 Mechanism of Action of Encapsulated Food Components 127 7.4 Encapsulation of Food Components in Lipid-Based Nano Delivery Systems 129 7.5 Conclusion and Future Perspectives 134 Glossary 134 Reference 135 8 Working Principles and Use of Gelatin for Food Component Encapsulation 139 Youssef S. Abdelaziz, Rana Tarek, Donia G. Youssef, Mariam Khaled Abdel-Latif, Habiba Mohamad Ibrahim, Sohaila Mohammed Salah Saleh, and Heba M. Fahmy 8.1 Introduction 139 8.2 Why Use Gelatin in Encapsulation Technology? 140 8.3 Techniques for Food Encapsulation Using Gelatin 142 8.4 Microencapsulation Using Gelatin 145 8.5 Nanoencapsulation of Food Components Using Gelatin 149 8.6 Mechanisms of Release of Gelatin Encapsulation Systems for Food Components 153 8.7 Conclusion 155 Glossary 156 Reference 156 9 Working Principles and Use of Chitosan for Food Component Encapsulation 161 Gastón Bravo-Arrepol, Plamen Dimitrov Katsarov, Bissera Asenova-Pilicheva, Paolina Kancheva- Lukova, Danilo Escobar-Avello, Hazel Peniche, Lorenzo García, Carlos Peniche-Covas, Philippe Michaud, Cédric Delattre, Liliam Becheran-Maron, Johanna Castaño, Maria Dolores Lopez, Oscar Valdes, Aleksandra Nesic, and Gustavo Cabrera-Barjas 9.1 Introduction 162 9.2 Encapsulation Technologies 164 9.3 Agent Encapsulation Using Chitosan as Polymeric Matrix 166 9.4 Potential Applications of Microencapsulated Materials in Food Packaging 191 9.5 Market for Chitosan Uses in Food Application 199 9.6 Concluding Remarks 200 Glossary 201 Reference 201 10 Design and Use of Hydrogels for Food Component Encapsulation 209 Zahra Emam-Djomeh, Mohammad Ekrami, and Ali Ekrami 10.1 Introduction 209 10.2 Classification of Hydrogels 212 10.3 Hydrogel Formation 214 10.4 Recent Advances in Hydrogel Development 214 10.5 Retention and Release Properties 216 10.6 Applications of Hydrogels in Food Production 217 10.7 Conclusions 221 Glossary 221 References 222 11 Optimization of Pasting and Textural Properties of Food Products 227 Filopateer Nasser, Salma Hossam Mohamed, Mariam Ashraf Fouad Khalil, Omaima Ali Mostafa Mohammed, Radwa Magdy Mohamed, and Heba Mohamed Fahmy 11.1 Introduction 227 11.2 Physical and Chemical Modification of Starch Structures 228 11.3 Manipulation of Starch Properties Using Hydrocolloids 232 11.4 Enzymatic Modification of Starch Properties 234 11.5 Use of Starch Modification in Food Production 235 11.6 Concluding Remarks 236 Glossary 237 References 237 12 Phase Change Materials in Food Dryers 243 Hasibul Hasan Himel, Sabit Hasan, Nufile Uddin Ahmed, and Mahadi Hasan Masud 12.1 Introduction 243 12.2 Phase Change Materials and Their Properties 244 12.3 Potential of PCMs in Food Drying 250 12.4 Current Status of Utilizing PCMs for Food Drying 252 12.5 Recommendation for Optimization of PCM for Use in Solar Dryers 255 12.6 Concluding Remarks and Future Perspectives 257 Glossary 258 References 258 13 Multi-Functional Properties of Halloysite Nano-Clays in Food Safety and Security 261 Satwik Majumder and Saji George 13.1 Overview 261 13.2 Halloysite Nanotubes (HNT): A Versatile Natural Nanomaterial 263 13.3 Toxicity and Migration Associated with Halloysite 270 13.4 Future Perspectives 271 13.5 Conclusive Remarks 272 Glossary 273 References 273 14 Electrospinning Technologies for Encapsulation of Probiotics 279 Seethu, B.G., Aditya Sukumar P., Devikrishna P., Harshvardhan Kulkarni, Magdaline Eljeeva Emerald, Chandram Grover, and Heartwin A. Pushpadass 14.1 Introduction 279 14.2 Major Methods for Encapsulation of Probiotics 281 14.3 Conclusions 298 Glossary 299 References 299 15 Three-Dimensional Printing in Food Manufacturing and Mechanics 303 Stefania Chirico Scheele, Martin Binks, and Paul F. Egan 15.1 Introduction 303 15.2 Print Process 306 15.3 Material Preparation 308 15.4 Printing Parameters 309 15.5 Food Mechanics 311 15.6 Consumer Validation 314 15.7 Concluding Remarks 315 Glossary 316 References 316 16 Techniques for Characterization of Food-Packaging Materials 321 Shubham Sharma, Kalpani Y. Perera, Dileswar Pradhan, Brendan Duffy, Amit K. Jaiswal, and Swarna Jaiswal 16.1 Introduction 321 16.2 Characterization of Food-Packaging Material 323 16.3 Conclusion and Prospects 336 Glossary 337 References 337 17 Development and Use of Edible Materials for Food Protection and Packaging 341 Lin Lin, Mohamed Abdel-Shafi Abdel-Samie, Sherif M. Abed, and Haiying Cui 17.1 Introduction 341 17.2 Antimicrobial and Antioxidant Active Agents Used in the Field of Food Packaging 343 17.3 Carriers Applied in Food-Packaging Applications 345 17.4 Methods of Fabrication or the Enhancement Activity of Edible Packaging Films 349 17.5 Controlled Release of the BACs from Encapsulation Materials 353 17.6 Conclusion 353 Glossary 354 References 355 18 Packaging Design as Part of a Holistic Food Quality Assurance Process 361 Agnieszka S. Cholewa-Wójcik and Agnieszka K. Kawecka 18.1 Introduction 361 18.2 Essence of Quality-Oriented Product Designing and Its Role in Quality Assurance 362 18.3 Quality-Oriented Product-Designing Process 362 18.4 Integrated Product Designing as the New Approach to Packaged Product Designing Process 365 18.5 Methods to Aid Shaping of Quality of Products Being Designed 370 18.6 Concluding Remarks and Future Perspectives 371 Acknowledgments 372 Glossary 372 References 372 19 Determinants of the Quality and Safety of Food Packaging 377 Agnieszka K. Kawecka and Agnieszka S. Cholewa-Wójcik 19.1 Introduction 377 19.2 Literature Review Concerning Food-Packaging Safety 378 19.3 Packaging Safety Hazards 379 19.4 Legal Requirements for the Safety of Food Packaging 381 19.5 The Process of Ensuring Security – the Supply Chain 384 19.6 Packaging Safety Features and Attributes of Food Packaging 386 19.7 Concluding Remarks 388 Acknowledgments 388 Glossary 388 References 389 Index 393
£126.00
John Wiley & Sons Inc Role of Microbes in Industrial Products and
Book SynopsisROLE OF MICROBES IN INDUSTRIAL PRODUCTS AND PROCESSES The book covers recent breakthroughs and highlights the major role microbes play in industrial products and processes. With the advent of industrial biotechnology, microbes became popular as cell factories, and with the recent advancements in recombinant DNA technology, the application of microorganisms in various sectors has increased enormously for the development of various processes and products. Role of Microbes in Industrial Products and Processes covers recent breakthroughs and highlights the major role microbes play in industrial products and processes. It mainly focuses on the bio-refinery concept where bio-energy production and wastewater treatment are done simultaneously using micro-algae. Additionally, this book describes the role of microbes involved in the production of various enzymes, organic acids, and bio-polymers. It also provides detailed insight on modeling and simulation of bioprocess for the production of suga
£153.00
John Wiley & Sons Inc Oils and Fats as Raw Materials for Industry
Book SynopsisOILS AND FATS AS RAW MATERIALS FOR INDUSTRY This new volume emphasizes the sources, structure, chemistry, treatment, modification, and potential applications for oils and fats as raw materials in industry. Oils and fats can be used as raw materials in many industries including food and agriculture, as surfactants in laundry detergents and cosmetics, as well as in pharmaceuticals. Moreover, unsaturated vegetable oils are also suitable to form epoxides and hence, are important in the manufacturing of paints and adhesives. Limited sources of petrochemicals and their harmful effects on health and the environment also promote the use of naturally occurring oils and fats as biodiesel after some chemical modification. Moreover, a vast variety of nonedible oils that can be obtained from easily cultivable plant species are receiving great interest from researchers because they not only yield cost-effective products but are also proven as a substrate to promote sustainable research. In thiTable of ContentsPreface xvii 1 Oil and Fats as Raw Materials for Industry: An Introduction 1Sonali Kesarwani, Mukul Kumar, Divya Bajpai Tripathy, Anjali Gupta and Suneet Kumar 1.1 Introduction 2 1.2 Classification of Oils and Fats 4 1.3 Chronology of the Development of Oil and Fats for Industry 11 1.4 Chemistry of Oil and Fats 14 1.5 Properties of Oils and Fats 15 1.6 Applications of Oils and Fats 18 1.7 Challenges 21 1.8 Conclusion 24 2 Biotechnology for Oil and Fat 33Nabya Nehal and Priyanka Singh 2.1 Introduction 34 2.2 Review of Literature 36 2.3 Conclusion 55 3 Sustainability of Oils and Fats Over Petrochemicals 65Swati Chaudhary 3.1 Oils and Fats as Renewable Feedstock 66 3.2 Petrochemicals as Non-Renewable Feedstock 70 3.3 Oils and Fats vs. Petrochemicals 75 3.4 Trends in the Oleochemical Industry 76 3.5 Oleochemicals & Petrochemicals Surfactants 77 3.6 Oleochemicals-Based Products 79 3.7 Conclusion 79 4 Oils and Fats in the Food Industry 85Garima Gupta and Priyanka Singh 4.1 Introduction 86 4.2 Sources of Oils and Fats 88 4.3 Methods of Extraction 92 4.4 Constituents of Fat and Oil 96 4.5 Physical Properties 99 4.6 Chemical Characteristics 102 4.7 Nutritional Properties 104 4.8 Applications 106 5 Oils and Fats as an Environmentally Benign Raw Material for Surfactants and Laundry Detergents 117Subhalaxmi Pradhan, Chandu S. Madankar and Paridhi 5.1 Introduction 118 5.2 History of Laundry Detergent 118 5.3 Raw Materials in Laundry and Detergents 121 5.4 Types of Surfactants 122 5.5 Synthesis Methods 128 5.6 Market Analysis 135 5.7 Environmental Safety 137 5.8 Future Trends 138 5.9 Conclusion 139 6 Oils and Fats as Raw Materials for Cosmetics 145Shilpi Bhatnagar and Shilpi Khurana 6.1 Introduction 145 6.2 Theoretical Aspects of Emollients 146 6.3 Commonly Used Vegetable/Plant Derived Oils 148 6.4 Lanolin and Its Derivatives 151 6.5 Lecithin 152 6.6 Essential Oils 153 6.7 Use of Waxes in Cosmetics 155 6.8 Use of Oils, Fats and Waxes in Lipsticks and Eye Care Products 157 6.9 Cleansing Creams 161 6.10 Oil Shampoo 163 6.11 Conclusion 163 7 Oil and Fats as Raw Materials for Coating Industries 169Monika Kaurav, Kantrol Sahu, Ramakant Joshi, Wasim Akram, Pooja Mongia Raj, Rakesh Raj and Sunita Minz 7.1 Introduction 170 7.2 Vegetable Origin Oils and Fats 171 7.3 Animal Origin Fats & Oils 178 7.4 Various Applications of Oils and Fats in Coating Industry 181 7.5 Regulatory and Safety Issues of Vegetable Oil and Fats Coatings 183 7.6 Patents of Oils and Fats Used for Industrial Coating 184 7.7 Recent Approaches for Coating 185 7.8 Conclusions 189 8 Oil and Fats as Raw Materials as Corrosion Inhibitors and Biolubricants 195Anurag Bapat, Subhalaxmi Pradhan and Chandu S. Madankar 8.1 Introduction 196 8.2 Biolubricants@from Vegetable Oil 205 8.3 Renewable Feedstocks Available in India 216 8.4 Ester-Based Lubricants from Vegetable Origin Oils (Edible and Non-Edible Oil) 219 8.5 Epoxide-Based Lubricants from Vegetable Oil 220 8.6 Conclusion 222 9 Vegetable Oils in Pharmaceutical Industry 231Shruti Mishra, Shubhankar Anand and Achyut Pandey 9.1 Introduction 232 9.2 Olive Oil 233 9.3 Rice Bran Oil 238 9.4 Soybean Oil 240 9.5 Walnut Oil 242 9.6 Sesame Oil 243 9.7 Peanut Oil 246 9.8 Sunflower Oil 248 9.9 Conclusions 251 10 Non-Edible Oils as Biodiesel 267Shilpi Khurana and Shilpi Bhatnagar 10.1 Introduction 267 10.2 Tussle Between Food and Fuel 269 10.3 Non-Edible Oils as Potential Feedstock 270 10.4 Non-Edible Plants as Raw Material 271 10.5 Properties of Non-Edible Oils for Biodiesel as a Future Fuel 276 10.6 Extraction of Non-Edible Oil 278 10.7 Emissions Characteristics of Non-Edible Vegetable Oils 280 10.8 Conclusion 280 11 Ecological and Economic Aspects of Oil and Fats 285Shivang Dhoundiyal, Awaneet Kaur and Md. Aftab Alam 11.1 Introduction 285 11.2 Disparities in Price 290 11.3 Environmental Effects of Oils 293 11.4 Global Trends 298 12 Oils and Fats: Raw Materials for Corrosion Inhibitor 307Smriti Dwivedi and Anita Kushwaha 12.1 Introduction 307 12.2 Essential Oil as Corrosion Inhibitor 309 12.3 Fatty Acids as Corrosion Inhibitors 314 12.4 Copper Corrosion Inhibitor by Fatty Amidine 315 12.5 Palm Oil as Corrosion Inhibitor 315 12.6 Flower Extracts as Corrosion Inhibitor 316 12.7 Fatty Amide Derivatives Used as Corrosion Inhibition of Carbon Steel 317 12.8 Unsaturated Fatty Acid Derived by Microalgae as Corrosion Inhibitor 317 12.9 Other Green Inhibitors 318 12.10 Conclusions 319 References 320 Index 333
£140.40
McGraw-Hill Education Steel Concrete and Composite Design of Tall and
Book SynopsisTall and supertall building design methods and applicationsâthoroughly revised for the latest advancesThis fully updated guide clearly explains the structural systems, codes, and calculations used in the design and construction of tall and supertall buildings. This new edition has been reconceived to provide more practical and applied information to help you understand the design procedures and code provisions involved. The book discusses the latest versions of relevant codes and standards, including the 2018 IBC, ASCE 7-16, ACI 318, and AISC 360 & 341.Steel, Concrete, and Composite Design of Tall and Supertall Buildings, Third Edition addresses the latest materials, technologies, and construction techniques being used in the field, including the use of BIM for tall buildings and monitoring methods for building movement. Readers will get brand-new case studies encompassing a variety of tall and supertall buildings from North America, Asia, and Euro
£86.39
John Wiley & Sons Inc Biomimicry Materials and Applications
Book SynopsisBIOMIMICRY MATERIALS AND APPLICATIONS Since the concept of biomimetics was first developed in 1950, the practical applications of biomimetic materials have created a revolution from biotechnology to medicine and most industrial domains, and are the future of commercial work in nearly all fields. Biomimetic materials are basically synthetic materials or man-made materials which can mimic or copy the properties of natural materials. Scientists have created a revolution by mimicking natural polymers through semi-synthetic or fully synthetic methods. There are different methods to mimic a material, such as copying form and shape, copying the process, and finally mimicking at an ecosystem level. This book comprises a detailed description of the materials used to synthesize and form biomimetic materials. It describes the materials in a way that will be far more convenient and easier to understand. The editors have compiled the book so that it can be used in all areas of research, and it showTable of ContentsPreface xi 1 Biomimetic Optics 1Priya Karmakar, Kripasindhu Karmakar, Sk. Mehebub Rahaman, Sandip Kundu, Subhendu Dhibar, Ujjwal Mandal and Bidyut Saha 1.1 Introduction 1 1.2 What is Biomimicry? 4 1.3 Step-by-Step Approach for Designing Biomimetic Optical Materials From Bioorganisms 6 1.3.1 Optical Structure Analysis in Biology 6 1.3.2 The Analysis of Optical Characteristics in Biological Materials 8 1.3.3 Optical Biomimetic Materials Fabrication Strategies 9 1.4 Biological Visual Systems--Animal and Human 10 1.4.1 Simple Eyes 10 1.4.2 Compound Eyes 12 1.4.2.1 Appositional Compound Eyes 12 1.4.2.2 Superpositional Compound Eyes 13 1.5. The Eye’s Optical and Neural Components 15 1.5.1 Cornea 15 1.5.2 Pupils 16 1.5.3 Lens 17 1.5.4 Retina 19 1.6 Application of Biomimetic Optics 20 1.6.1 Hybrid Optical Components are Meant to Resemble the Optical System of the Eye 20 1.6.2 Microlens With a Dual-Facet Design 21 1.6.3 Fiber Optics in Nature 23 1.6.4 Bioinspired Optical Device 24 1.6.4.1 Tunable Lenses Inspired by Nature 24 1.6.4.2 X-Ray Telescope 24 1.6.4.3 Bioinspired Sensors 25 1.7 Conclusion 26 2 Mimicry at the Material-Cell Interface 35Rajiv Kumar and Neelam Chhillar 2.1 Cell and Material Interfaces 36 2.2 Host-Microbe Interactions and Interface Mimicry 38 2.3 Alterations in Characteristics and Mimicking of Extracellular Matrix 41 2.4 Mimicry, Manipulations, and Cell Behavior 43 2.5 Single-Cell Transcriptomics and Involution Mimicry 44 2.6 Molecular Mimicry and Disturbed Immune Surveillance 46 2.7 Surface Chemistry, and Cell-Material Interface 48 2.8 Cell Biology and Surface Topography 50 2.9 3D Extracellular Matrix Mimics and Materials Chemistry 51 2.10 Microbe Interactions and Interface Mimicry 53 2.11 Hijacking of the Host Interactome, and Imperfect Mimicry 56 2.12 Vasculogenic Mimicry and Tumor Angiogenesis 65 3 Bacteriocins of Lactic Acid Bacteria as a Potential Antimicrobial Peptide 83Ajay Kumar, Rohit Ruhal and Rashmi Kataria 3.1 Introduction 83 3.2 Bacteriocins 85 3.3 Lactic Acid Bacteria 86 3.4 Classification of LAB Bacteriocins 87 3.4.1 Class I Bacteriocins or Lantibiotics 87 3.4.1.1 Class Ia 87 3.4.1.2 Class Ib 88 3.4.1.3 Class Ic or Antibiotics 88 3.4.1.4 Class Id 88 3.4.1.5 Class Ie 88 3.4.1.6 Class If 89 3.4.2 Class II Bacteriocins 89 3.4.3 Class III Bacteriocins 89 3.5 Mechanisms of LAB Bacteriocins to Inactivate Microbial Growth 89 3.5.1 Action on Cell Wall Synthesis 90 3.5.1.1 Pore Formation 90 3.5.1.2 Inhibition of Peptidoglycan Synthesis 91 3.5.2 Obstruction in Replication and Transcription 92 3.5.3 Inhibition in Protein Synthesis 92 3.5.4 Disruption of Membrane Structure 92 3.5.5 Disruption in Septum Formation 93 3.6 Antimicrobial Properties of LAB Bacteriocins 93 3.6.1 Antiviral Activity 93 3.6.2 Antibacterial Properties 94 3.6.3 Antifungal Activity 94 3.7 Applications 95 3.7.1 Bacteriocins in Packaging Film 95 3.7.2 Potential Use as Biopreservatives 95 3.7.3 Bacteriocins as Antibiofilm 95 3.7.4 Applications in Foods Industries 96 3.8 Conclusion 96 4 A Review on Emergence of a Nature-Inspired Polymer-Polydopamine in Biomedicine 105Lakshmi Nidhi Rao, Arun M. Isloor, Aditya Shetty and Pallavi K.C. 4.1 Introduction 106 4.2 Structure of PDA 107 4.3 Polydopamine as a Biomedical Material 108 4.4 Polydopamine as a Biomedical Adhesive 109 4.5 Availability of Polydopamine and its Biomedical Applications 110 4.6 Polydopamine Coatings of Nanomaterials 111 4.7 Polydopamine-Based Capsules 112 4.8 Polydopamine Nanoparticles and Nanocomposites 112 4.9 Polydopamine Properties 113 4.9.1 Cell Adhesion 113 4.9.2 Mineralization and Bone Regeneration 114 4.9.3 Blood Compatibility 117 4.9.4 Antimicrobial Effect 117 4.10 Dental Applications 118 4.11 Dental Adhesives 118 4.11.1 Tooth Mineralization 119 4.12 Conclusions 120 5 Application of Electroactive Polymer Actuator: A Brief Review 127Dillip Kumar Biswal 5.1 Introduction 128 5.2 Chronological Summary of the Evolution of EAP Actuator 128 5.3 Electroactive Polymer Actuators Groups 129 5.3.1 Ionic Electroactive Polymers 130 5.3.2 Electronic Electroactive Polymers 131 5.4 Application of Electroactive Polymer Actuators 132 5.4.1 Soft Robotic Actuator Applications 133 5.4.2 Underwater Applications 133 5.4.3 Aerospace Applications 134 5.4.4 Energy Harvesting Applications 135 5.4.5 Healthcare and Biomedical Applications 135 5.4.6 Shape Memory Polymer Applications 136 5.4.7 Smart Window Applications 137 5.4.8 Wearable Electronics Applications 137 5.5 Conclusion 138 6 Bioinspired Hydrogels Through 3D Bioprinting 147Farnaz Niknam, Vahid Rahmanian, Seyyed Mojtaba Mousavi, Seyyed Alireza Hashemi, Aziz Babapoor and Chin Wei Lai 6.1 Introduction 148 6.2 Bioinspiration 150 6.3 3D Bioprinting 151 6.3.1 Inkjet Bioprinting 151 6.3.2 Extrusion Printing 154 6.4 Hydrogels as Inks for 3D Bioprinting 156 6.5 Polymers Used for Bioinspired Hydrogels 157 6.5.1 Alginate 157 6.5.2 Cellulose 159 6.5.3 Chitosan 161 6.5.4 Fibrin 161 6.5.5 Silk 163 6.6 Conclusion 164 7 Electroactive Polymer Actuator-Based Refreshable Braille Displays 169Pooja Mohapatra, Lipsa Shubhadarshinee and Aruna Kumar Barick 7.1 Introduction 170 7.2 Refreshable Braille Display 172 7.3 Electroactive Polymers 173 7.4 EAP-Based Braille Actuator 175 7.5 Conclusions 177 8 Materials Biomimicked From Natural Ones 179Carlo Santulli 8.1 Introduction 179 8.2 Damage-Tolerant Ceramics 182 8.2.1 General Considerations 182 8.2.2 Nacre 183 8.2.3 Tooth Enamel 185 8.3 Protein-Based Materials With Tailored Properties 185 8.3.1 General Considerations 185 8.3.2 Dragline Silk 186 8.3.3 Fish Scales 187 8.4 Polymers Fit for Easy Junction/Self-Cleaning 188 8.4.1 General Considerations 188 8.4.2 Gecko for No-Glue Adhesion 189 8.4.3 Blue Mussel for Development of Specific Adhesives 190 8.4.4 Shark Skin for Functional Surfaces 190 8.5 Recent Prototype Developments on Materials Biomimicked from Natural Ones 191 8.6 Conclusions 192 9 Novel Biomimicry Techniques for Detecting Plant Diseases 199Adeshina Fadeyibi and Mary Fadeyibi 9.1 Introduction 200 9.2 Preharvest Biomimicry Detection Techniques 201 9.2.1 Remote Sensing Technique Approach 201 9.2.2 Machine Vision and Fuzzy Logic Approaches 202 9.2.3 Robotics Approach 203 9.3 Postharvest Biomimicry Detection Techniques 204 9.3.1 Neural Network Approach 204 9.3.2 Support Vector Machine Approach 206 9.4 Prospects and Conclusion 208 10 Biomimicry for Sustainable Structural Mimicking in Textile Industries 215Mira Chares Subash and Muthiah Perumalsamy 10.1 Introduction 215 10.2 Examples of Biomimicry Fabrics 216 10.2.1 Algae Fiber 216 10.2.2 Mushroom Leather 217 10.2.3 Fabric Mimics 219 10.2.4 Bacterial Pigments 219 10.2.5 Orange Fabrics 219 10.2.6 Protein Couture 221 10.2.7 Natural Fiber Fabrics 221 10.3 Fabric Production from Biomaterial 223 10.3.1 Soy Fabric 223 10.3.2 Cotton Fabric 224 10.3.3 Supima Fabric 224 10.3.4 Pima Fabric 225 10.3.5 Wool Fabric 226 10.3.6 Hemp Fabric 227 10.4 Current Methods of Biomimicry Materials 228 10.5 Future of Biomimicry 229 10.6 Benefits of Biomimicry 229 10.6.1 Sustainability 229 10.6.2 Perform Welt 229 10.6.3 Energy Saving 230 10.6.4 Cut-Resistant Costs 230 10.6.5 Eliminate Waste 230 10.6.6 New Product Derivation 230 10.6.7 Disrupt Traditional Thinking 230 10.6.8 Adaptability to Climate 231 10.6.9 Nourish Curiosity 231 10.6.10 Leverage Collaboration 231 10.7 Conclusion 231 References 232 Index 235
£140.40
John Wiley & Sons Inc Transcriptional Regulation of Flesh Fruit
Book SynopsisTranscriptional Regulation of Flesh Fruit Development and Ripening Understand the critical factors in fruit development with this up-to-date guide Fruit is an essential part of the human diet, and fruit production has never been more central to global human nutrition and public health. Fruit ripening is a vital stage in the emergence of nutrient-rich food, and modifications to the fruit development process can impact flavor, texture, nutritional value, and more. The process of ripening is controlled by nearly sixty transcription factors (TFs), a proper understanding of which is therefore crucial to regulating fruit quality and competing in the global food marketplace. Transcriptional Regulation of Flesh Fruit Development and Ripening is a comprehensive introduction to recent developments in the study of fruit ripening, focusing especially on these transcription factors. It details the major families of transcription factors and their properties, as well as providing methods for screeniTable of ContentsPreface x 1 Overview of the Transcriptional Regulation of Flesh Fruit Development and Ripening 1 1.1 Introduction 1 1.2 TFs Regulate Fruit Development and Ripening 1 1.2.1 Overview 1 1.2.2 Model Plant Species for Studying the Transcriptional Regulation of Fruit Development and Ripening 2 1.2.3 TF Families that Regulate Fruit Development and Ripening 3 1.2.3.1 MADS-box Family Regulates Fruit Ripening 3 1.2.3.2 NAC Family Regulates Fruit Ripening 5 1.2.3.3 ERF Family Regulates Fruit Ripening 6 1.2.3.4 ARF Family Regulates Fruit Ripening 8 1.2.3.5 SBP Family Regulates Fruit Ripening 8 1.2.3.6 HD-ZIP Family Regulates Fruit Ripening 9 1.2.4 Relationships among TF Families 9 1.3 Methods of Screening and Identifying Ripening-related TFs 10 References 11 2 Screening Method for the Identification and Characterization of Transcription Factors Regulating Flesh Fruit Development and Ripening 17 2.1 Bioinformatics 17 2.1.1 Overview 17 2.1.1.1 Introduction 17 2.1.1.2 Stages of Development 18 2.1.1.3 Brief Introduction to the Development of Bioinformatics 19 2.1.1.4 Research Direction 20 2.1.1.5 Technical Methods 23 2.1.1.6 Others 24 2.1.2 Expression Profile Analysis 24 2.1.2.1 Gene Expression Profile 24 2.1.2.2 Acquisition of Gene Expression Profile 25 2.2 Virus-induced Gene Silencing (VIGS) 26 2.2.1 The Basic Principle of VIGS 27 2.2.2 The Methods for VIGS 28 2.2.2.1 Types of VIGS Viral Vectors 28 2.2.2.2 Infection Methods for VIGS 30 2.2.3 Application of VIGS 31 2.3 Transgenic Technology 33 2.3.1 Plant Transgenic Technology 33 2.3.1.1 Concept 33 2.3.1.2 Methods 33 2.3.2 Application of Transgenic Technology 36 2.3.2.1 Transcription Factors and Transgenic Technology 36 2.3.2.2 Application of Transgenic Technology in Climacteric Fruits 37 2.3.2.3 Application of Transgenic Technology in Nonclimacteric Fruits 39 2.3.2.4 Application of Transgenic Technology in Other Plants 39 2.3.3 Development of New Technologies 40 2.4 Gene Editing 40 2.4.1 Concept 40 2.4.2 Principles 41 2.4.2.1 ZFN Technology 41 2.4.2.2 TALEN Technology 42 2.4.2.3 CRISPR-Cas System 43 2.4.3 Methods 45 2.4.3.1 Construction of ZFN Expression Vectors 45 2.4.3.2 Construction of TALEN Expression Vectors 45 2.4.3.3 Construction of CRISPR/Cas9 Expression Vector 49 2.4.4 Application 51 References 53 3 MADS-box Transcription Factors Necessary for Flesh Fruit Development and Ripening 62 3.1 Introduction 62 3.2 MADS-box Gene Classification 62 3.3 Motifs of the MADS-box Genes 63 3.4 Functional Form of MADS-box Proteins 65 3.5 Functions of the MADS-box Family 65 3.5.1 The Role of MADS-box Genes in Flower Development 65 3.5.1.1 Control of Flowering Time 69 3.5.1.2 Regulation of Ovule Development 69 3.5.2 The Regulation of Fruit Ripening by MADS-box Transcription Factors 71 3.5.2.1 The Effect of Tomato RIN on Fruit Ripening 72 3.5.2.2 The Effect of FRUITFULL on Tomato Fruit Ripening 78 3.5.2.3 The Effect of Tomato TAGL1 on Fruit Ripening 81 3.5.2.4 The Effect of Tomato MADS1 on Fruit Ripening 81 3.5.2.5 The Role of Other Tomato MADS-box Transcription Factors in Formation of the Pedicel Abscission Zone (AZ) and Fruit Ripening 81 3.5.2.6 Studies of the Regulation of MADS-box Transcription Factors in Ripening in Banana 83 3.5.2.7 Studies of the Regulation of MADS-box Transcription Factors in Ripening in Other Fruit 85 References 85 4 NAC Transcription Factor Family Regulation of Flesh Fruit Development and Ripening 92 4.1 Introduction 92 4.2 Overview of the Plant NAC Family TFs 92 4.2.1 Origin of the NAC Family TFs 93 4.2.2 Classification of NAC TFs 95 4.2.3 Localization of the NAC TFs 95 4.2.4 Structure of NAC TFs and the Mechanism of Their Functions 96 4.2.5 Regulation of the Expression of NAC TFs 99 4.2.5.1 The Regulation of NAC Gene Expression by miRNA 99 4.2.5.2 Regulation of NAC TFs at the Protein Level 100 4.3 NAC Family TFs Regulate Fruit Ripening 100 4.3.1 NAC Family TFs Regulate Tomato Fruit Ripening 100 4.3.2 CpNAC1/3 Is Involved in Regulating the Ripening of Papaya 107 4.3.3 NAC Family TFs Are Involved in Fruit Deastringency in Persimmon 107 4.3.4 NAC Family Transcription Factors Regulate Peach Fruit Ripening 108 4.3.5 NAC Family Transcription Factors Regulate the Ripening of Kiwifruit 109 4.3.6 EjNAC1 Regulates Lignin Biosynthesis in Loquat Fruit 110 4.3.7 NAC Family TFs Are Involved in Climacteric Fruit Ripening in Pyrus Ussuriensis 111 4.3.8 The Function of NAC Family TFs in Banana Fruit Ripening 111 4.3.9 FcNAC1 and FaRIF Are Involved in Pectin Metabolism during Ripening of Strawberry Fruit 114 4.3.10 The Interaction between LcNAC13 and LcR1MYB1 Regulates Anthocyanin Biosynthesis in Litchi Fruit 114 4.3.11 The Role of NAC Family Transcription Factors in Apple Fruit Ripening 114 References 115 5 Role of ERF Transcription Factors in Flesh Fruit Development and Ripening 122 5.1 Summary of the ERF Family 122 5.2 Biological Functions of the ERF Family 125 5.3 The Roles of ERF Family TFs in Fruit Ripening 130 References 134 6 The ARF Side of the Fruit Tuning of Flesh Fruit Development and Ripening 138 6.1 Introduction 138 6.2 Overview of the ARF Family 138 6.2.1 Discovery of ARF 138 6.2.2 Structure of ARF Proteins 140 6.2.3 Gene Structure and Phylogenetic Analysis of ARFs 141 6.2.4 Expression Patterns of ARF Genes 144 6.3 Biological Functions of the ARF Family 145 6.3.1 Current Research Status of ARFs in Arabidopsis thaliana 146 6.3.2 Current Research Status of ARFs in Rice (Oryza Sativa) 148 6.3.3 Current Research Status of ARFs in Tomato (Solanum lycopersicum) 149 6.4 Mechanism of ARF Function 150 6.4.1 ARF–Aux/IAA Binding Mechanism 150 6.4.2 Mechanism for the Role of ARFs in Auxin Signal Transduction 151 6.5 Research Progress on the Function of ARF Family Transcription Factors in Plants 151 6.5.1 Research Progress on the Role of ARF Family Transcription Factors in Tomato Fruit Development and Ripening 153 6.5.2 Research Progress of ARF Family Transcription Factors in Fruits of Other Species 159 References 162 7 HD-ZIPs Are Involved in Flesh Fruit Development and Ripening 169 7.1 Introduction 169 7.2 Structure of HD-Zip Genes 169 7.3 HD-Zip Gene Classification 170 7.4 Mechanism of Action of HD-Zip Transcription Factors 172 7.5 Functions of the HD-Zip Family 172 7.5.1 HD-Zip Class I 172 7.5.2 HD-zip Class II 177 7.5.3 HD-zip Class III 178 7.5.4 HD-zip Class IV 180 7.6 Prospects 181 References 182 8 SBP-box Transcription Factors and Flesh Fruit Development and Ripening 188 8.1 Research Progress on Plant SBP Family Transcription Factors 188 8.1.1 Origin and Development of the SBP-box Gene Family 189 8.1.2 Structure of SBP Family Transcription Factors 189 8.1.3 Evolutionary Analysis of the SBP Gene Family 191 8.1.4 Regulation of the SBP-box Gene Family 192 8.1.5 Biological Functions of the SBP-box Gene Family 194 8.1.5.1 Role of SBP Transcription Factors in Environmental Signal Response 194 8.1.5.2 Roles of SBP Transcription Factors in Flower Formation and Development 195 8.1.5.3 Roles of SBP Transcription Factors in Leaf Morphogenesis 197 8.1.5.4 Other Roles of SBP Transcription Factors 199 8.2 Research Progress on LeSPL-CNR 200 8.2.1 Discovery and Development of LeSPL-CNR 200 8.2.2 Biological Functions of LeSPL-CNR with Cnr Mutant 201 8.2.3 LeSPL-CNR and Epigenetic Regulation 201 8.2.4 Reevaluated the CNR Function by CRISPR/Cas9 Genome Mutation Technique 203 8.2.5 Regulatory Networks between Transcription Factors 204 8.3 Prospects 205 References 206 Index 211
£117.00
John Wiley and Sons Ltd Wine Flavour Chemistry
Book SynopsisWine Flavour Chemistry brings together a vast wealth of information describing components of wine, their underlying chemistry and their possible role in the taste, smell and overall perception. It includes both table wines and fortified wines, such as Sherry, Port and the newly added Madeira, as well as other special wines.Trade Review“This book is a delight to read. It is well produced, contains a wealth of detailed and interesting information, and good use is made of figures and, especially, tables. The authors are clearly very enthusiastic about their subject and the book is so well-written one can open it anywhere, start reading, and be instantly captivated. This book is essential reading for any chemist interested in wine (and who is not?) or in flavour chemistry in general.” (Chromatographia, 1 August 2013)Table of ContentsPreface to the Second Edition xv Preface to the First Edition xvii 1 Introduction 1 1.1 Scope of the book 1 1.2 Historical background 2 1.3 Wine flavour 3 1.4 Wine colour 6 1.5 Vinification 6 1.5.1 Vinification process 8 Pre-fermentation 9 Fermentation 15 Post-fermentation 17 1.5.2 Red wines 22 Pre-fermentation 22 Fermentation 23 Post-fermentation 24 1.5.3 White wines 25 Pre-fermentation 26 Fermentation 27 Post-fermentation 28 1.5.4 Specialized wines 28 Rosé wines 28 Wines made from organically farmed grapes 29 Wines with added resin 30 Wines with low alcohol content 31 Sweet wines 31 Sparkling wine in Champagne 32 Sparkling wine by other methods 33 Wines by carbonic maceration 34 Wines by thermovinification 34 Wines matured Sur Lie 35 1.5.5 Fortified wines 35 Port wine 36 Sherry 38 Madeira 40 1.6 Physiological effects 42 1.6.1 Attributed negative effects 43 1.6.2 Wine ethyl alcohol (ethanol) 43 1.6.3 Effects of phenols 45 Resveratrol 46 Bibliography 48 2 Grape Varieties and Growing Regions 53 2.1 Wine grapes 53 2.2 Vine plant characteristics 56 2.3 Soil, climate and ripeness 57 2.3.1 Soil 57 2.3.2 Climate 58 2.3.3 Ripeness 64 2.4 Grape growing regions of the world 65 2.4.1 World wine production 65 2.4.2 Regions 66 2.5 Chemical composition of grapes, must and finished wines 71 2.5.1 Grapes and must 71 2.5.2 Finished wine 79 2.6 Quality control and classification of wines 79 2.6.1 France 79 2.6.2 Germany 82 2.6.3 Italy 83 2.6.4 Spain 84 2.6.5 Australia 84 2.6.6 USA 85 2.6.7 Quality control systems in the European Union 86 Bibliography 87 3 Basic Taste and Stimulant Components 89 3.1 Introduction 89 3.2 Basic taste perception 90 3.2.1 Role of taste 90 3.2.2 Taste perception mechanism 91 3.3 Ethyl alcohol 92 3.3.1 Measurement of ethyl alcohol content in wines 93 3.3.2 Measurement of sugar content in musts and wines 94 Brix scale 94 Baumé and Oeschele scales 96 Prediction of alcohol content in the finished wine 96 3.3.3 Sugar content of grapes and must 97 3.3.4 Chaptalization 98 3.4 Acidity 99 3.4.1 Contents of organic acids 100 3.4.2 Measurement of acid content 104 3.4.3 Acid taste 105 3.5 Sweetness 109 3.5.1 Chemical structure of sugars 109 3.5.2 Content/sweetness 109 3.6 Bitterness, astringency and mouthfeel 113 3.6.1 Basic chemistry 113 Non-flavanoids 113 Flavan-3-ols 114 Flavonoids 116 Anthocyanins 117 3.6.2 Basic technology 118 Location of polyphenols in grapes 118 Use of the term ‘tannins’ and their classification 119 Grape tannins 120 Quantifying methods 121 HPLC measurements 122 Other methods 123 Analyses in grapes and during wine-making 124 3.6.3 Bitter constituents 127 White wines 127 Red wines 127 3.6.4 Astringency 127 3.6.5 Mouthfeel 128 3.7 Colouring matter 129 3.7.1 Colour of red wines 129 3.7.2 Colour of white wines 132 3.8 Other constituents 134 3.8.1 Sulfur dioxide 134 Basic chemistry 135 Technical use 135 Taste effects 136 3.8.2 Carbon dioxide 136 Formation and handling of CO 2 137 Sensory factors 137 3.8.3 Oxygen 138 Basic chemistry 138 Oxygen content in wines 139 Effect of oxygen on wine 141 3.9 Changes in maturation 142 3.9.1 ‘In-barrel’ ageing 143 Vats 143 Extraction from barrels 144 Oxidation in barrels 145 3.9.2 ‘In-bottle’ ageing 146 3.9.3 Oxidation–reduction (redox) potential 146 General 147 Nernst equation 147 Redox potentials in wine 148 Redox potentials during vinification 149 Bibliography 150 4 Volatile Components 155 4.1 General 155 4.1.1 Sensory perception 156 4.1.2 Partition coefficients 158 4.1.3 Threshold flavour/odour levels 161 Units 163 Consistency of threshold odour levels 164 Threshold level difference between sniffing and tasting 164 Threshold levels in solutions of dissolved substances in water and in beverages 166 Relationship of threshold values to partition coefficients 168 Volatile compound concentration in the vapour phase 170 4.1.4 Flavour/odour descriptions 173 Use of word descriptions 173 Intensity of flavour/odour 175 4.2 Volatile compounds detected in wines 175 4.2.1 Types of aroma in volatile compounds 178 4.2.2 Stereochemical effects in aroma volatile compounds 180 4.3 Contents and sensory evaluation data 180 4.3.1 Esters 180 Structure 181 Presence in wines 181 Flavour characteristics 182 4.3.2 Aldehydes 189 Presence in wine 189 Flavour characteristics 190 4.3.3 Ketones 190 Presence in wines 190 Flavour characteristics 190 4.3.4 Acetals 196 4.3.5 Alcohols 197 Presence in wines 197 Flavour characteristics 201 4.3.6 Lactones and furanones 201 Molecular structures 201 Presence in wines 205 Flavour characteristics 207 4.3.7 Acids 207 Presence in wines 207 Flavour characterisitcs 208 4.3.8 Nitrogeneous compounds 208 4.3.9 Phenols 209 Presence in wines 209 Flavour characteristics 209 4.3.10 Terpenes 209 Chemical structure 209 Presence in grapes/wines 213 Flavour characteristics 215 4.3.11 Pyrazines 216 Chemical structure 216 Presence in grapes/wines 216 Flavour characteristics 216 4.3.12 Sulfur compounds 219 Chemical structure 219 Presence in wines 219 Flavour characteristics 220 4.4 Changes during maturation 221 4.4.1 Fermentation and storage of wines ‘in-vat (tank)’ and ‘in-barrel (cask)’ 221 Fermentation 221 Storage 222 4.4.2 ‘In-bottle’ ageing 224 Changes in ester content 225 Substances produced by carbohydrate degradation 225 Sulfur compounds 225 Changes in terpenoids 225 Formation of substances from carotene breakdown 226 4.5 Aroma detection and quantification 227 4.5.1 Gas chromatography 227 4.5.2 Sample preparation 228 4.5.3 Olfactometry 230 4.6 Chemical structure and physical properties 231 Bibliography 231 5 Wine Tasting Procedures and Overall Wine Flavour 239 5.1 Wine tasting 239 5.2 Wine tasting procedure 241 5.2.1 Tasting glass 241 5.2.2 Serving 243 5.2.3 Visual 243 5.2.4 Smell 244 5.2.5 Flavour 246 5.2.6 Interactions 247 5.2.7 Astringency 248 5.2.8 Judging the wine 249 5.2.9 Reasons for wine tasting 250 Sensory analysis 250 Quality tastings 251 Identifying wines by tasting 251 Sensory analyses used in research 252 Consumer tasting 252 Analytical tasting 253 5.2.10 Wine tasting information and analysis 254 Statistical analysis 254 5.3 Factors influencing sensory perception 256 5.3.1 Threshold and sensitivity 257 5.3.2 Vocabulary 258 5.4 Balance of taste sensations in wine 258 5.5 Wine aromas 259 5.5.1 Odour/aroma classification 261 5.5.2 Aroma/odour characteristics of wines from particular grape varieties 262 5.5.3 Variants in Cabernet Sauvignon wine flavour 270 5.5.4 Variants of Chardonnay wine flavour 271 5.5.5 Flavour description of some other commercial wines 273 5.5.6 Off-odours and taints 274 Cork taint 275 Mousiness 278 Ethylphenols 279 5.6 Wine and food flavour 279 5.7 Aroma indices and statistical methods 282 5.7.1 Flavour unit concept 282 5.7.2 Odour activity unit 284 5.7.3 Multivariate and other statistical procedures 285 Bibliography 288 6 Sherry, Port and Madeira 291 6.1 Introduction 291 6.1.1 Sherry introduction 291 6.1.2 Port introduction 292 6.1.3 Madeira introduction 292 6.1.4 Comparisons between fortified wines 293 6.1.5 Ethyl alcohol – sensory effect 294 6.1.6 Ethyl alcohol – chemical effect 295 6.1.7 Sweetness 295 6.2 Sherry 295 6.2.1 Wine producers 296 6.2.2 Commercial wine styles 296 6.2.3 Wine writers’ comments 297 6.2.4 Grapes and must 297 6.2.5 Base wine 298 6.2.6 Maturation 299 6.2.7 Maturation changes under flor 299 6.2.8 Maturation changes without flor 301 6.2.9 Maturation with and without flor 302 6.2.10 Volatile compounds 302 6.2.11 Changes during maturation in phenolic compound content 309 6.3 Port wine 311 6.3.1 Port wine producers 311 6.3.2 Commercial Port wine styles 312 6.3.3 Wine writers’ comments 313 6.3.4 Grapes and must 314 6.3.5 Fermentation and base Port wine 315 6.3.6 Port wine compared to red table wine 317 6.3.7 Maturation 318 6.3.8 Colour changes during maturation 318 6.3.9 Volatile changes during maturation 322 6.4 Madeira 327 6.4.1 Madeira wine producers 327 6.4.2 Commercial Madeira wine styles 327 6.4.3 Wine writers’ comments 328 6.4.4 Sensory properties 328 6.4.5 Grapes and must 328 6.4.6 Base wines maturation 329 6.4.7 Volatile compounds 330 Bibliography 335 7 Formation Pathways in Vinification 341 7.1 Introduction 341 7.2 Process variables in vinification 342 7.2.1 Grapes 342 7.2.2 Yeast strain 344 7.2.3 Malo-lactic organisms 347 7.2.4 Temperature 347 Standard operating temperature 347 Thermovinification 348 7.2.5 Clarification procedures 349 7.2.6 Nutrient medium in fermentation 349 7.2.7 Maceration 351 7.3 Production of ethyl alcohol 351 7.4 Production of individual groups of compounds 352 7.4.1 Esters 352 7.4.2 Aldehydes 353 7.4.3 Ketones 354 7.4.4 Acetals 354 7.4.5 Higher alcohols 355 7.4.6 Furanones and lactones 356 7.4.7 Acids 357 7.4.8 Amines 357 7.4.9 Phenols (volatile) 357 7.4.10 Terpenes 359 7.4.11 Pyrazines 360 7.4.12 Sulfur compounds 360 7.5 Noble Rot 362 Bibliography 364 Appendix I 367 I. 1 Chemical formulae nomenclature 367 I.. 1 Nomenclature for a homologous series of compounds (Greek number/word system) 367 I.1. 2 System for substituent groups (derivatives) 368 I.1. 3 System for substituting in long-chain compounds 368 I.1. 4 System for characterizing esters 368 I.1. 5 System for characterizing unsaturated compounds 369 I.1. 6 Systems for esters, thiols and thio-compounds 369 I.1. 7 Miscellaneous IUPAC recommendations 369 I.1. 8 Alternative chemical names 369 I.1. 9 Numbering systems for ring compounds 370 I.1.10 Trivial and common names for derivative alkanes and other compounds 370 I.1. 11 General 371 I. 2 Stereochemistry 371 I.2. 1 Enantiomers 371 Optical activity 372 Chirality 373 Occurrence of enantiomers 375 I.. 2 Geometrical (stereo-) isomers 375 I.2. 3 Tautomerism 376 I. 3 Chemistry of the oxidation of organic compounds 377 I.3. 1 Auto- and enzymatic oxidation of lipids 378 I.3. 2 Oxidation–reduction of alkyl alcohols and aldehydes 379 I.. 3 Oxidation of phenolic compounds 380 Oxidation of procyanidins 383 Oxidation of non-flavanoid phenolic compounds 383 General 384 I.3.4 Oxidation–reduction (redox) potentials 384 I. 4 Estimation of partition coefficients of volatile compounds in air/water 386 I. 5 Grape varieties and cultivars 389 Appendix II 395 II. 1 Units 395 II.2 Data sources 395 Tables of molecular formulae, weight and physical properties for each group of volatile compounds found in wine –Volatile esters 396 –Volatile aldehydes 399 –Volatile ketones 400 –Volatile alcohols 401 –Volatile furanones/lactones 402 –Volatile acids 403 –Volatile phenols 404 –Volatile terpenes 404 –Volatile methoxy pyrazines 405 –Volatile sulfur compounds 405 Index 407
£144.85
John Wiley and Sons Ltd Teas Cocoa and Coffee
Book SynopsisIn recent years, the role of plant secondary metabolites as protective constituents in the human diet has been a growing area of research. Unlike the traditional vitamins, they are not essential for short-term wellbeing, but there is increasing evidence that modest long-term intakes can have favourable impacts on the incidence of cancers and many chronic diseases, including cardiovascular disease and type II diabetes, which are occurring in Western populations with increasing frequency. This book covers the latest science on the metabolism and potential health benefits of teas, cocoa, coffee and their extracts in the human diet. From an opening chapter tracing the origins of teas, cocoa and coffee as beverage, the book proceeds to explore the phytochemical content of coffee, cocoa and the various types of tea. The bioavailability of secondary metabolites from each of the beverages is then considered in depth, and related directly to their health benefits. Embracing the full range oTrade Review“Overall, this book is packed with interesting information, resulting from the lifetime’s work of some of the editors.” (Chromatographia., 17 April 2014) “As such the book would serve as an excellent introduction for scientists wanting to transfer into the area, or as a useful state of the art overview for those in the field. Highly recommended.” (Chemistry & Industry, 1 July 2012) “Additionally, this text should be included in all college and university science and medical libraries, as there are no comparable up-to-date treatises on the health benefits, composition, and bioavailability of teas, coffee, and cocoa.” (HerbalGram, 2012) “Highly recommended. Lower-division undergraduates through professionals and general readers interested in human medicine, natural health, or plant biology.” (Choice, 1 May 2012)Table of ContentsContributors ix 1 The Origins of Tea, Coffee and Cocoa as Beverages 1 Timothy J. Bond 1.1 Introduction 1 1.2 The beverages in question 1 1.3 Discoveries – myth and legend 2 1.3.1 Tea 3 1.3.2 Coffee 4 1.3.3 Cacao products 5 1.4 Global domination begins 8 1.4.1 Tea – overland and a race by sea 9 1.4.2 Coffee – from persecution to epitomising the protestant work ethic 13 1.4.3 Chocolate – from lying down . . . to sitting up 14 1.5 From foreign fancies to the drinks of the masses 15 1.6 Tea, coffee and chocolate ‘go public’ 18 1.7 Opinion is divided on the merits of the three beverages 19 1.8 Tea, coffee and chocolate – the future 22 References 22 2 Purine Alkaloids: A Focus on Caffeine and Related Compounds in Beverages 25 Michael E.J. Lean, Hiroshi Ashihara, Michael N. Clifford and Alan Crozier 2.1 Introduction 25 2.2 Occurrence of purine alkaloids 26 2.3 Biosynthesis of purine alkaloids 27 2.4 Degradation of purine alkaloids 27 2.5 Decaffeinated tea and coffee 29 2.6 Metabolism of caffeine by humans 31 2.7 Effects of caffeine consumption on human health 33 2.7.1 Biochemical and biological actions of caffeine 34 2.7.2 Mental performance enhancement 37 2.7.3 Physical performance enhancement 37 2.7.4 Caffeine toxicity 38 2.7.5 Tolerance, withdrawal and dependence 39 2.7.6 Caffeine in pregnancy 39 2.7.7 Toxicity in other species 40 2.8 Summary 40 References 40 3 Phytochemicals in Teas and Tisanes and Their Bioavailability 45 Michael N. Clifford and Alan Crozier 3.1 Introduction 45 3.2 Phytochemical content of teas and tisanes 45 3.2.1 Camellia teas 45 3.2.2 Yerba mat´e tea 54 3.2.3 Itadori tea 58 3.2.4 Rooibos tea 59 3.2.5 Honeybush tea 59 3.2.6 Chamomile tea 62 3.2.7 Hibiscus tea 62 3.2.8 Fennel tea 63 3.2.9 Anastatica tea 63 3.2.10 Ficus tea 66 3.3 Bioavailability – absorption, distribution, metabolism and excretion 66 3.3.1 Green tea 68 3.3.2 Black tea 77 3.3.3 Itadori tea 80 3.3.4 Rooibos tea 81 3.3.5 Honeybush tea 84 3.3.6 Hibiscus tea 85 3.3.7 Fennel tea 85 3.3.8 Other teas 87 3.4 Summary 87 References 88 4 Teas, Tisanes and Health 99 Diane L. McKay, Marshall G. Miller and Jeffrey B. Blumberg 4.1 Introduction 99 4.2 Black, oolong and green tea (C. sinensis) 100 4.2.1 Black tea 100 4.2.2 Oolong tea 107 4.2.3 Green tea 109 4.3 Other teas and tisanes 116 4.3.1 Yerba mat´e (Ilex paraguariensis) 116 4.3.2 Itadori (Polygonum cuspidatum) 118 4.3.3 Chamomile (Chamomilla recutita L.) 119 4.3.4 Hibiscus (Hibiscus sabdariffa L.) 120 4.3.5 Rooibos (Aspalathus linearis) 126 4.3.6 Honeybush (Cyclopia intermedia) 128 4.4 Summary and conclusions 130 References 131 5 Phytochemicals in Coffee and the Bioavailability of Chlorogenic Acids 143 Angelique Stalmach, Michael N. Clifford, Gary Williamson and Alan Crozier 5.1 Introduction 143 5.2 Harvesting coffee beans, roasting and blending 144 5.3 Phytochemicals in coffee 144 5.3.1 Effects of roasting on the phytochemical content of coffee beans 149 5.3.2 Chlorogenic acid intake and coffee consumption 154 5.4 Bioavailability of coffee chlorogenic acids in humans 155 5.4.1 Studies involving volunteers with and without a functioning colon 156 5.5 Conclusions 164 References 164 6 Coffee and Health 169 Gary Williamson 6.1 Introduction 169 6.2 Antioxidant status 170 6.2.1 Effect of coffee consumption on antioxidant status: epidemiological and cohort studies 179 6.2.2 Effect of coffee consumption on antioxidant status: intervention studies 179 6.3 Diabetes 180 6.3.1 Effect of coffee consumption on diabetes risk: epidemiological and cohort studies 180 6.3.2 Effect of coffee consumption on diabetes risk: intervention studies 182 6.4 Cardiovascular disease 183 6.4.1 Effect of coffee consumption on cardiovascular risk: epidemiological and cohort studies 183 6.4.2 Effect of coffee consumption on cardiovascular risk: intervention studies 184 6.5 Effect of coffee on inflammation 186 6.6 Effect of coffee consumption on cancer risk 186 6.6.1 Effect of coffee consumption on cancer risk: epidemiological and cohort studies 186 6.6.2 Effect of coffee consumption on cancer risk: intervention studies 188 6.7 Summary 188 References 188 7 Phytochemicals in Cocoa and Flavan-3-ol Bioavailability 193 Francisco Tomas-Barberan, Gina Borges and Alan Crozier 7.1 Introduction 193 7.2 Phytochemicals in cocoa 194 7.2.1 Purine alkaloids, theobromine and caffeine 194 7.2.2 Flavan-3-ols 194 7.2.3 Phenolic acid derivatives 196 7.2.4 Minor phytochemicals 197 7.3 Bioavailability of cocoa flavan-3-ols 198 7.3.1 Background 198 7.3.2 Flavan-3-ol monomers 200 7.3.3 Procyanidins 210 7.4 Conclusions 212 References 213 8 Cocoa and Health 219 Jennifer L. Donovan, Kelly A. Holes-Lewis, Kenneth D. Chavin and Brent M. Egan 8.1 Introduction 219 8.2 Composition of cocoa products 220 8.3 Worldwide consumption of cocoa and its contribution to flavonoid intake 222 8.4 Epidemiological and ecological studies of cocoa 222 8.5 Cocoa effects on vascular endothelial function and platelet activity 224 8.6 Cocoa and hypertension 227 8.7 Antioxidant and anti-inflammatory effects of cocoa 229 8.8 Effects of cocoa consumption on lipid and lipoprotein metabolism 232 8.9 Cocoa effects on insulin sensitivity 233 8.10 Cocoa effects on cerebral blood flow and neurocognitive functioning 234 8.11 Potential negative health effects of cocoa consumption 237 8.11.1 Obesity 237 8.11.2 Testicular health 237 8.11.3 Acne 238 8.11.4 Dental caries 238 8.12 Effects of consumption of cocoa with milk or other foods 238 8.13 Conclusions 239 References 240 Index 247 A color plate section falls between pages 6 and 7
£156.95
John Wiley and Sons Ltd Food & Society: Principles and Paradoxes
Book SynopsisThis popular text, now in a third edition, offers readers a vivid perspective on the cultural and social complexities of food practices and the current food system. Synthesizing insights from the multidisciplinary field of food studies, this book engages readers’ curiosity by highlighting the seeming paradoxes of food: how food is both individual and social, reveals both distinction and conformity, and, in the contemporary era, seems to come from everywhere but nowhere in particular. Each chapter begins with an intriguing case study and ends with suggested resources and activities. Chapter topics include identity, restaurants and food media, health, marketing, industrialization, global food, surplus and scarcity, and social change. Updates and enhancements in this edition reflect new scholarly insights into how food is involved in social media, social movements, and the COVID-19 pandemic. Throughout, the book blends concepts and empirical accounts to address the central issues of culture, structure, and social inequality. Written in a lively, accessible style, this book provides students with an unrivalled and multifaceted introduction to this fascinating aspect of social life.Trade Review“The third edition of Food & Society builds on the considerable strengths of its predecessors to compass a lively, accessible, and engaging journey through how and why we eat the ways we do. Its classroom exercises and supplementary reading suggestions help it earn its place as an anchor text for undergraduate introductions to the food system.”Raj Patel, University of Texas “I have used this book with over a thousand undergrads. Its orientation around paradoxes provides just the right critical lens to rethink all that readers normally take for granted about food, while never letting them forget that eating habits are part of larger systems of power and inequality.”Charlotte Biltekoff, University of California “This engaging book considers the often conflicting relationships between stakeholders across the food system. Approachable case studies that include donuts, beer, and antibiotics illustrate that there are complex social structures that impact our relationship to food.”Beth Forrest, Culinary Institute of America “The third edition of this book maintains its position as a principal introduction to food studies. This edition contains a greater awareness of the global food system as revealed to many through the COVID-19 pandemic, and offers an updated discussion of the wider role of food labels and their connection to important social movements.”Cultural Sociology Praise for the Second Edition: “Food & Society gives us a fascinating introduction to the issues in food studies of greatest current concern. This exceptionally well-researched book explains why food matters so much and why it generates such intense controversy. The book may be aimed at students, but anyone interested in food issues will have much to learn from the paradoxes it presents.”Marion Nestle, New York UniversityTable of Contents1 Principles and Paradoxes in the Study of Food 2 Food and Identity: Fitting In and Standing Out 3 Food as Spectacle: The Hard Work of Leisure 4 Nutrition and Health: Good to Eat, Hard to Stomach 5 Branding and Marketing: Governing the Sovereign Consumer 6 Industrialization: The High Costs of Cheap Food 7 Global Food: From Everywhere and Nowhere 8 Food Access: Surplus and Scarcity 9 Food and Social Change: The Incremental Revolution
£18.04
John Murray Press Will Artificial Intelligence Outsmart Us?
Book Synopsis'Real science can be far stranger than science fiction, and much more satisfying'Will artificial intelligence outsmart us?Is there other intelligent life in the universe?Throughout his extraordinary career, Stephen Hawking expanded our understanding of the universe and unravelled some of its greatest mysteries. Will Artificial Intelligence Outsmart Us? considers the threat of artificial super-intelligence - as well as the likelihood of intelligent life beyond our planet.'Modest, profound and sometimes very funny' Sunday TimesBrief Answers, Big Questions: this stunning paperback series offers electrifying essays from one of the greatest minds of our age, taken from the original text of the No. 1 bestselling Brief Answers to the Big Questions.
£6.93
McGraw-Hill Education Modeling SolidState Precipitation
Book SynopsisMomentum Press's new Computational Materials Science and Engineering Series will focus on both classic and innovative modeling algorithms for computer-aided materials analysis as well as typical applications for each modeling technique. This book in the series will focus on computer modeling techniques for precipitation phenomena in materials undergoing phase transition from one state to another, with a focus on the sharp-interface limit model. Readers will find coverage on: Statistical Theory of Phase Transformation Solid-State Nucleation Multiparticle Precipitation Kinetics - using both numerical Kampmann-Wagner Model and the SFFK Model A comparison of growth kinetics using different models
£172.90
McGraw-Hill Education Solid State NMR Basic Principles Practice
Book SynopsisNuclear Magnetic Resonance (NMR) has proved to be a uniquely powerful and versatile tool for analyzing and characterizing chemicals and materials of all kinds. This book focuses on the latest developments and applications for "solid-state" NMR, which has found new uses from archaeology to crystallography to biomaterials and pharmaceutical science research. The book will provide materials engineers, analytical chemists, and physicists, in and out of lab, a survey of the techniques and the essential tools of solid-state NMR, together with a practical guide on applications. In this concise introduction to the growing field of solid-state nuclear magnetic resonance spectroscopy the reader will find: Basic NMR concepts for solids, including guidance on the spin-1/2 nuclei concept Coverage of the quantum mechanics aspects of solid state NMR and an introduction to the concept of quadrupolar nuclei An understanding relaxation, exchange and quantitation in NMR An analysis and interpretation of NMR data, with examples from crystallography studies Appendices covering spin properties of spin-1/2 nuclides as well as NMR simulation procedures
£90.90
McGraw-Hill Education An Introduction to Transport Phenomena In
Book SynopsisTransport phenomena are the processes and rules by which heat, mass, and momentum move through and between materials and systems. Along with thermodynamics, mechanics, and electromagnetism, this body of knowledge and theory forms the core principals of all physical systems and is essential to all engineering disciplines. This new edition of a classic work on how transport phenomena behave in materials and materials systems will provide expanded coverage and up-to-date theory and knowledge from today's research on heat transfer and fluid behavior, with ample examples of practical applications to materials processing and engineering. Professional engineers and students alike will find one of the clearest and most accessible approaches to an often difficult and challenging subject. Logical pedagogy, with clear applications to real materials engineering problems will make more vivid the abstract body of knowledge that comprises today's understanding of transport phenomena. Readers will find: A new chapter on boiling and condensation Revised chapters on heat transport, mass transport in solid state and mass transport in fluids Revised and expanded end-of-chapter problems and exercises S.I. Units throughout Extensive Appendices of standard materials properties For classroom use, a Solutions Manual is available
£163.80
McGraw-Hill Education XRay Fluorescence Spectrometry and Related Techniques An Introduction
Book SynopsisX-ray fluorescence spectrometry (XRF) is a well-established analytical technique for qualitative and quantitative elemental analysis of a wide variety of materials. It is known for its rapid speed and ease of use. All levels of professionals in materials science, analytic chemistry, and physics will benefit from the review of basic and newly developed technologies presented in this book. Highlights include: A basic introduction to XRF, including background on X-ray physics. Coverage of qualitative and quantitative analysis using XRF. Coverage of the design of low-power micro-focus tubes and novel X-ray optics and detectors. Benchtop and portable instrumentation that offer extreme simplicity of operation in a low-cost design. Extensive bibliographic references. Buyers Guide.
£155.70
Verso Books Future Histories: What Ada Lovelace, Tom Paine,
Book SynopsisThe key to understanding technology lies not in the future--but in the past. That's the contention of Lizzie O'Shea's Future Histories, a grand tour through past and present to explore the practical--and sometimes revolutionary--possibilities of our digital age.Searching for new ways to think about our networked world, O'Shea asks what the Paris Commune can tell us about the ethics of the Internet and finds inspiration in the revolutionary works of Thomas Paine and Frantz Fanon. She examines Elon Musk's futuristic visions only to find them mired in a musty Victorian-era utopianism. Instead of current-day capitalist visionaries, O'Shea returns us to the Romantic age of wonder, when art and science were as yet undivided, narrating the collaboration between Ada Lovelace--the brilliant daughter of Lord and Lady Byron--and polymath Charles Babbage, who together designed the world's first computer. In our brave new world of increased surveillance, biased algorithms, and fears of job automation, O'Shea weaves a usable past we can employ in the service of emancipating our digital tomorrows.Trade Review"There has never been a better time to pull the politics of platform capitalism into the foreground where it belongs. Lizzie O'Shea brings a hacker's curiosity, a historian's reach and a lawyer's precision to bear on our digitally saturated present, emerging with a compelling argument that a better world is there for the taking. " -- Scott LudlamA potent, timely, and unrepentantly radical reminder of history's creative potential. Lizzie O'Shea's Future Histories should be required reading for anyone planning on surviving-and even repairing-our grim technological moment. -- Claire L. EvansThere has never been a better time to pull the politics of platform capitalism into the foreground where they belong. Lizzie O'Shea brings a hacker's curiosity, a historian's reach, and a lawyer's precision to bear on our digitally saturated present, emerging with a compelling argument that a better world is there for the taking. -- Scott Ludlam, Australian Greens * endorsement *In this splendid and entertaining book, arrestingly subtitled 'what Ada Lovelace, Tom Paine and the Paris Commune can teach us about digital technology', Lizzie O'Shea sets out to construct what she calls a 'usable past' in order to better understand our digital present and the head-spinning future which technology is devising for us. This 're-purposing' of history is not, O'Shea explains, simply an alternative interpretation of facts, rather it is an argument about what the future could be, based on 'what kinds of traditions are worth valuing and which moments are worth remembering.'In setting out her case, the author deftly defines the iniquities of the digital age; a dystopia of corporate control, data-mining, face recognition software and ubiquitous monitoring by security agencies. In other words, 'surveillance capitalism'; our modern world in which we are not the user but the product. In the context, O'Shea suggests 'smart' means 'Surveillance Marketed As Revolutionary Technology.' If Future Histories did no more than anatomize our present digital entanglement, it would merely be a useful addition to an established area of inquiry. It is the yoking together of technological advancement and progressive social movements that makes this book truly valuable. In viewing our networked world through the prism of the long (and ongoing) struggle for human rights, O'Shea has given us usable tools in the struggle to wrest control of the digital world from the likes of Mark Zuckerberg and Elon Musk. As the old Trade Union slogan has it; 'The Past we inherit, the Future we build.' -- Peter Whittaker * The New Internationalist *
£10.44
ISTE Ltd and John Wiley & Sons Inc Compression of Biomedical Images and Signals
Book SynopsisDuring the last decade, image and signal compression for storage and transmission purpose has seen a great expansion. But what about medical data compression? Should a medical image or a physiological signal be processed and compressed like any other data? The progress made in imaging systems, storing systems and telemedicine makes compression in this field particularly interesting. However, this compression has to be adapted to the specificities of biomedical data which contain diagnosis information. As such, this book offers an overview of compression techniques applied to medical data, including: physiological signals, MRI, X-ray, ultrasound images, static and dynamic volumetric images. Researchers, clinicians, engineers and professionals in this area, along with postgraduate students in the signal and image processing field, will find this book to be of great interest.Table of ContentsPreface xiii Chapter 1. Relevance of Biomedical Data Compression 1 Jean-Yves TANGUY, Pierre JALLET, Christel LE BOZEC and Guy FRIJA 1.1. Introduction 1 1.2. The management of digital data using PACS 2 1.2.1. Usefulness of PACS 2 1.2.2. The limitations of installing a PACS 3 1.3. The increasing quantities of digital data 4 1.3.1. An example from radiology 4 1.3.2. An example from anatomic pathology 6 1.3.3. An example from cardiology with ECG 7 1.3.4. Increases in the number of explorative examinations 8 1.4. Legal and practical matters 8 1.5. The role of data compression. 9 1.6. Diagnostic quality 10 1.6.1. Evaluation 10 1.6.2. Reticence 11 1.7. Conclusion 12 1.8. Bibliography 12 Chapter 2. State of the Art of Compression Methods 15 Atilla BASKURT 2.1. Introduction 15 2.2. Outline of a generic compression technique 16 2.2.1. Reducing redundancy 17 2.2.2. Quantizing the decorrelated information 18 2.2.3. Coding the quantized values 18 2.2.4. Compression ratio, quality evaluation 20 2.3. Compression of still images 21 2.3.1. JPEG standard 22 2.3.1.1. Why use DCT? 22 2.3.1.2. Quantization 24 2.3.1.3. Coding 24 2.3.1.4. Compression of still color images with JPEG 25 2.3.1.5. JPEG standard: conclusion 26 2.3.2. JPEG 2000 standard 27 2.3.2.1. Wavelet transform 27 2.3.2.2. Decomposition of images with the wavelet transform 27 2.3.2.3. Quantization and coding of subbands 29 2.3.2.4. Wavelet-based compression methods, serving as references 30 2.3.2.5. JPEG 2000 standard 31 2.4. The compression of image sequences 33 2.4.1. DCT-based video compression scheme 34 2.4.2. A history of and comparison between video standards 36 2.4.3. Recent developments in video compression 38 2.5. Compressing 1D signals 38 2.6. The compression of 3D objects 39 2.7. Conclusion and future developments 39 2.8. Bibliography 40 Chapter 3. Specificities of Physiological Signals and Medical Images 43 Christine CAVARO-MÉNARD, Amine NAÏT-ALI, Jean-Yves TANGUY, Elsa ANGELINI, Christel LE BOZEC and Jean-Jacques LE JEUNE 3.1. Introduction 43 3.2. Characteristics of physiological signals 44 3.2.1. Main physiological signals 44 3.2.1.1. Electroencephalogram (EEG) 44 3.2.1.2. Evoked potential (EP) 45 3.2.1.3. Electromyogram (EMG) 45 3.2.1.4. Electrocardiogram (ECG) 46 3.2.2. Physiological signal acquisition 46 3.2.3. Properties of physiological signals 46 3.2.3.1. Properties of EEG signals 46 3.2.3.2. Properties of ECG signals 48 3.3. Specificities of medical images 50 3.3.1. The different features of medical imaging formation processes 50 3.3.1.1. Radiology 51 3.3.1.2. Magnetic resonance imaging (MRI) 54 3.3.1.3. Ultrasound 58 3.3.1.4. Nuclear medicine 62 3.3.1.5. Anatomopathological imaging 66 3.3.1.6. Conclusion 68 3.3.2. Properties of medical images 69 3.3.2.1. The size of images 70 3.3.2.2. Spatial and temporal resolution 71 3.3.2.3. Noise in medical images 72 3.4. Conclusion 73 3.5. Bibliography 74 Chapter 4. Standards in Medical Image Compression 77 Bernard GIBAUD and Joël CHABRIAIS 4.1. Introduction 77 4.2. Standards for communicating medical data 79 4.2.1. Who creates the standards, and how? 79 4.2.2. Standards in the healthcare sector 80 4.2.2.1. Technical committee 251 of CEN 80 4.2.2.2. Technical committee 215 of the ISO 80 4.2.2.3. DICOM Committee 80 4.2.2.4.Health Level Seven (HL7) 85 4.2.2.5. Synergy between the standards bodies 86 4.3. Existing standards for image compression 87 4.3.1. Image compression 87 4.3.2. Image compression in the DICOM standard 89 4.3.2.1. The coding of compressed images in DICOM 89 4.3.2.2. The types of compression available 92 4.3.2.3. Modes of access to compressed data 95 4.4. Conclusion 99 4.5. Bibliography 99 Chapter 5. Quality Assessment of Lossy Compressed Medical Images 101 Christine CAVARO-MÉNARD, Patrick LE CALLET, Dominique BARBA and Jean-Yves TANGUY 5.1. Introduction 101 5.2. Degradations generated by compression norms and their consequences in medical imaging 102 5.2.1. The block effect 102 5.2.2. Fading contrast in high spatial frequencies 103 5.3. Subjective quality assessment 105 5.3.1. Protocol evaluation 105 5.3.2. Analyzing the diagnosis reliability 106 5.3.2.1. ROC analysis 108 5.3.2.2. Analyses that are not based on the ROC method 111 5.3.3. Analyzing the quality of diagnostic criteria 111 5.3.4. Conclusion 114 5.4. Objective quality assessment 114 5.4.1. Simple signal-based metrics 115 5.4.2. Metrics based on texture analysis 115 5.4.3. Metrics based on a model version of the HVS 117 5.4.3.1. Luminance adaptation 117 5.4.3.2. Contrast sensivity 118 5.4.3.3. Spatio-frequency decomposition 118 5.4.3.4. Masking effect 119 5.4.3.5. Visual distortion measures 120 5.4.4. Analysis of the modification of quantitative clinical parameters 123 5.5. Conclusion 125 5.6. Bibliography 125 Chapter 6. Compression of Physiological Signals 129 Amine NAÏT-ALI 6.1. Introduction 129 6.2. Standards for coding physiological signals 130 6.2.1. CEN/ENV 1064 Norm 130 6.2.2. ASTM 1467 Norm 130 6.2.3. EDF norm 130 6.2.4. Other norms 131 6.3. EEG compression 131 6.3.1. Time-domain EEG compression 131 6.3.2. Frequency-domain EEG compression 132 6.3.3. Time-frequency EEG compression 132 6.3.4. Spatio-temporal compression of the EEG 132 6.3.5. Compression of the EEG by parameter extraction 132 6.4. ECG compression 133 6.4.1. State of the art 133 6.4.2. Evaluation of the performances of ECG compression methods 134 6.4.3. ECG pre-processing 135 6.4.4. ECG compression for real-time transmission 136 6.4.4.1. Time domain ECG compression 136 6.4.4.2. Compression of the ECG in the frequency domain 141 6.4.5. ECG compression for storage 144 6.4.5.1. Synchronization and polynomial modeling 145 6.4.5.2. Synchronization and interleaving 149 6.4.5.3. Compression of the ECG signal using the JPEG 2000 standard 150 6.5. Conclusion 150 6.6. Bibliography 151 Chapter 7. Compression of 2D Biomedical Images 155 Christine CAVARO-MÉNARD, Amine NAÏT-ALI, Olivier DEFORGES and Marie BABEL 7.1. Introduction 155 7.2. Reversible compression of medical images 156 7.2.1. Lossless compression by standard methods 156 7.2.2. Specific methods of lossless compression 157 7.2.3. Compression based on the region of interest 158 7.2.4. Conclusion 160 7.3. Lossy compression of medical images 160 7.3.1. Quantization of medical images 160 7.3.1.1. Principles of vector quantization 161 7.3.1.2. A few illustrations 161 7.3.1.3. Balanced tree-structured vector quantization 163 7.3.1.4. Pruned tree-structured vector quantization 163 7.3.1.5. Other vector quantization methods applied to medical images 163 7.3.2. DCT-based compression of medical images 164 7.3.3. JPEG 2000 lossy compression of medical images 167 7.3.3.1. Optimizing the JPEG 2000 parameters for the compression of medical images 167 7.3.4. Fractal compression 170 7.3.5. Some specific compression methods 171 7.3.5.1. Compression of mammography images 171 7.3.5.2. Compression of ultrasound images 172 7.4. Progressive compression of medical images 173 7.4.1. State-of-the-art progressive medical image compression techniques 173 7.4.2. LAR progressive compression of medical images 174 7.4.2.1. Characteristics of the LAR encoding method 174 7.4.2.2. Progressive LAR encoding 176 7.4.2.3. Hierarchical region encoding 178 7.5. Conclusion 181 7.6. Bibliography 182 Chapter 8. Compression of Dynamic and Volumetric Medical Sequences 187 Azza OULED ZAID, Christian OLIVIER and Amine NAÏT-ALI 8.1. Introduction 187 8.2. Reversible compression of (2D+t) and 3D medical data sets 190 8.3. Irreversible compression of (2D+t) medical sequences 192 8.3.1. Intra-frame lossy coding 192 8.3.2. Inter-frame lossy coding 194 8.3.2.1. Conventional video coding techniques 194 8.3.2.2. Modified video coders 195 8.3.2.3. 2D+t wavelet-based coding systems limits 195 8.4. Irreversible compression of volumetric medical data sets 196 8.4.1. Wavelet-based intra coding 196 8.4.2. Extension of 2D transform-based coders to 3D data 197 8.4.2.1. 3D DCT coding 197 8.4.2.2. 3D wavelet-based coding based on scalar or vector quantization 198 8.4.2.3. Embedded 3D wavelet-based coding 199 8.4.2.4. Object-based 3D embedded coding 204 8.4.2.5. Performance assessment of 3D embedded coders 205 8.5. Conclusion 207 8.6. Bibliography 208 Chapter 9. Compression of Static and Dynamic 3D Surface Meshes 211 Khaled MAMOU, Françoise PRÊTEUX, Rémy PROST and Sébastien VALETTE 9.1. Introduction 211 9.2. Definitions and properties of triangular meshes 213 9.3. Compression of static meshes 216 9.3.1. Single resolution mesh compression 217 9.3.1.1. Connectivity coding 217 9.3.1.2. Geometry coding 218 9.3.2. Multi-resolution compression 219 9.3.2.1. Mesh simplification methods 219 9.3.2.2. Spectral methods 219 9.3.2.3. Wavelet-based approaches 220 9.4. Compression of dynamic meshes 229 9.4.1. State of the art 230 9.4.1.1. Prediction-based techniques 230 9.4.1.2. Wavelet-based techniques 231 9.4.1.3. Clustering-based techniques 233 9.4.1.4. PCA-based techniques 234 9.4.1.5. Discussion 234 9.4.2. Application to dynamic 3D pulmonary data in computed tomography 236 9.4.2.1. Data 236 9.4.2.2. Proposed approach 237 9.4.2.3. Results 238 9.5. Conclusion 239 9.6. Appendices 240 9.6.1. Appendix A: mesh via the MC algorithm 240 9.7. Bibliography 241 Chapter 10. Hybrid Coding: Encryption-Watermarking-Compression for Medical Information Security 247 William PUECH and Gouenou COATRIEUX 10.1. Introduction 247 10.2. Protection of medical imagery and data 248 10.2.1. Legislation and patient rights 248 10.2.2. A wide range of protection measures 249 10.3. Basics of encryption algorithms 251 10.3.1. Encryption algorithm classification 251 10.3.2. The DES encryption algorithm 252 10.3.3. The AES encryption algorithm 253 10.3.4. Asymmetric block system: RSA 254 10.3.5. Algorithms for stream ciphering 255 10.4. Medical image encryption 257 10.4.1. Image block encryption 258 10.4.2. Coding images by asynchronous stream cipher 258 10.4.3. Applying encryption to medical images 259 10.4.4. Selective encryption of medical images 261 10.5. Medical image watermarking and encryption 265 10.5.1. Image watermarking and health uses 265 10.5.2. Watermarking techniques and medical imagery 266 10.5.2.1. Characteristics. 266 10.5.2.2. The methods 267 10.5.3. Confidentiality and integrity of medical images by data encryption and data hiding 269 10.6. Conclusion. 272 10.7. Bibliography 273 Chapter 11. Transmission of Compressed Medical Data on Fixed and Mobile Networks 277 Christian OLIVIER, Benoît PARREIN and Rodolphe VAUZELLE 11.1. Introduction 277 11.2. Brief overview of the existing applications 278 11.3. The fixed and mobile networks 279 11.3.1. The network principles 279 11.3.1.1. Presentation, definitions and characteristics 279 11.3.1.2. The different structures and protocols 281 11.3.1.3. Improving the Quality of Service 281 11.3.2. Wireless communication systems 282 11.3.2.1. Presentation of these systems 282 11.3.2.2. Wireless specificities 284 11.4. Transmission of medical images 287 11.4.1. Contexts 287 11.4.1.1. Transmission inside a hospital 287 11.4.1.2. Transmission outside hospital on fixed networks 287 11.4.1.3. Transmission outside hospital on mobile networks 288 11.4.2. Encountered problems 288 11.4.2.1. Inside fixed networks 288 11.4.2.2. Inside mobile networks 289 11.4.3. Presentation of some solutions and directions 293 11.4.3.1. Use of error correcting codes 294 11.4.3.2. Unequal protection using the Mojette transform 297 11.5. Conclusion 299 11.6. Bibliography 300 Conclusion 303 List of Authors 305 Index 309
£150.05
Special Interest Model Books Workshop Materials
Book SynopsisThis book describes the many varied materials used by model engineers in their workshops such as iron and steel, non-ferrous metals including aluminium, brass and copper, hard and soft woods and a number of engineering and other plastics. It also contains details about abrasives, adhesives, bearing materials, ceramics and refractory materials, coatings, electroplating solutions, fuels, gases, lubricants, pickles, polishing materials, sealants and solders. It provides an easy reference for those seeking the right material for the task or an item specified on plan. Packed full of useful information, the book is aimed at those who build model locomotives, traction, boat and stationary steam engines, oil, diesel, glow and petrol engines, gas turbines, artillery pieces, farming appliances, carriages and other road vehicles as well as those who make clocks and workshop tools. It is also directed at those working with full-size machinery, such as vintage cars, motor and pedal cycles, traction engines and railway locomotives.Table of ContentsIron and Steel. Aluminium. Copper. Other Non-Ferrous Metals. Selecting Materials. Plastics. Wood. Refractory and Abrasive Materials. Jointing Materials. Cleaning, Etching, Pickling and Plating Fluids. Coatings, Fuels, Lubricants. Other Workshop Materials. Appendices: Safety. Glossary of Terms and Abbreviations. Metric/Imperial Conversion Tables. Useful Addresses. Bibliography.
£10.35
Wolfgang Publications Advanced Sheet Metal Fabrication
£25.65
Springer International Publishing AG EcoMechatronics: Challenges for Evolution,
Book SynopsisThis book showcases how EcoMechatronics can increase sustainability within engineering and manufacturing. It brings together material from experts in core mechatronics technologies, discussing the challenges related to moving towards more environmentally friendly methods, and presenting numerous case studies and examples of EcoMechatronics oriented applications. The book begins with an introduction to EcoMechatronics in the context of sustainability, before covering core conceptual, technical and design issues associated with EcoMechatronics. It then offers a series of case studies and examples of EcoMechatronics oriented applications and finally, a consideration of the educational issues associated with moving to a new generation of environmentally oriented mechatronic engineers. EcoMechatronics will be of interest to practicing engineers, researchers, system developers. and graduate students in the field of mechatronics and environmental engineering.Table of ContentsEcoMechatronics: Concepts, Objectives, and Outcomes.- Re-Envisioning Innovation for Sustainability.- Mechatronic applications in Respect of Sustainability & Climate Change.- EcoMechatronics and Bioinspired Design: Ecology, Circular Economy and Sustainability.- A Holistic and Sustainable View on the Product Creation Process for Mechatronic Systems.- Applied Sensor Technologies.- MBSE for Mechatronic Systems Design with Human, Energetic, Cyber and Physical Aspects.- Concurrent Multi-domain Modelling and Simulation for Energy-efficient Mechatronic Systems.- Artificial Intelligence, Ethics & Privacy.- Mechatronic Applications in Rail Systems and Technologies.- Sustainable Mechatronic Solution for Agricultural Precision Farming Inspired by Space Robotics Technologies.- The Achievement of Sustainability in the Built Environment.- Eco-design of Hydropower Device in River.- Micro/Nano Positioning Systems with Piezoelectric Actuators and Their Role on Sustainability and Ecosystem.- Energy Saving in Industrial Mechatronic Systems Through Optimal Motion Planning.- Minimisation of C02 Footprint of Hybrid Propulsion Systems for Mobility and Power Tool Applications.- Developing Education in Mechatronics to Support the Challenges for Evolution, Development and Sustainability.- Education and Simulation for Electric and Mechatronic Systems in Renewable Energy.- Robot-Assisted Teaching – The Future of Education?.- EcoMechatronics: Enabling Technologies, and Future Prospects.
£125.99
Wiley-VCH Verlag GmbH Chemical Product Formulation Design and
Book SynopsisChemical Product Formulation Design and Optimization Explore the cutting-edge in chemical product formulation and design In Chemical Product Formulation Design and Optimization: Methods, Techniques, and Case Studies, a team of renowned technologists and engineers delivers a practice guide to chemical product design. Offering real-world case studies for disinfectant formulation, the optimization of defined media, and the formulation of biocomposites, the book contains introduction to the current product design process. In addition to the background of related statistical techniques, readers will find: Clear illustrations, figures, and tables that improve understanding and retention of critical topics Thorough introductions to the mathematical principles of chemical product design A complete examination of intellectual property considerations in the chemical product design process Ideal for process and chemical engineers, Chemical Product Formulation Design and Optimization: Methods, Techniques, and Case Studies is a must-read resource for professionals in the pharmaceutical and cosmetics industry as well as chemical engineers working in the food, paint, and dye industries who seek a one-stop resource that includes the latest advances in chemical product formulation.Table of ContentsBACKGROUND CHEMICAL PRODUCT DESIGN OVERVIEW Specialty Chemicals Overview Traditional Chemical Product Design BACKGROUND TO STATISTICAL METHODS FOR PRODUCT DESIGN Introduction to Design of Experiments Factorial Design Mixture Design Optimal Design Linear Regression Analysis Nonlinear Regression Analysis Artificial Neural Networks PATENTS AND EXCLUSIVITY Patents Overview US/PCT Patent Application Filing Avoiding Infringements GREEN CHEMISTRY Green Chemistry Overview Background to Chemical Products Toxicity Mammalian Toxicity Aquatic Toxicity Green Chemistry Requirements Green Chemistry Regulations CASE STUDIES CASE STUDY#1, DISINFECTANT FORMULATION DESIGN Background to Disinfectant Products Antimicrobial Tests Stability Tests Corrosion Tests Formulation Optimization CASE STUDY#2, DEFINED MEDIA OPTIMIZATION Background on Medium Development Microorganism Analytical Methods Medium Design and Optimization Verification of the optimized Medium DESIGN OF WHEAT STRAW POLYPROPYLENE COMPOSITES Background on Biocomposites and their Applications. Modeling Fiber Properties before and after Compounding Modeling Composite Properties as a Function of Fiber Properties Materials and Response Measurement Methods Results and Discussions Flexural Modulus Flexural Strength Yield Strength Density Optimum Ratio of MAPP/Wheat Straw Summary and Conclusions Concluding Remarks REFERENCES
£71.25
Wiley-VCH Verlag GmbH Experimente rund ums Kochen, Braten, Backen
Book SynopsisKüche und Chemie - passt das zusammen? Ja, wie Georg Schwedt in der dritten Auflage seines Experimentierbuchs zum Kochen, Braten und Backen eindrücklich demonstriert. Von der Molekular- zur Suppenküche, von unterschiedliche Garverfahren bis zur analytischen Erfassung von Nährstoffverlusten beim Kochen: Mit zahlreichen Versuchen und Rezepten werden physikalisch-chemische Vorgänge beim Kochen, Braten und Backen verständlich, erfahr- und sogar genießbar!Trade Review"Dieses Buch ist auf jeden Fall etwas für den vielseitig-interessierten Chemie-Nerd." FRS Chemie Universität Leipzig (01.03.2016) "Also wer nicht nur den Festbraten zubereiten und genießen, sondern auch etwas über die Küchenhistorie erfahren und die physikalisch-chemischen Vorgänge besser verstehen möchte, dem sei dieses Buch, das ein gewisses chemisches Grundwissen voraussetzt, empfohlen." Materials and Corrosion / matcorr.com (66/Nr.12/2015) "Dieses Buch mit der dritten aktualisierten und erweiterten Auflage (...) versetzte mich ins Staunen. Alle 10 Hauptthemen sind hervorragend ausgearbeitet und mit Abbildungen, Zeichnungen, Tabellen, Skizzen und alten fotografierten Kupferstichen versehen, die von heute bis ins 15. Jahrhundert reichen. (...) Meine Empfehlung, jeder der mit Kochen beginnt, sollte eine solche Lektüre besitzen und man bekommt so ein sehr gutes Hintergrundwissen." Amazon.de; Bücher.de; Bol-Kundenrezension; (Kundenrezension) (23.10.2015) "Zusammenfassend bildet das Buch eine unterhaltsame und gleichzeitig interessante Alternative zum alltäglichen Lernstress im Unialltag mit Experimenten, die teilweise selbst auch zuhause durchgeführt werden können." Fachschaftsrat BCE / Universität Potsdam (08.10.2015) "Das Werk richtet sich an alle Köche und Hobby-Köche die genau wissen wollen, was eigentlich abläuft, wenn sie mit ihren Töpfen, Zutaten und Flüssigkeiten hantieren. Ich kann das Buch als Wissenserweiterung und unterhaltsame Reise durch die Welt der Chemie in der eigenen Küche nur empfehlen." Grandgourmand.de (24.08.2015) "Schwendts Buch ist somit nicht weniger als der praxistauglichste Chemiebaukasten der Gegenwart." CarpeGusta.de (24.08.2015) Table of ContentsVorwort zur 3. Auflage VII Vorwort zur 2. Auflage IX Vorwort zur 1. Auflage XI 1 Von der Kochkunst zur Lebensmittelchemie 1 1.1 Die Küche – ein chemisches Laboratorium 1 1.2 Die Schlossküche von Sanssouci 5 1.3 Feinschmecker über die Kochkunst 8 1.4 Chemiker, Physiker und Apotheker über das Kochen, Braten und Backen 23 1.5 Entwicklungen bis zur Lebensmittelchemie heute 33 2 Sieben Parameter für Versuche in der Küche 35 2.1 pH-Werte 35 2.2 Mineralstoffe 36 2.3 Eiweißstoffe (Proteine) 41 2.4 Stärkeprodukte 43 2.5 Reduzierende Stoffe 44 2.6 Phenolische Stoffe 45 2.7 Gerbstoffe (Polyphenole) 46 3 Garungsarten und -verfahren imÜberblick 47 3.1 Definitionen und Systematik 47 3.2 Garverfahren und Lebensmittelgruppen 56 4 Garen inWasser 75 4.1 Kochen 75 4.2 Blanchieren 106 4.3 Dünsten 110 4.4 Dämpfen 113 4.5 Garziehen lassen: Pochieren 114 4.6 Garen in der Mikrowelle 117 5 GareninFett 123 5.1 Braten 123 5.2 Anschwitzen 131 5.3 Schmoren 132 5.4 Frittieren 136 6 Garen in trockener Hitze 139 6.1 Backen 139 6.2 Grillen 154 6.3 Rösten 156 6.4 Toasten 164 7 Garen ohne Hitze 167 7.1 Salzgaren 167 7.2 Essiggaren 170 8 Suppenchemie – Fertigsuppen und ihre Inhaltsstoffe 173 8.1 Aus der Historie 173 8.2 Fertigsuppen-Technologie heute 178 8.3 Inhaltsstoffe von Fertigsuppen 181 9 Molekularküche 187 9.1 Die Väter der Molekularküche 187 9.2 Die Verfahren der Molekularküche 190 9.3 Rezeptbeispiele 191 10 Nährstoffverluste beim Kochen von Gemüse – analytisch mit Teststäbchen erfasst 195 10.1 Einleitung – mit Beschreibung der eingesetzten Teststäbchen 195 10.2 Knollengemüse 198 10.3 Wurzelgemüse 200 10.4 Hülsenfrüchte 201 10.5 Fruchtgemüse 205 10.6 Kohlgemüse 207 Literatur 211 Sachverzeichnis 215
£26.12
Wiley-VCH Verlag GmbH Abriss der Bierbrauerei
Book SynopsisDas Lehrbuch zur Bierbrauerei von Ludwig Narziß ist seit vielen Jahren das Standardwerk auf diesem Gebiet. Die neue, achte Auflage wurde komplett überarbeitet und aktualisiert. Für Studenten ist das Buch ein kurz gefasster Leitfaden, der jedoch alle wesentlichen Aspekte abdeckt. Der bereits im Betrieb tätige Praktiker erhält eine Fülle von Anregungen und einen umfassenden Überblick über den heutigen Stand der Brauereitechnologie sowie der naturwissenschaftlichen Grundlagen der Bierbrauerei. Neu in dieser Auflage: * das Kapitel "Die Deutschen Biertypen" * das Kapitel "Malze aus anderen Getreidearten und deren Verarbeitung" * weiterführende Literatur ab Kapitel 3 Das Autorenteam ist um drei hervorragende Fachleute auf dem Gebiet der Bierbrauerei erweitert worden. Werner Back, Martin Zarnkow und Martina Gastl (alle Technische Universität München, Weihenstephan) stehen für die kontinuierliche Weiterentwicklung dieses Lehrbuches.Trade Review"Von den Autoren wurde das Buch völlig überarbeitet, ergänzt und mit neuen Entwicklungen aus der Praxis und aktuellen Forschungsständen den Anforderungen der heutigen Zeit angepasst." DEI Die Ernährungsindustrie (01.06.2017) Dieses Lehrbuch zur Bierbrauerei ist in seiner jetzt vorliegenden 8. Auflage ein kompaktes, aber umfassendes Kompendium über alle wesentlichen Aspekte der Malz- und Bierherstellung. Für Studenten stellt es einen Leitfaden dar, für den bereits im Betrieb tätigen Praktiker enthält es eine Fülle von Anregungen und gibt einen umfassenden Überblick über den heutigen Stand der Brauereitechnologie sowie der naturwissenschaftlichen Grundlagen der Bierbrauerei. Auf einen Nenner gebracht: Der neue "Abriss der Bierbrauerei" gehört für jeden, der auf der Höhe der modernen Brauereitechnologie sein will, zur Pflichtlektüre. Brauwelt (13.06.2017) Sehr umfassende und kompakte Darstellung des Fachgebiets; gut gegliedert, so dass der Fachmann schnell die gewünschten Informationen findet; gut als Nachschlagewerk zu gebrauchen. Für Studierende, die sich erst mit dem Fachgebiet vertraut machen, wären Abbildungen hilfreich. Prof. Dr.-Ing. habil. Robert Kabbert, Beuth Hochschule für Technik Berlin (30.03.2017) Der Klassiker, der sich in vielen Jahren der Lehre und beruflichen Praxis bewährt hat, beinhaltet als umfassendstes und ultimatives Handbuch seiner Art eingehendes Wissen und weitreichende Informationen zu modernen Mälz- und Brautechnologien auf dem neuesten Stand der Wissenschaft. CHEManager (28.03.2017) "Bewährtes Lehrbuch der Mälzerei- und Brauereitechnologie in komprimierter Zusammenstellung für Studierende und Praktiker." ekz-Infornationsdienst "Das Buch kann als Lehrbuch und Nachschlagewerk empfohlen werden. Es gibt einen umfassenden Überblick über den heutigen Stand der Brauereitechnik und beschreibt ausführlich die naturwissenschaftlichen Grundlagen des Brauprozesses." F & S Filtrieren und Separieren "Dieses Buch ist eher etwas für diejenigen, die sich auch abseits des Studiums weiterbilden wollen. Es muss ein gewisses Interesse an der Materie vorhanden sein, dafür aber wenige Vorkenntnisse, da diese Lektüre sowohl grundlegende als auch spezifischere Informationen zu Braumaterial und Brautechnik liefert." Kommentiertes Vorlesungsverzeichnis der Univ. Potsdam "Das bewährte Standardwerk beinhaltet eingehendes Wissen und weitreichende Informationen zu modernen Mälz- und Brautechnologien auf dem neuesten Stand der Wissenschaft." Allgemeines Ministerialblatt der Bayerischen Staatsregierung (22.12.2017) Table of ContentsVorwort zur achten Auflage ix Vorwort zur siebenten Auflage xi Vorwort zur sechsten Auflage xiii 1 Die Technologie der Malzbereitung 1 1.1 Die Braugerste 1 1.1.1 Die Morphologie der Gerste 1 1.1.2 Chemische Zusammensetzung der Gerste 2 1.1.3 Die Eigenschaften der Gerste und ihre Beurteilung 6 1.2 Die Vorbereitung der Gerste zur Vermӓlzung 9 1.2.1 Die Anlieferung der Gerste 9 1.2.2 Transportanlagen 9 1.2.3 Das Putzen und Sortieren der Gerste 9 1.2.4 Die Lagerung und Aufbewahrung der Gerste 13 1.2.5 Die künstliche Trocknung der Gerste 16 1.2.6 Pflanzliche und tierische Schӓdlinge der Gerste 17 1.2.7 Gewichtsverӓnderungen der Gerste wӓhrend der Lagerung 18 1.3 Das Weichen der Gerste 18 1.3.1 Die Wasseraufnahme des Gerstenkorns 18 1.3.2 Die Sauerstoffversorgung des Weichgutes 19 1.3.3 Die Reinigung der Gerste 20 1.3.4 Wasserverbrauch 21 1.3.5 Die Weicheinrichtungen 21 1.3.6 Die Technik des Weichens 24 1.4 Die Keimung 26 1.4.1 Die Theorie der Keimung 26 1.4.2 Die Praxis der Keimung 35 1.5 Die verschiedenen Mӓlzungssysteme 39 1.5.1 Die Tennenmӓlzerei 39 1.5.2 Die pneumatische Mӓlzerei 43 1.5.3 Die Keimanlagen der pneumatischen Mӓlzerei 46 1.5.4 Das fertige Grünmalz 62 1.6 Das Darren des Grünmalzes 62 1.6.1 Die Vorgӓnge beim Darren 62 1.6.2 Die Darren 68 1.6.3 Praxis des Darrens 75 1.6.4 Kontrolle und Automatisierung der Darrarbeit – Pflege der Darren 83 1.6.5 Maßnahmen zur Energieeinsparung 83 1.6.6 Die Nebenarbeiten beim Darren 84 1.6.7 Die Behandlung des Malzes nach dem Darren 85 1.6.8 Die Lagerung und Aufbewahrung des Malzes 85 1.7 Der Malzschwand 87 1.7.1 Der Weichschwand 88 1.7.2 Atmungs- und Keimschwand 88 1.7.3 Die Ermittlung des Malzschwandes 89 1.8 Die Eigenschaften des Malzes 89 1.8.1 Ӓußere Merkmale 89 1.8.2 Die mechanische Analyse 89 1.8.3 Die chemisch-technische Analyse 90 1.9 Malze aus anderen Getreidearten 92 1.9.1 Weizenmalz 92 1.9.2 Malze aus anderen Getreidearten 94 1.9.3 Pseudogetreide 96 1.9.4 Spezialmalze 97 1.9.5 Die Kleinmӓlzung 99 2 Die Technologie der Würzebereitung 101 2.1 Die Rohmaterialien des Brauprozesses 101 2.1.1 Malz 101 2.1.2 Ersatzstoffe desMalzes 101 2.1.3 Das Brauwasser 103 2.1.4 Der Hopfen 115 2.2 Das Schroten des Malzes 126 2.2.1 Die Kontrolle des Schrotes 128 2.2.2 Die Schrotmühlen 128 2.2.3 Beschaffenheit und Zusammensetzung des Schrotes 135 2.2.4 Die Anordnung der Schroterei 136 2.3 Die Herstellung der Würze 136 2.3.1 Die Theorie des Maischens 137 2.3.2 Die Praxis des Maischens 145 2.3.3 Die Maischverfahren 150 2.3.4 Spezielle Probleme beim Maischen 160 2.3.5 Die Kontrolle des Maischprozesses 161 2.4 Die Gewinnung der Würze (Das Ablӓutern) 163 2.4.1 Das Ablӓutern mit dem Lӓuterbottich 163 2.4.2 Der Lӓuterbottich 163 2.4.3 Der Lӓutervorgang im Lӓuterbottich 166 2.4.4 Ablӓutern mit dem konventionellen Maischefilter 175 2.4.5 Dünnschicht-Maischefilter mit Membranen 176 2.4.6 Der Dünnschicht-Kammerfilter 178 2.4.7 Schlussfolgerungen zu den beiden Systemen der Dünnschicht- Maischefilter im Vergleich zu modernen Lӓuterbottichen 180 2.4.8 Der Strainmaster 180 2.4.9 Kontinuierliche Lӓutermethoden 181 2.4.10 Das Vorlaufgefӓß 182 2.5 Das Kochen und Hopfen der Würze 182 2.5.1 Die Würzepfannen 182 2.5.2 Physikalische Vorgӓnge bei der Würzekochung 187 2.5.3 Die Koagulation des Eiweißes 188 2.5.4 Die Hopfung der Würze 190 2.5.5 Das Verhalten von Aromastoffen der Würze 197 2.5.6 Technologische und energiewirtschaftliche Beurteilung moderner Würzekochsysteme 200 2.5.7 Das Ausschlagen der Würze 206 2.5.8 Die Ausschlagwürze 207 2.5.9 Die Reinigung der Sudwerksanlage 208 2.5.10 Die Automatisierung des Würzekochprozesses 209 2.5.11 Möglichkeiten des Einsatzes von Extraktresten 209 2.5.12 Die Treber 211 2.5.13 Sicherheit und Gleichmӓßigkeit des Sudablaufes 211 2.6 Die Sudhausausbeute 212 2.6.1 Die Berechnung der Sudhausausbeute 212 2.6.2 Die Beurteilung der Sudhausausbeute 213 2.6.3 Schlussfolgerungen zum Thema Ausbeute 216 2.7 Würzekühlung und Trubausscheidung 216 2.7.1 Die Abkühlung der Würze 216 2.7.2 Die Sauerstoffaufnahme der Würze 216 2.7.3 Die Ausscheidung des Trubs 217 2.7.4 Sonstige Vorgӓnge 218 2.7.5 Kühlhauseinrichtung 218 2.7.6 Der Betrieb mit Kühlschiff, Berieselungskühler oder geschlossenem Kuhler 218 2.7.7 Geschlossene Würzekühlsysteme 220 2.8 Die Bestimmung der Kaltwürze-Ausbeute 228 2.8.1 Messwerte 228 2.8.2 Errechnung der Kaltwürze-Ausbeute 229 2.8.3 Die Gesamtausbeute bei der Würzebereitung (Overall Brewhouse Yield – OBY) 229 3 Die Technologie der Gärung 231 3.1 Die Bierhefen 231 3.1.1 Morphologie der Hefe 231 3.1.2 Die chemische Zusammensetzung der Hefe 232 3.1.3 Die Enzyme der Hefe 232 3.1.4 Die Vermehrung der Hefe 233 3.1.5 Die Genetik der Hefe 234 3.1.6 Gen-Manipulation der Hefe 234 3.1.7 Autolyse der Hefe 236 3.2 Der Stoffwechsel der Hefe 236 3.2.1 Der Kohlenhydratstoffwechsel 237 3.2.2 Der Eiweißstoffwechsel 239 3.2.3 Der Fettstoffwechsel 240 3.2.4 Der Mineralstoffwechsel 241 3.2.5 Wuchsstoffe (Vitamine) 242 3.2.6 Die Stoffwechselprodukte und ihre Bedeutung für die Beschaffenheit des Bieres 242 3.3 Die untergӓrige Hefe in der Praxis der Brauerei 246 3.3.1 DieWahl der Hefe 246 3.3.2 Die Reinzucht der Bierhefen 247 3.3.3 Entartung und Degeneration der Hefe 249 3.3.4 Gewinnung der Hefe 249 3.3.5 Reinigen der Hefe 250 3.3.6 Lagerung der Hefe 251 3.3.7 Versand der Hefe – Trockenhefen 252 3.3.8 Der Zustand der Hefe 252 3.4 Die Gӓrung in der untergӓrigen Brauerei 253 3.4.1 Die Gӓrrӓume 253 3.4.2 Die Gӓrgefӓße 255 3.4.3 Das Anstellen der Würze mit Hefe 260 3.4.4 Die Gӓrführung 264 3.4.5 Der Verlauf der Hauptgӓrung 264 3.4.6 Der Vergӓrungsgrad 267 3.4.7 Die Schlauchreife des Bieres 269 3.4.8 Die Verӓnderung der Würze wӓhrend der Gӓrung 269 3.4.9 Die Gewinnung der Gӓrungskohlensӓure 272 3.5 Die Nachgӓrung und Lagerung des Bieres 274 3.5.1 Die Lagerkeller 274 3.5.2 Die Lagergefӓße 276 3.5.3 Der Verlauf der Nachgӓrung 277 3.6 Moderne Methoden zur Vergӓrung und Lagerung des Bieres 285 3.6.1 Die konventionelle Arbeitsweise bei Gӓrtanks und Großgefӓßen 285 3.6.2 Die Anwendung von Zwischenlagertanks, der Einsatz einer Jungbierzentrifuge 289 3.6.3 Verfahren zur beschleunigten Gӓrung und Reifung des Bieres 290 3.6.4 Kontinuierliche Gӓrverfahren 297 3.6.5 Anlage mit klassischen ZKGs für ein Durchflussverfahren 298 3.6.6 Die Kalthopfung des Bieres 298 4 Die Filtration des Bieres 301 4.1 Die Theorie der Filtration 301 4.2 Die Technik der Filtration 302 4.2.1 Die Massefiltration 303 4.2.2 Die Kieselgurfiltration 304 4.2.3 Die Schichtenfilter 310 4.2.4 Die Membranfiltration 311 4.2.5 Die Zentrifugen 312 4.3 Die Kombination der Klӓrverfahren 313 4.4 Wege zum Ersatz der Kieselgurfiltration 314 4.4.1 Kombination von Zentrifuge und Massefilter 314 4.4.2 Kombination von Feinklӓrzentrifuge und Horizontalfilter 314 4.4.3 Multi-Mikrofiltration 314 4.4.4 Filterschichten 315 4.4.5 Anwendung synthetischer Extrudate 315 4.4.6 Kreuzstrom-Mikrofiltration 316 4.4.7 Folgerung zu modernen Filtersystemen 320 4.5 Die Hilfs- und Kontrollapparate der Filtration 320 4.5.1 Hilfsapparate 320 4.5.2 Kontrollgerӓte 321 4.6 Einleitung und Beendigung der Filtration 322 4.7 Das Gelӓger 322 4.8 Die Druckluft 323 5 Das Abfüllen des Bieres 325 5.1 Die Aufbewahrung des filtrierten Bieres 325 5.2 Die Fassfüllerei 325 5.2.1 Die Fӓsser 325 5.2.2 Die Fassreinigung 326 5.2.3 Die Fassabfüllung 327 5.2.4 Verbesserungen in der herkömmlichen Fassfüllerei 328 5.2.5 Die Reinigung und Abfüllung zylindrischer Metӓllfasser (Kegs) 328 5.2.6 Der Fassfüll- und Stapelkeller 331 5.3 Die Flaschen- und Dosenfüllerei 331 5.3.1 Die Gefӓße 331 5.3.2 Die Flaschenreinigung 334 5.3.3 Die Flaschenfüllung 336 5.3.4 Reinigen und „Sterilisieren“der Füllmaschinen 341 5.3.5 Verschließen der Flaschen 342 5.3.6 Aufnahme von Sauerstoff beim Abfüllen 342 5.4 „Sterilabfüllung“und Pasteurisation des Bieres 346 5.4.1 „Sterilabfüllung“346 5.4.2 Pasteurisation des Bieres 349 5.5 Gliederung der Flaschenfüllerei 352 6 Bierschwand 353 6.1 Faktoren des Bierschwandes 353 6.1.1 Würzeschwand 353 6.1.2 Eigentlicher Bierschwand 355 6.2 Ermittlung des Bierschwandes 357 6.2.1 Berechnung des Volumenschwandes 357 6.2.2 Ermittlung der Mehr- bzw. Fehlmengen 358 6.2.3 Berechnung der aus 100 kg Malz erzielten Würze- und Biermenge 358 6.2.4 Berechnung des Extraktschwandes ab Ausschlagwürze bzw. ab Malzschüttung 358 6.2.5 Die Restbierwirtschaft 359 7 Das fertige Bier 361 7.1 Zusammensetzung des Bieres 361 7.1.1 Bierextrakt 361 7.1.2 Flüchtige Bestandteile 362 7.2 Einteilung der Biere 362 7.3 Eigenschaften der Biere 363 7.3.1 Allgemeine Eigenschaften 363 7.3.2 Redoxpotenzial des Bieres 363 7.3.3 Farbe des Bieres 364 7.4 Aroma des Bieres 364 7.4.1 Aromamerkmale 364 7.4.2 Beeinflussung der Geschmacksfaktoren 365 7.4.3 Geschmacksfehler des Bieres 367 7.5 Schaum des Bieres 369 7.5.1 Theorie des Schaumes 369 7.5.2 Technologische Einflüsse auf den Bierschaum 370 7.6 Chemisch-physikalische Haltbarkeit und ihre Stabilisierung 373 7.6.1 Zusammensetzung der kolloiden Trübungen 373 7.6.2 Ausbildung der kolloiden Trübungen 374 7.6.3 Technologische Maßnahmen zur Verbesserung der kolloiden Stabilitӓt 374 7.6.4 Stabilisierung des Bieres 374 7.6.5 Geschmacksstabilitӓt des Bieres 381 7.6.6 Methoden zur Kontrolle und Vorhersage der Geschmacksstӓbilitat 387 7.6.7 Chemische Biertrübungen 388 7.6.8 Wildwerden des Bieres (Gushing) 389 7.7 Die Filtrierbarkeit des Bieres 391 7.7.1 Ursachen einer schlechten Filtrierbarkeit des Bieres 391 7.7.2 Abhilfemaßnahmen 393 7.8 Biologische Stabilitӓt des Bieres 394 7.8.1 Kontaminationsursachen 394 7.8.2 Sicherung der biologischen Haltbarkeit 396 7.9 Physiologische Wirkung des Bieres 397 7.9.1 Nӓhrwert des Bieres 397 7.9.2 Diӓtetische Wirkung des Bieres 398 7.10 Deutsche Biertypen 399 7.10.1 Helles Lagerbier 399 7.10.2 Hell Export (12,5 GG%+) 399 7.10.3 Pilsener Biere 400 7.10.4 Heller Bock 400 7.10.5 Mӓrzenbier 401 7.10.6 Dunkle und Schwarzbiere 401 7.10.7 Deutscher Porter 402 7.10.8 Rauchbier 402 7.11 Besondere Biere 402 7.11.1 Frühere Diӓtbiere 403 7.11.2 Nӓhrbiere 405 7.11.3 Alkoholfreie Biere 405 7.11.4 Verfahren zur Begrenzung des Alkoholgehaltes 406 7.11.5 Alkoholentzug mit physikalischen Verfahren 408 7.11.6 Die Kombination der verschiedenen Verfahren zur Herstellung von alkoholfreiem Bier 411 7.11.7 Leichtbiere 412 8 Die Obergärung 415 8.1 Allgemeines 415 8.2 Die obergӓrige Hefe 415 8.2.1 Morphologische Merkmale 415 8.2.2 Physiologische Unterschiede 416 8.2.3 Gӓrungstechnologische Merkmale 416 8.2.4 Hefebehandlung 417 8.3 Die Fuhrüng der Obergӓrung 418 8.3.1 Gӓrraum und Gӓrbehӓlter 418 8.3.2 Die Würzebeschaffenheit 419 8.3.3 Das Anstellen 419 8.3.4 Der Ablauf der Hauptgӓrung 420 8.3.5 Die Verӓnderung der Würze wӓhrend der Obergӓrung 422 8.3.6 Die Nachgӓrung 423 8.3.7 Filtration und Abfüllung 425 8.4 Verschiedene obergӓrige Biere und ihre Herstellung 426 8.4.1 Das Altbier (Dusseldorf, Niederrhein) 426 8.4.2 Das Kölsch 428 8.4.3 Weizenbier – hefefrei 429 8.4.4 Hefeweizenbier 432 8.4.5 Obergӓrige Biere aus Malzen anderer Getreidearten als Gerste und Weizen 436 8.4.6 Das Berliner Weißbier 438 8.4.7 Traditionelle obergӓrige Biere 439 8.4.8 Malzbier (auch Süßbier genannt) 440 8.4.9 Obergӓrige Nӓhrbiere bayerischer Brauart 441 8.4.10 Obergӓrige, alkoholfreie Biere 441 8.4.11 Obergӓrige Leichtbiere 441 8.5 Glutenfreie Biere 441 8.5.1 Herstellung aus konventionellen Rohstoffen – züchterische Modifikation der Rohstoffe 442 8.5.2 Enzymatische Modifikation der Rohstoffe 442 8.5.3 Bierherstellung aus glutenfreien Zucker- bzw. Stӓrkequellen 442 8.5.4 Kohlenhydratreiche Körnerfrüchte 442 9 Das Brauen mit hoher Stammwürze 445 9.1 Die Herstellung der starkeren Würze 445 9.1.1 Das Ablautern 445 9.1.2 Das Maischen 445 9.1.3 Das Würzekochen 445 9.1.4 Whirlpoolbetrieb 446 9.1.5 Die Verdünnung der starken Wurze bei der Würzekühlung 446 9.2 Die Vergarung der starkeren Würzen 446 9.3 Die Verdünnung des ausgereiften Bieres 447 9.4 Die Eigenschaften der Biere 448 Weiterführende Literatur 449 Sachregister 453
£58.50
Wiley-VCH Verlag GmbH Automated Sample Preparation: Methods for GC-MS
Book SynopsisAn essential guide to the proven automated sample preparation process While the measurement step in sample preparation is automated, the sample handling step is manual and all too often open to risk and errors. The manual process is of concern for accessing data quality as well as producing limited reproducibility and comparability. Handbook of Automated Sample Preparation for CG-MS and LC-MS explores the advantages of implementing automated sample preparation during the handling phase for CG-MS and LC-MS. The author, a noted expert on the topic, includes information on the proven workflows that can be put in place for many routine and regulated analytical methods. This book offers a guide to automated workflows for both on-line and off-line sample preparation. This process has proven to deliver consistent and comparable data quality, increased sample amounts, and improved cost efficiency. In addition, the process follows Standard Operation Procedures that are essential for audited laboratories. This important book: Provides the information and tools needed for the implementation of instrumental sample preparation workflows Offers proven and detailed examples that can be adapted in analytical laboratories Shows how automated sample preparation can reduce cost per sample, increase sample amounts, and produce faster results Includes illustrative examples from various fields such as chemistry to food safety and pharmaceuticals Written for personnel in analytical industry, pharmaceutical, and medical laboratories, Handbook of Automated Sample Preparation for CG-MS and LC-MS offers the much-needed tools for implementing the automated sample preparation for analytical laboratories.Table of ContentsForeword xiii Preface xv 1 Introduction 1 1.1 A Perspective on Human Performance 2 References 5 2 The Analytical Process 7 2.1 Laboratory Logistics 7 2.1.1 Analytical Benefits of Instrumental Workflows 9 2.1.1.1 Data Quality 11 2.1.1.2 Turnkey Operation 11 2.1.1.3 Green Analytical Chemistry 11 2.1.1.4 Productivity 12 2.1.2 Standard Operation Procedure 13 2.1.3 Economical Aspects 15 References 16 3 Workflow Concepts 19 3.1 Sample Preparation Workflow Design 19 3.1.1 Transfer of Standard Methods to Automated Workflows 20 3.1.2 Method Translation 21 3.1.2.1 Sketching the Automated Workflow 22 3.1.2.2 Robotic System Configuration 22 3.1.3 Online or Offline Configuration 25 3.2 Instrumental Concepts 25 3.2.1 Workstations 25 3.2.2 Revolving Tray Autosamplers 26 3.2.3 Selective Compliance Articulated Robots 28 3.2.4 Cartesian Robots 28 3.2.5 Multiple Axis Robots 32 3.2.6 Collaborative Robots 33 3.3 Sample Processing 35 3.3.1 Sequential Sample Preparation 35 3.3.2 Prep-ahead Mode 35 3.3.3 Incubation Overlapping 36 3.3.4 Batch Processing 36 3.3.5 Parallel Processing Workflows 38 3.3.6 Sample Identification 38 3.3.6.1 Barcodes 38 3.3.6.2 Radio-Frequency Identification Chips 40 3.4 Tool Change 41 3.4.1 Manual Tool Change 41 3.4.2 Automated Tool Change 42 3.4.3 Tool Identification 44 3.5 Object Transport 46 3.5.1 Magnetic Transport 46 3.5.2 Gripper Transport 48 3.5.3 Needle Transport 50 3.6 Vial Decapping 50 References 52 4 Analytical Aspects 55 4.1 Liquid Handling 55 4.1.1 About Drops and Droplets 55 4.1.2 Syringes 56 4.1.2.1 Precision and Accuracy 57 4.1.2.2 Syringe Needles 58 4.1.2.3 Syringe Needle Point Styles 59 4.1.2.4 Syringe Plunger Types 60 4.1.2.5 Syringe Termination 61 4.1.2.6 Operational Parameters 62 4.1.3 Vial Bottom Sensing 66 4.1.4 Pipetting 67 4.1.4.1 Air Displacement Pipettes 68 4.1.4.2 Positive Displacement Pipets 69 4.1.4.3 Pipetting Modes 69 4.1.4.4 Aspiration 71 4.1.4.5 Dispensing 73 4.1.4.6 Liquid-Level Detection 74 4.1.4.7 Liquid Classes 75 4.1.4.8 Pipet Tips 75 4.1.4.9 Functional Pipet Tips 78 4.1.4.10 Pipet Tip Materials 81 4.1.5 Dilutor/Dispenser Operation 82 4.1.6 Flow Cell Sampling 84 4.2 Solid Materials Handling 85 4.2.1 Workflows with Solid Materials 86 4.2.2 Automated Solids Dosing by Powder Dispensing 86 4.3 Weighing 88 4.4 Extraction 90 4.4.1 Liquid Extraction 91 4.4.2 Pressurized Fluid Extraction 92 4.4.2.1 Solvents and Extraction 93 4.4.2.2 Miniaturization and Automation 94 4.4.2.3 In-Cell Clean-Up 96 4.4.2.4 International Standard Methods 97 4.4.3 Liquid/Liquid Extraction 97 4.4.4 Dispersive Liquid/Liquid Micro-Extraction 100 4.4.4.1 Automated DLLME Workflows 103 4.4.4.2 DLLME for Soil and Urine 103 4.4.4.3 DLLME for Pesticides in Food 104 4.4.4.4 DLLME Hyphenation with LC 104 4.4.5 Sorptive Sample Preparation 104 4.4.5.1 Solid-Phase Micro-Extraction 105 4.4.5.2 SPME Fiber 109 4.4.5.3 SPME Arrow 112 4.4.5.4 Solid-Phase Micro-Extraction with Derivatization 116 4.4.5.5 Direct Solid-Phase Micro-Extraction Mass Spectrometry 119 4.4.5.6 Stir Bar Sorptive Extraction 121 4.4.5.7 Thin-Film Micro-Extraction 123 4.5 Clean-Up Procedures 124 4.5.1 Filtration 124 4.5.1.1 Filter Materials 125 4.5.1.2 Syringe Filter 126 4.5.1.3 Filter Vials 127 4.5.2 Solid-Phase Extraction 129 4.5.2.1 The General SPE Clean-Up Procedure 133 4.5.2.2 On-Line SPE 134 4.5.2.3 Micro-SPE Clean-Up 137 4.5.2.4 Syringe-Based Micro-SPE 141 4.5.3 Gel Permeation Chromatography 143 4.5.3.1 Standardized Methods 145 4.5.3.2 Workflow and Instrument Configuration 145 4.5.3.3 GPC-GC Online Coupling 146 4.5.3.4 Micro-GPC-GC Online Coupling 147 4.6 Centrifugation 148 4.7 Evaporation 150 4.8 Derivatization 153 4.8.1 For LC and LC-MS 154 4.8.1.1 Aromatic Acid Chlorides 154 4.8.1.2 Dansylchloride 155 4.8.1.3 Ninhydrin Reaction 155 4.8.1.4 FMOC Derivatization 155 4.8.2 For GC and GC-MS 156 4.8.2.1 Silylation 156 4.8.2.2 Acetylation 157 4.8.2.3 Methylation 157 4.8.2.4 Methoxyamination 158 4.8.2.5 Fluorinating Reagents 158 4.8.3 For GC and GC-MS In-Port Derivatization 159 4.9 Temperature Control 163 4.9.1 Heating 163 4.9.1.1 Incubation Overlapping 163 4.9.2 Cooling 164 4.10 Mixing 166 4.10.1 Vortexing 166 4.10.2 Agitation 167 4.10.3 Spinning 169 4.10.4 Mixing with Syringes 169 4.10.5 Cycloidal Mixing 169 References 171 5 Integration into Analysis Techniques 191 5.1 GC Volatiles Analysis 191 5.1.1 Static Headspace Analysis 192 5.1.1.1 Overcoming Matrix Effects 194 5.1.1.2 Measures to Increase Analyte Sensitivity 195 5.1.1.3 Static Headspace Injection Technique 195 5.1.2 Multiple Headspace Quantification 197 5.1.3 Dynamic Headspace Analysis 201 5.1.3.1 Purge and Trap 202 5.1.3.2 Dynamic Headspace Analysis with In-Tube Extraction 204 5.1.3.3 Dynamic Headspace Analysis Using Sorbent Tubes 207 5.1.3.4 Needle Trap Microextraction 208 5.1.4 Tube Adsorption 210 5.2 GC Liquid Injection 222 5.2.1 Sandwich Injection 222 5.2.2 Hot Needle Injection 222 5.2.3 Liquid Band Injection 224 5.2.4 Automated Liner Exchange 226 5.3 LC–GC Online Injection 230 5.4 LC Injection 233 5.4.1 Dynamic Load and Wash 234 5.4.2 Using LC Injection Ports with a Pipette Tool 235 References 237 6 Solutions for Automated Analyses 247 First About Safety 248 6.1 Dilution 248 6.1.1 Geometric Dilution of Reference Standards 248 6.1.2 Dilution for Calibration Curves 251 6.1.3 Preparation of Working Standards 256 6.2 Derivatization 259 6.2.1 Silylation 260 6.2.2 SPME On-Fiber Derivatization 262 6.2.3 Metabolite Profiling by Methoximation and Silylation 266 6.3 Taste and Odor Compounds Trace Analysis 271 6.4 Sulfur Compounds in Tropical Fruits 276 6.5 Ethanol Residues in Halal Food 284 6.6 Volatile Organic Compounds in Drinking Water 289 6.7 Geosmin and 2-MIB 295 6.8 Solvent Elution from Charcoal 301 6.9 Semivolatile Organic Compounds in Water 304 6.10 Polyaromatic Hydrocarbons in Drinking Water 315 6.11 Fatty Acid Methylester 321 6.11.1 Application 321 6.12 MCPD and Glycidol in Vegetable Oils 328 6.13 Mineral Oil Hydrocarbons MOSH/MOAH 339 6.14 Pesticides Analysis – QuEChERS Extract Clean-Up 347 6.15 Glyphosate, AMPA, and Glufosinate by Online SPE-LC-MS 362 6.16 Pesticides, PPCPs, and PAHs by Online-SPE Water Analysis 368 6.17 Residual Solvents 375 6.18 Chemical Warfare Agents in Water and Soil 382 6.19 Shale Aldehydes in Beer 390 6.20 Phthalates in Polymers 394 References 400 A Appendix 413 A.1 Robotic System Control 413 A.1.1 Maestro Software 413 A.1.2 Chronos Software 414 A.1.3 Graphical Workflow Programming 415 A.1.4 Sample Control Software 416 A.1.5 Local System Control 417 A.1.6 Script Control Language 418 A.2 System Maintenance 418 A.2.1 Syringes 418 A.2.1.1 Manual Syringe Handling 418 A.2.1.2 Syringe Cleaning 418 A.2.1.3 Plunger Cleaning 419 A.2.1.4 Needle Cleaning 419 A.2.1.5 Confirming the Dispensed Volume of a Syringe 420 A.2.1.6 Sterilization 420 A.2.2 Pipettes 421 A.2.2.1 Calibration 421 A.2.2.2 Pipette Parts Maintenance 421 A.2.3 System Hardware Maintenance Schedule 422 A.3 Syringe Needle Gauge 423 A.4 Pressure Units Conversion 425 A.5 Solvents 425 A.5.1 Solvent Miscibility 425 A.5.2 Solvent Stability 428 A.5.2.1 Halogenated Solvents 428 A.5.2.2 Ethers 429 A.5.3 Solvent Viscosity 429 A.6 Material Resistance 429 A.6.1 Glass 432 A.6.2 Polymers 432 A.6.3 Stainless Steel 433 References 437 Glossary 441 References 451 Index 453
£107.96
Wiley-VCH Verlag GmbH Mikro- und Ultrafiltration mit Membranen
Book SynopsisMikro- und Ultrafiltration mit Membranen Klar strukturiert und kompakt wird hier die Mikro- und Ultrafiltration mit Membranen behandelt, von den Grundlagen und Charakterisierung von Membranen bis hin zu industriellen Anwendungen und Instandhaltung Die Mikro- und Ultrafiltration mit Membranen ist eine verbreitete und etablierte Schlüsseltechnologie für die Aufbereitung von Stoffströmen. Im Buch werden sowohl die Grundlagen der Mikro- und Ultrafiltration mit Membranen, Herstellung und Charakterisierung, Filtrationsverfahren, industrielle Anwendungen als auch die Instandhaltung und Reinigung von Membranen behandelt. Prinzipien und praktische Anwendungen werden klar strukturiert dem Leser zugänglich gemacht Behandelt alle Prozesse von Grundlagen bis zu den Anwendungen Unverzichtbar für die Ausarbeitung, Etablierung und Instandhaltung von Membrantrennverfahren Es bietet eine umfassende Einführung in die Theorie und Praxis der Membranfiltration und gibt wertvolle Einblicke in die verschiedenen Anwendungen und Technologien. Ob Sie nun ein erfahrener Ingenieur sind oder gerade erst in die Welt der Membranfiltration eintauchen, dieses Buch wird Ihnen helfen, Ihre Kenntnisse zu vertiefen und Ihre Fähigkeiten zu verbessern. Mit klaren Erklärungen, anschaulichen Beispielen und praktischen Tipps ist es ein unverzichtbares Nachschlagewerk für jeden, der sich mit der Filtration von Flüssigkeiten beschäftigt.Table of ContentsVorwort xi Liste Der Symbole xiii 1 Mikro- und Ultrafiltration mit Membranen 1 1.1 Übersicht über die Membranverfahren 1 1.2 Einordnung der Mikro- und Ultrafiltration 4 1.2.1 Die Mikrofiltration 5 1.2.2 Die Ultrafiltration 6 1.3 Bekannte Verfahrensweisen und Ausführungsformen 9 1.3.1 Dead-End-Filtration (statische Filtration) 9 1.3.2 Crossflow-Filtration mit Membranmodulen 10 1.3.3 Dynamische Filtration mit Filtrationsmaschinen 11 1.3.4 Single-Pass-Crossflow-Filtration 11 1.3.5 GetauchteMembraneninBeckenundBehältern 12 1.4 Entscheidende Faktoren für eine industrielle Membrananwendung 12 1.5 Technische und wirtschaftliche Bedeutung 15 Literatur 17 2 Historische Entwicklung der Mikro- und Ultrafiltration 19 2.1 Entdeckung grundlegender Naturgesetze 19 2.2 Herstellung von Polymermembranen 21 2.3 Entwicklungen der Entkeimungs- und Sterilfiltration 27 2.4 Entwicklung anorganischer Membranen 29 Literatur 32 3 Membranen zur Ultra- und Mikrofiltration 35 3.1 Allgemeine Beschreibung und Einteilung 35 3.2 Polymermembranen und ihre Herstellung 37 3.2.1 Membranherstellung durch Phasenseparation 40 3.2.2 Herstellung von Rohrmembranen durch Spiralwickeln 48 3.2.3 Membranherstellung durch Verstrecken von Polymerfolien 50 3.2.4 Das Kernspurverfahren („track etching“) 51 3.2.5 Herstellung mikroporöser Strukturen durch Sintern 53 3.3 Anorganische Membranen 53 3.4 Charakterisierung von Membranen zur Mikro- und Ultrafiltration 56 3.4.1 Überblick über die zu charakterisierenden Eigenschaften 56 3.4.2 Äußere Abmaße 59 3.4.3 Die Porenstruktur 59 3.4.4 Die Topographie der äußeren Oberfläche 63 3.4.5 Die Permeabilität 64 3.4.6 Die Trenngrenze bzw. das Rückhaltevermögen 71 3.4.7 Benetzungseigenschaften von Membranen 79 3.4.8 Blaspunktdruck und maximale Porengröße 87 3.4.9 Die Porengrößenverteilung 89 3.4.10 Adsorptionseigenschaften und elektrochemische Eigenschaften 94 3.4.11 Mechanische Membraneigenschaften 97 3.4.12 Die Temperatur- und Chemikalienbeständigkeit 99 Literatur 102 4 Relevante Eigenschaften der behandelten Stoffsysteme 105 4.1 Besonderheiten der behandelten Stoffsysteme 105 4.2 Agglomeration und Flockung 108 4.3 Absetzgeschwindigkeit 109 4.4 Verhalten von Partikeln und Makromolekülen im elektrischen Feld 110 4.5 Diffusion 110 4.6 Osmotischer Druck 111 4.7 Das Fließverhalten von Dispersionen 115 4.8 Strömungswiderstand der Deckschicht 122 5 Die Dead-End-Filtration mit Membranen 135 5.1 Einführung 135 5.2 Ausführungsformen 137 5.2.1 Scheibenfilter zur Dead-End-Filtration 137 5.2.2 Capsule-Filter 138 5.2.3 Filterkerzen mit den zugehörigen Gehäusen 138 5.3 Physikalische Überlegungen zur Dead-End-Filtration 142 5.3.1 Flüssigkeits- bzw. Gasdurchsatz reiner Medien 142 5.3.2 Flüssigkeitsdurchsatz bei einer Oberflächenfiltration 144 5.3.3 Die Schmutzaufnahmefähigkeit 148 5.4 Validierung von Membranfiltern 150 5.4.1 Entwicklung der Validierungspraxis 150 5.4.2 Integritätstestverfahren 152 5.4.3 Nachweise für einen unbedenklichen Einsatz von Filtern 160 5.4.4 Qualitätssicherung bei der Produktion 166 Literatur 169 6 Crossflow-Filtration mit durchströmten Membranmodulen 171 6.1 Apparative Ausführung und wichtige Betriebsparameter 171 6.2 Membranmodule zur Crossflow-Filtration 179 6.2.1 Übersicht über einzelne Bauarten 179 6.2.2 Der konzentratseitige Druckabfall im Membranmodul 184 6.3 Betriebsweisen zur Crossflow-Filtration 190 6.3.1 Diskontinuierliche Betriebsweisen 190 6.3.2 Kontinuierliche Betriebsweisen 193 6.3.3 Beispiel zum Vergleich verschiedener Betriebsweisen 195 6.3.4 Die Diafiltration 198 6.4 Berechnungsansätze zur Crossflow-Filtration 203 6.4.1 Bekannte Berechnungsansätze 203 6.4.2 Gekoppeltes Diffusions- und hydrodynamisches Modell 213 6.4.3 Modellierung des zeitlichen Filtrationsverlaufs 218 6.4.4 Schlussfolgerungen 220 6.5 Klassierverfahren 220 6.6 Die UTP-Betriebsweise 221 6.7 Der Einsatz von Gradientenmembranen 223 6.8 Dynamische Precoat-Filtration 225 6.9 Fouling 225 Literatur 228 7 Sonstige Verfahrensweisen mit feststehenden, überströmten Membranen 233 7.1 Single-Pass-Crossflow-Filtration 233 7.2 Filtration mit getauchten Membranen 236 7.3 Pumpe-Düse-Filtersysteme 237 7.4 Crossflow-Filtration mit Dean-Wirbeln 237 7.5 Zyklonmodule 239 Literatur 241 8 Filtrationsmaschinen 243 8.1 Einführung 243 8.2 Rührzellen 245 8.3 Scherspaltfilter mit radialem Spalt und Rührorganen 246 8.4 Filter mit rotierenden Filterscheiben 249 8.5 Filter mit zylindrischen Filterelementen 254 8.6 Filter mit oszillierenden Membranen 260 8.7 Filter mit Schaber zum Entfernen der Deckschicht 260 8.8 Hinweise zur Auslegung und zum Betrieb 261 Literatur 262 9 Zusätzliche Maßnahmen zur Erhöhung des Filtratstroms 265 9.1 Crossflow-Filtration mit periodischer Rückspülung 265 9.2 Crossflow-Filtration mit überlagertem elektrischen Feld 273 9.3 Crossflow-Filtration mit überlagertem Ultraschall 276 9.4 Einsatz abrasiv wirkender Partikeln 277 Literatur 278 10 Anwendungsgebiete der Ultra- und Mikrofiltration 281 10.1 Anwendungen in der Labor- und Analysetechnik 281 10.2 Entkeimungsfiltration von Flüssigkeiten 284 10.3 Entkeimungsfiltration von Gasen 286 10.4 Pyrogenabtrennung 288 10.5 Anwendungen in der Biotechnologie 290 10.6 Anwendungen in der Medizin 298 10.7 Anwendungen in der Lebensmitteltechnik 301 10.7.1 Klären und Entkeimen 302 10.7.2 Anwendungen in der Zucker- und Stärkeindustrie 311 10.7.3 Anwendungen bei der Verarbeitung von Milch und Molke 313 10.7.4 Anwendungen bei der Gewinnung von Sojaprodukten 315 10.7.5 Filtration von Reinigungslösungen 315 10.8 Anwendungen zur Wasseraufbereitung 316 10.8.1 Trinkwassergewinnung 317 10.8.2 Vorbehandlung von Wasser für die Umkehrosmose 319 10.8.3 Rein- und Reinstwasserbereitung 320 10.8.4 Beurteilung der Filtrierbarkeit von Wasser 323 10.8.5 Membranbioreaktoren zur Abwasseraufbereitung 326 10.8.6 Zero Liquid Discharge 330 10.9 Anwendungen in der Produktions- und Umweltschutztechnik 332 10.9.1 Aufarbeitung öl- und fetthaltiger Wässer 333 10.9.2 Recycling von Schleifereiwasser 335 10.9.3 Anwendung bei der elektrophoretischen Tauchlackierung 337 10.9.4 Abtrennung von gefällten Metallverbindungen 337 10.9.5 Anwendungen bei der Herstellung von Zellstoff und Papier 338 10.9.6 Anwendungen in der chemischen Produktion 339 10.10 Mikroporöse Membranen in konventionellen Filterapparaten 342 Literatur 343 11 Reinigung, Desinfektion und Sterilisation von Membrananlagen 347 11.1 Einführung 347 11.2 Die CIP-Reinigung 349 11.3 Desinfektion und Sterilisation von Membrananlagen 361 11.3.1 Einführung 361 11.3.2 Chemische Desinfektion und Desinfektionsmittel 362 11.3.3 Desinfektion und Sterilisation durch Hitze 365 11.3.4 Validierung des Desinfektions- oder Sterilisationserfolgs 367 Literatur 368 12 Hinweise zur Projektbearbeitung 369 12.1 Verfahrensauswahl 369 12.2 Hybridprozesse 371 12.3 Bedeutung experimenteller Untersuchungen 371 12.4 Projektbearbeitung zur Ultra- und Mikrofiltration 373 12.5 Betriebswirtschaftliche Betrachtungen 379 Literatur 385 Stichwortverzeichnis 387
£99.00
Wiley-VCH Verlag GmbH Sustainable Food Packaging Technology
Book SynopsisTowards more sustainable packaging with biodegradable materials! The combination of the continuously increasing food packaging waste with the non-biodegradable nature of the plastic materials that have a big slice of the packaging market makes it necessary to move towards sustainable packaging for the benefit of the environment and human health. Sustainable packaging is the type of packaging that can provide to food the necessary protection conditions, but at the same type is biodegradable and can be disposed as organic waste to the landfills in order to biodegrade through a natural procedure. In this way, sustainable packaging becomes part of the circular economy. ?Sustainable Food Packaging Technology? deals with packaging solutions that use engineered biopolymers or biocomposites that have suitable physicochemical properties for food contact and protection and originate both from renewable or non-renewable resources, but in both cases are compostable or edible. Modified paper and cardboard with increased protective properties towards food while keeping their compostability are presented as well. The book also covers natural components that can make the packaging functional, e.g., by providing active protection to the food indicating food spoilage. * Addresses urgent problems: food packaging creates a lot of hard-to-recycle waste - this book puts forward more sustainable solutions using biodegradable materials * State-of-the-art: ?Sustainable Food Packaging Technology? provides knowledge on new developments in functional packaging * From lab to large-scale applications: expert authors report on the technology aspects of sustainable packagingTable of ContentsPreface xiii Part I Review on Biopolymers for Food Protection 1 1 Emerging Trends in Biopolymers for Food Packaging 3Sergio Torres-Giner, Kelly J. Figueroa-Lopez, Beatriz Melendez-Rodriguez, Cristina Prieto, Maria Pardo-Figuerez, and Jose M. Lagaron 1.1 Introduction to Polymers in Packaging 3 1.2 Classification of Biopolymers 4 1.3 Food Packaging Materials Based on Biopolymers 7 1.3.1 Polylactide 7 1.3.2 Polyhydroxyalkanoates 8 1.3.3 Poly(butylene adipate-co-terephthalate) 9 1.3.4 Polybutylene Succinate 10 1.3.5 Bio-based Polyethylene 11 1.3.6 Bio-based Polyethylene Terephthalate 13 1.3.7 Poly(ethylene furanoate) 14 1.3.8 Poly(ε-caprolactone) 15 1.3.9 Thermoplastic Starch 15 1.3.10 Cellulose and Derivatives 17 1.3.11 Proteins 17 1.3.11.1 Gelatin 18 1.3.11.2 Wheat Gluten 18 1.3.11.3 Soy Protein 20 1.3.11.4 Corn Zein 20 1.3.11.5 Milk Proteins 21 1.4 Concluding Remarks 21 References 24 2 Biopolymers Derived from Marine Sources for Food Packaging Applications 35Jone Uranga, Iratxe Zarandona, Mireia Andonegi, Pedro Guerrero, and Koro de la Caba 2.1 Introduction 35 2.2 Fish Gelatin Films and Coating 37 2.2.1 Collagen and Gelatin Extraction 37 2.2.2 Preparation and Characterization of Fish Gelatin Films and Coatings 39 2.2.3 Food Shelf Life Extension Using Fish Gelatin Films and Coatings 40 2.3 Chitosan Films and Coatings 42 2.3.1 Chitin and Chitosan Extraction 42 2.3.2 Preparation and Characterization of Chitosan Films and Coatings 43 2.3.3 Food Shelf Life Extension Using Chitosan Films and Coatings 44 2.4 Future Perspectives and Concluding Remarks 46 References 46 3 Edible Biopolymers for Food Preservation 57Elisabetta Ruggeri, Silvia Farè, Luigi De Nardo, and Benedetto Marelli 3.1 Introduction 57 3.2 Polysaccharides 61 3.2.1 Alginate 63 3.2.2 Carrageenans 63 3.2.3 Cellulose 67 3.2.4 Chitosan 69 3.2.5 Pectin 70 3.2.6 Pullulan 71 3.2.7 Starch 71 3.3 Proteins 72 3.3.1 Casein 73 3.3.2 Collagen 74 3.3.3 Gelatin 74 3.3.4 Wheat Gluten 75 3.3.5 Whey Protein 75 3.3.6 Silk Fibroin 76 3.3.7 Zein 77 3.4 Lipids 78 3.4.1 Beeswax 80 3.4.2 Candelilla Wax 80 3.4.3 Carnauba Wax 81 3.4.4 Shellac 81 3.5 Edible Composite Materials 82 3.6 Active Coatings 85 3.6.1 Antimicrobial Agents 85 3.6.2 Antioxidant Agents 85 3.7 Materials Selection and Application 86 3.8 Conclusions 87 References 88 Part II Food Packaging Based on Individual Biopolymers and their Composites 107 4 Polylactic Acid (PLA) and Its Composites: An Eco-friendly Solution for Packaging 109Swati Sharma 4.1 Introduction 109 4.2 Synthesis of PLA and Its Properties 110 4.3 Properties Required for Food Packaging 111 4.3.1 Barrier Properties 111 4.3.2 Optical Properties 113 4.3.3 Mechanical Properties 114 4.3.4 Thermal Properties 114 4.3.5 Antibacterial Properties 115 4.4 General Reinforcements for PLA 116 4.4.1 Natural Fibers 116 4.4.2 Synthetic Fibers 121 4.4.3 Functional Fillers 122 4.4.3.1 Clay/PLA Composites 122 4.4.3.2 Metal-oxide/PLA Composites 123 4.5 Biodegradability of PLA 123 4.6 Conclusions and Future Prospects 124 References 124 5 Green and Sustainable Packaging Materials Using Thermoplastic Starch 133Anshu A. Singh and Maria E. Genovese 5.1 Sustainability and Packaging: Toward a Greener Future 134 5.1.1 The Plastic Threat 134 5.1.2 The Call for Sustainability 135 5.1.3 Biomaterials for Sustainable Packaging 135 5.2 Thermoplastic Starch 137 5.2.1 Starch: Physicochemical Properties, Processing, Applications 137 5.2.2 From Starch to Thermoplastic Starch 141 5.2.3 Plasticizers of Starch 142 5.2.4 Processing of Thermoplastic Starch 143 5.3 Thermoplastic Starch-Based Materials in Packaging 145 5.3.1 Technical and Legal Requirements for Packaging Materials 145 5.3.2 Composites of TPS with Fillers 146 5.3.3 Composites of Thermoplastic Starch with Polysaccharides 147 5.3.4 Composites of Thermoplastic Starch with Polyesters 149 5.3.5 Composite of TPS Based on Chemical Modification 152 5.3.6 Commercial Packaging Materials Based on Thermoplastic Starch 152 5.4 Conclusions 153 References 155 6 Cutin-Inspired Polymers and Plant Cuticle-like Composites as Sustainable Food Packaging Materials 161Susana Guzmán-Puyol, Antonio Heredia, José A. Heredia-Guerrero, and José J. Benítez 6.1 Introduction 161 6.1.1 Bioplastics as Realistic Alternatives to Petroleum-Based Plastics 161 6.1.2 The Plant Cuticle and Cutin: The Natural Food Packaging of the Plant Kingdom 166 6.1.3 A Comparison of Cutin with Commercial Plastics and Bioplastics 169 6.1.4 Tomato Pomace is the Main and Most Sustainable Cutin Renewable Resource 172 6.1.5 Toward a Sustainable Industrial Production of Cutin-Inspired ommodities 173 6.2 Synthesis of Cutin-Inspired Polyesters 173 6.2.1 The Influence of the Monomer Architecture in the Physical and Chemical Properties of Cutin-Inspired Polyhydroxyesters 173 6.2.2 The Effect of Oxidation in the Structure and Properties of Cutin-Inspired Fatty Polyhydroxyesters 177 6.2.3 Surface vs. Bulk Properties 180 6.3 Cutin-Based and Cutin-like Coatings and Composites 183 6.3.1 Cutin-Inspired Coatings on Metal Substrates 183 6.3.2 Plant Cuticle-like Film Composites 186 6.4 Concluding Remarks 188 Acknowledgments 189 References 189 7 Zein in Food Packaging 199Ilker S. Bayer 7.1 Introduction 199 7.2 Solvent Cast Zein Films 202 7.3 Chemical Characteristics of Solvent-Cast Zein Films 206 7.4 Extrusion of Zein 209 7.5 Zein Laminates with Various Packaging Films 212 7.6 Zein Blend Films with Other Biopolymers 214 7.7 Outlook and Future Directions 217 7.8 Conclusions 219 References 220 Part III Biocomposites of Cellulose and Biopolymers in Food Packaging 225 8 Cellulose-Reinforced Biocomposites Based on PHB and PHBV for Food Packaging Applications 227Estefania L. Sanchez-Safont, Luis Cabedo, and Jose Gamez-Perez 8.1 Introduction to Bioplastics 227 8.2 PHB and PHBV: a SWOT (Strength, Weakness, Opportunity, and Threat) Analysis 229 8.2.1 Polyhydroxyalkanoates (PHA): Poly-3-hydroxybutyrate (PHB) and Poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) 229 8.2.2 PHB and PHBV: Strengths 231 8.2.3 PHB and PHBV: Weaknesses 232 8.2.4 PHB and PHBV: Opportunities 235 8.2.5 PHB and PHBV: Threats 236 8.3 Cellulose Biocomposites 236 8.3.1 Structure, Composition, and General Properties of Lignocellulosic fibers 237 8.3.2 Lignocellulosic Fibers in Polymer Composites 240 8.3.2.1 Fiber Modification 241 8.3.2.2 Fiber-matrix Chemical Anchor 242 8.4 PHA/Fiber Composites 242 8.4.1 PHB and PHBV/Cellulose Composites: Achievements and Limitations 242 8.4.2 New Trends in PHB and PHBV/Cellulose-Reinforced Biocomposites 245 8.4.3 The Potential Use of PHA-Based Composites in the Food Packaging Sector 247 8.5 Conclusions 248 References 250 9 Poly-Paper: Cellulosic-Filled Eco-composite Material with Innovative Properties for Packaging 263Romina Santi, Silvia Farè, Alberto Cigada, and Barbara Del Curto 9.1 Introduction 263 9.2 Materials 265 9.2.1 Matrix 265 9.2.2 Reinforcement 266 9.2.3 Composite Formulations 266 9.2.4 Extrusion Process 267 9.3 Mechanical Properties 268 9.4 Suitable Processes for Poly-Paper 268 9.4.1 Injection Molding 269 9.4.2 Thermoforming 270 9.4.3 Poly-Paper Expansion 270 9.5 Additional Properties of Poly-Paper 272 9.5.1 Shape Memory Forming 272 9.5.2 Self-Healing by Water 273 9.6 End-of-Life 275 9.7 Conclusions 277 References 278 10 Paper and Cardboard Reinforcement by Impregnation with Environmentally Friendly High-Performance Polymers for Food Packaging Applications 281Uttam C. Paul and José A. Heredia-Guerrero 10.1 Introduction 281 10.2 Improving the Barrier Properties of Paper and Cardboard by Impregnation in Capstone and ECA Solutions 282 10.2.1 Preparation of the Samples 283 10.2.2 Morphological Characterization 283 10.2.3 Chemical Characterization 285 10.2.4 Barrier Properties, Wettability, and Water Uptake 285 10.2.5 Mechanical Characterization 291 10.3 Water, Oil and Grease Resistance of Biocompatible Cellulose Food Containers 292 10.3.1 Preparation of the Samples 294 10.3.2 Morphological Analysis 295 10.3.3 Water and Oil Resistance Properties 296 10.3.4 Mechanical, Grease Resistance, and Barrier Properties of Treated Paper 296 10.4 Conclusions 300 References 300 11 Nanocellulose-Based Multidimensional Structures for Food Packaging Technology 305Saumya Chaturvedi, Sadaf Afrin, Mohd S. Ansari, and Zoheb Karim 11.1 Introduction 305 11.2 Necessities in Food Packaging Industry 307 11.3 An Overview of NC 308 11.4 Cellulose Fibrils and Crystalline Cellulose 308 11.5 Why NC for Packaging? 310 11.6 Effect on NCs on Networking 310 11.7 Migration Process of Molecules Through NC Dimensional Film 312 11.8 Processing Routes of NC-based Multidimensional Structures for Packaging 312 11.9 CNFs for Barrier Application 314 11.10 CNCs for Barrier Application 315 11.11 Conclusion 316 References 317 Part IV Natural Principles in Active and Intelligent Food Packaging for Enhanced Protection and Indication of Food Spoilange or Pollutant Presence 323 12 Sustainable Antimicrobial Packaging Technologies 325Selçuk Yildirim and Bettina Röcker 12.1 Introduction 325 12.2 Antimicrobial Food Packaging 326 12.3 Natural Antimicrobial Agents 328 12.3.1 Plant Extracts 328 12.3.2 Organic Acids, Their Salts and Anhydrides 335 12.3.3 Bacteriocins 336 12.3.4 Enzymes 337 12.3.5 Chitosan 338 12.4 Conclusions and Perspectives 340 References 341 13 Active Antioxidant Additives in Sustainable Food Packaging 349Thi-Nga Tran 13.1 Introduction 349 13.2 Antioxidant Capacities of Plant-Based Food Packaging Materials 352 13.2.1 Antioxidant Natural Extracts in Food Packaging 353 13.2.2 Antioxidant Raw Materials Derived from Food Wastes and Agro-Industry by-Products 359 13.3 Conclusions and Future Perspectives 361 References 363 14 Natural and Biocompatible Optical Indicators for Food Spoilage Detection 369Maria E. Genovese, Jasim Zia, and Despina Fragouli 14.1 Food Spoilage 370 14.1.1 Food Spoilage: A Never-ending Challenge 370 14.1.2 Microbial Spoilage 370 14.1.3 Physical and Chemical Spoilage 372 14.1.4 Factors Determining Food Spoilage 372 14.2 Food Spoilage Detection 372 14.2.1 Conventional Methods and Technologies for the Detection of Food Spoilage 372 14.2.2 On Package and on Site Sensing Technologies: A New Strategy for Food Spoilage Detection 373 14.3 Natural and Biocompatible Optical Indicators for Food Spoilage 379 14.3.1 Optical and Colorimetric Detection 379 14.3.2 Natural and Biocompatible Indicators 379 14.3.3 Detection of pH, Acids, and Amines 380 14.3.4 Detection of Oxygen 386 14.3.5 Detection of Carbon Dioxide 387 14.3.6 Detection of Bacteria 388 14.4 Concluding Remarks and Future Perspectives 388 References 389 Part V Technological Developments in the Engineering of Biocomposite Materials for Food Packaging Applications 395 15 Biopolymers in Multilayer Films for Long-Lasting Protective Food Packaging: A Review 397Ilker S. Bayer 15.1 Introduction 397 15.2 Biopolymer Coatings and Laminates on Common Oil-Derived Packaging Polymers 399 15.3 Multilayer Films Based on Proteins 405 15.4 Multilayer Films Based on Polysaccharides 409 15.5 Coatings on Biopolyesters 415 15.6 Summary and Outlook 418 References 420 Index 427
£98.96
Wiley-VCH Verlag GmbH Natural Flavours, Fragrances, and Perfumes:
Book SynopsisNatural Flavours, Fragrances, and Perfumes Explore this one-stop resource on every relevant aspect of natural flavors and fragrances The use of sensory science has the potential to give scientists, researchers, and industry specialists a way to overcome the challenges in nutraceuticals and, more generally, in the functional food industry. Flavor and fragrance have the potential to significantly influence consumer satisfaction with products and its success in the marketplace. In order to effectively produce and optimize a customer’s experience in both food and household products, it is essential to have a strong understanding of the fundamentals of chemistry and physicochemical processes. Natural Flavours, Fragrances and Perfumes offers a comprehensive look at the sensory sciences necessary to produce the most appealing olfactory responses derived from natural resources for consumers – from the analysis and biomolecular aspects of natural products to the processing and isolation of desired products, from the perceptual properties to regulatory aspects. Specifically, the book presents novel approaches to the processes involved in producing plant-derived functional products by examining how characteristic flavors arise due to complex interactions between hundreds of molecules, as well as studying the physiological variables that affect flavor perception. Natural Flavours, Fragrances, and Perfumes readers will also find: Insights into the identification and characterization of plant volatiles, as well as chromatography techniques for sensory fingerprints Chapters devoted to biosynthesis and metabolic pathways for the development of household products composed of organic materials Additional chapters on the advances in flavor science, on technological advances in the effective delivery of flavor, and challenges in the retention and release of flavor Natural Flavours, Fragrances, and Perfumes is a useful reference for chemists of all kinds, food scientists, biotechnologists, and perfumers, as well as those studying in these fields.Table of ContentsChapter 1 - Natural Product diversity and its biomolecular aspects Chapter 2 - Sensory science and its perceptual properties Chapter 3 - Flavor technology and flavor delivery systems Chapter 4 - Identification and comprehensive characterization of plant volatiles Chapter 5 - Multidimensional chromatography techniques for sensory fingerprints Chapter 6 - Flavor signatures of beverages and confectionaries Chapter 7 - Molecular complexities in aroma chemistry and perfumes Chapter 8 - Recent advances in the processing of aromatic plants Chapter 9 - Biogenesis of plant derived aroma compounds Chapter 10 - A Sense of design: Pathway unravelling and rational metabolic-flow switching for the production of novel materials Chapter 11 - The Resinoids: Their chemistry and uses Chapter 12 - Seasonings, herbs and spices Chapter 13 - Flavor biochemistry of fermented alcoholic beverages Chapter 14 - Regulatory aspects for flavor and fragrance materials Chapter 15 - Challenges of sensory science: retention and release Chapter 16 - Virtual screening: an insilico approach to aroma compounds Chapter 17 - Endpoint: A sensory perception of the future
£103.50
Wiley-VCH Verlag GmbH Principles in Microbiome Engineering
Book SynopsisPrinciples in Microbiome Engineering Provides an overview of the techniques and applications insight into the complex composition and interactions of microbiomes Microbiomes, the communities of microorganisms that inhabit specific ecosystems or organisms, can be engineered to modify the structure of microbiota and reestablish ecological balance. In recent years, a better understanding of microbial composition and host-microbe interactions has led to the development of new applications for improving human health and increasing agricultural productivity and quality. Principles in Microbiome Engineering introduces readers to the tools and applications involved in manipulating the composition of a microbial community to improve the function of an eco-system. Covering a range of key topics, this up-to-date volume discusses current research in areas such as microbiome-based therapeutics for human diseases, crop plant breeding, animal husbandry, soil engineering, food and beverage applications, and more. Divided into three sections, the text first describes the critical roles of systems biology, synthetic biology, computer modelling, and machine learning in microbiome engineering. Next, the volume explores various state-of-the-art applications, including cancer immunotherapy and prevention of diseases associated with the human microbiome, followed by a concluding section offering perspectives on the future of microbiome engineering and potential applications. Introduces a variety of applications of microbiome engineering in the fields of medicine, agriculture, and food and beverage products Presents current research into the complex interactions and relationships between microbiomes and biotic and abiotic elements of their environments Examines the use of technologies such as Artificial Intelligence (AI), Machine Learning (ML), and Big Data analytics to advance understanding of microbiomes Discusses the engineering of microbiomes to address human health conditions such as neuro psychiatric disorders and autoimmune and inflammatory diseases Edited and authored by leading researchers in the rapidly evolving field, Principles in Microbiome Engineering is an essential resource for biotechnologists, biochemists, microbiologists, pharmacologists, and practitioners working in the biotechnology and pharmaceutical industries.Table of ContentsPreface xiii 1 Diet-Based Microbiome Modulation: You are What You Eat 1Jiashu Li, Zeyang Qu, Feng Liu, Hao Jing, Yu Pan, Siyu Guo, and Chun Loong Ho 1.1 Introduction 1 1.1.1 Microbiome Diversity in Human Body 1 1.1.1.1 Oral Microbiome 2 1.1.1.2 Gastrointestinal Microbiome 3 1.1.1.3 Skin Microbiome 4 1.1.1.4 Respiratory Microbiome 5 1.1.1.5 Urogenital Microbiome 5 1.1.2 Elements that Influence Microbiome Development 5 1.1.2.1 Prebiotics 6 1.1.2.2 Probiotics 6 1.1.2.3 Diet and Nutrition 7 1.1.3 Current Approaches Employed in Studying the Human Microbiome 7 1.2 Dietary Lifestyle Variation Affecting Host Microbiome 8 1.2.1 Dietary Role in Shaping the Microbiome 8 1.2.1.1 Protein and Polypeptides 8 1.2.1.2 Soluble Saccharides 9 1.2.1.3 Dietary Fibers 9 1.2.1.4 Lipids 10 1.2.2 The Socioeconomic Impact on Diet-Related Microbiome Changes 11 1.2.3 Age Groups and Dietary-Related Microbiome Changes 13 1.2.4 Continental Dietary Difference and Its Effect of the Local Microbiome 15 1.2.4.1 Asia 15 1.2.4.2 Europe 15 1.2.4.3 Australia 16 1.2.4.4 Africa 16 1.2.4.5 South America 16 1.2.4.6 North America 17 1.3 Dietary Modulation of Microbiome for Disease Treatment 17 1.3.1 Infection 17 1.3.1.1 Fecal Microbiota Transplantation (FMT) 17 1.3.1.2 Prebiotic-, Diet-, and Probiotic-Mediated Prevention of Pathogenic Infections 19 1.3.2 Inflammatory Disease 20 1.3.3 Cancer 21 1.3.4 Psychological Disease 22 1.3.4.1 Autism Spectrum Disorder 22 1.3.4.2 Neurodegenerative Diseases 23 1.3.5 Metabolic Disorder 23 1.3.5.1 Obesity 23 1.3.5.2 Diabetes 24 1.3.5.3 Non-alcoholic Fatty Liver Disease (NAFLD) 24 1.4 Challenges and Opportunities 25 1.4.1 Limitations in the Field 25 1.4.2 Current Microbiome Project Supporting Infrastructures 25 1.4.2.1 International and Local Initiatives 25 1.4.2.2 Global Foundations 27 1.5 Concluding Remarks 27 Acknowledgments 28 References 28 2 Microbiome Engineering for Metabolic Disorders 47Nikhil Aggarwal, Elvin W. C. Koh, Santosh Kumar Srivastava, Brendan F. L. Sieow, and In Young Hwang 2.1 Introduction 47 2.2 Microbiome Engineering for Diabetes and Obesity 49 2.2.1 Microbiome Engineering for the Hypoglycemic Effect to Treat Diabetes and Obesity 50 2.2.2 Microbiome Engineering for Immune Modulation to Treat Diabetes 52 2.3 Microbiome Engineering to Modulate Gut–Liver Axis 54 2.3.1 Microbiome Engineering to Modulate Ammonia Metabolism 54 2.3.2 Microbiome Engineering to Modulate Phenylalanine Metabolism 55 2.3.3 Microbiome Engineering to Modulate Bile-Salt Metabolism 56 2.3.4 Microbiome Engineering to Modulate Fat Metabolism 57 2.4 Microbiome Engineering for Cardiovascular Diseases 58 2.4.1 Gut Microbiome Interventions for Cardiovascular Diseases 59 2.4.2 Role of Microbiome-Derived TMAO in Cardiovascular Diseases 60 2.5 Microbiome Engineering to Modulate Gut–Brain Axis 61 2.5.1 Exploratory Studies on the Development of Psychobiotics 64 2.6 Clinical Translation of Live Biotherapeutic Products 65 2.7 Conclusion and Future Directions 76 References 76 3 Repurposing Microbes for Therapeutic Applications in Humans 93Kangsan Kim, Donghui Choe, Minjeong Kang, Bong Hyun Sung, Haseong Kim, Seung-Goo Lee, Dae-Hee Lee, and Byung-Kwan Cho 3.1 Introduction 93 3.2 A Brief Overview of Microbiota and Human Health 94 3.2.1 Interactions Between Microbes and Their Compositions Affect the Host Metabolic Status 95 3.2.2 Host–Microbe Interactions Constitute an Essential Part of Host Metabolism 97 3.3 Systems Biology Approach to Analyze the Gut Microbiota Functions 98 3.3.1 Rational Design of Gut Microbiome Editing Strategies 98 3.3.2 High-Throughput Data-Driven Understanding of Gut Microbiota 100 3.4 Engineering Microbiome to Treat Diseases 102 3.4.1 Strain Selection for Microbiome Engineering 102 3.4.2 Engineering Microbes to Sense and Respond to Disease-Related Perturbations 103 3.4.3 Engineering Microbes to Express Therapeutic Proteins for Disease Treatment 109 3.5 Perspectives and Conclusion 111 References 111 4 Modulating Residence Time and Biogeography of Engineered Probiotics 121Rana Said, Zachary J. S. Mays, and Nikhil U. Nair 4.1 Introduction 121 4.2 Adhesion Mechanisms 122 4.3 Adhesion Modulation 125 4.4 Functional Encapsulations and Biofilms that Modify Gastrointestinal Dynamics of Probiotics 126 4.5 Metabolic Engineering to Modulate Gut Adaptation 128 4.6 Conclusions 129 References 130 5 Microbiome Engineering for Next-Generation Precision Agriculture 137Mohd Firdaus Abdul-Wahab, Shruti Pavagadhi, Hitesh Tikariha, and Sanjay Swarup 5.1 Background 137 5.2 Systems Approach to Microbiome Engineering 139 5.2.1 DBTL Framework for Microbiome Engineering 139 5.2.2 Computational Tools for Robust Microbiome Engineering 142 5.2.3 Genome-Scale Metabolic Modeling 143 5.3 Synthetic Biology for Genome and Genetic Engineering of Phytobiomes 144 5.4 Conclusion and Future Perspectives 146 Acknowledgments 148 References 148 6 Biological Sensors for Microbiome Diagnostics 155Amy M. Ehrenworth Breedon, Kathryn R. Beabout, Heidi G. Coia, Christina M. Davis, Svetlana V. Harbaugh, Camilla A. Mauzy, M. Tyler Nelson, Roland J. Saldanha, Blake W. Stamps, and Michael S. Goodson 6.1 Introduction 155 6.1.1 The Malleable Microbiome 155 6.1.2 Engineered Probiotics 155 6.2 Diagnosing the Microbiome 156 6.2.1 Microbiome Analyses 156 6.2.1.1 Small Subunit rRNA Analysis 156 6.2.1.2 Metagenomics and Metatranscriptomics 157 6.2.1.3 Proteomics and Metabolomics 157 6.2.2 Considerations and Future of Microbiome Diagnosis 158 6.3 Types of Biosensors 159 6.3.1 Riboswitches 159 6.3.1.1 Riboswitches and Their Regulatory Mechanisms 160 6.3.1.2 Design and Selection of Synthetic Riboswitches 160 6.3.1.3 Riboswitches in Molecular Detection of Microbiome Metabolites 161 6.3.2 Transcription Factors 163 6.3.2.1 Transcription Factor Mining 163 6.3.2.2 Engineering Transcription Factors 164 6.3.2.3 Applications of Transcription Factors 165 6.3.3 Two-Component Systems 166 6.3.3.1 Introduction to Two-Component Systems 166 6.3.3.2 Expression of Natural TCS Systems for Gut Diagnostics 166 6.3.3.3 Engineering TCS-Based Sensors for the Microbiome 167 6.3.4 G Protein-Coupled Receptors 168 6.3.4.1 GPCRs and the Gut Microbiome 168 6.3.4.2 GPCRs Engineered Into Yeast 168 6.3.4.3 Recent Advances in Yeast GPCR-Based Sensors 170 6.4 Testing and Utilizing Engineered Biosensors 171 6.4.1 Cell-Free Protein Expression Systems (CFPS) for Biosensing 171 6.4.2 In Vitro Testing 173 6.4.2.1 In Vitro Models 174 6.4.2.2 Organ-on-a-Chip 174 6.4.2.3 In Vitro Host–Microbe Characterization 174 6.4.3 Examples of Engineered Microbes 176 6.4.3.1 Identifying Microbiome Changes In Situ 176 6.4.3.2 Engineered Microbes for Disease Diagnostics 176 6.4.3.3 Cancer 177 6.4.3.4 Inflammatory Bowel Disease 178 6.4.3.5 Infection 178 6.4.3.6 Future Translation 178 6.5 Conclusions/Summary 179 Acknowledgments 180 References 180 7 Principles, Tools, and Applications of Synthetic Consortia Toward Microbiome Engineering 195Eliza Atkinson, Alice Boo, Huadong Peng, Guy-Bart Stan, and Rodrigo Ledesma-Amaro 7.1 Introduction 195 7.2 Advantages of Labor Division via Synthetic Microbial Consortia 197 7.2.1 Providing Optimal Conditions 198 7.2.2 Reducing the Metabolic Burden on the Host 198 7.2.3 Reducing Crosstalk and Competition Within Synthetic Pathways 199 7.3 Tools for Engineering Synthetic Consortia 200 7.3.1 Genetic Manipulation Tools 200 7.3.2 Cell-to-Cell Communication 200 7.3.3 External and Intercellular Signal Molecules for Regulating Gene Expression and Population Composition 201 7.3.4 Secretion and Exchange of Metabolites 201 7.3.5 Analysis Tools 202 7.3.6 Computational Models 202 7.3.6.1 Dynamic/Deterministic Models 202 7.3.6.2 Agent-Based Models 203 7.3.6.3 Stoichiometric and Genome-Scale Metabolic Models 203 7.4 Engineering Syntrophy 205 7.5 Engineering Population Control 206 7.6 Synthetic Microbial Consortia and the Human Microbiome 207 7.7 Conclusions and Future Perspectives 208 References 209 8 Fecal Microbiota Transplantation for Microbiome Modulation: A Clinical View 219Peter C. Konturek, Thomas Hess, Walburga Dieterich, and Yurdagül Zopf 8.1 Introduction 219 8.2 Fecal Microbiota Transplantation (FMT) 219 8.2.1 Recruitment of Potential Donors 220 8.2.2 Administration of FMT 220 8.2.3 Safety 220 8.3 Clinical Application of Fecal Microbiota Therapy 222 8.3.1 C. difficile Infection (CDI) 222 8.3.2 Inflammatory Bowel Disease 223 8.3.3 FMT as a Therapeutic Option to Eradicate Highly Drug-Resistant Enteric Bacteria Carriage 224 8.3.4 FMT and Irritable Bowel Syndrome 224 8.3.5 FMT and Slow-Transit Constipation 225 8.3.6 FMT and Liver Diseases 225 8.4 FMT – Novel Indications 226 8.4.1 Chemotherapy-Induced Diarrhea 226 8.4.2 Obesity and Metabolic Syndrome 227 8.4.3 Graft-versus-Host Disease (GvHD) 227 8.4.4 Autoimmune Diseases 227 8.4.5 Neuropsychiatric Disorders 228 8.5 Conclusion 228 References 228 9 Maternal Microbiota as a Therapeutic Target 233Ferit Saracoglu 9.1 Introduction 233 9.2 Human Maternal Microbiota 233 9.2.1 Oral Microbiota 233 9.2.2 Vaginal Microbiota 234 9.2.3 Endometrial Microbiome 234 9.2.4 Gut Microbiome 236 9.2.4.1 Maternal Gut Microbiome and Immune Functions 236 9.2.4.2 Gut and Brain Axis 238 9.2.4.3 Epigenetic Regulation of Gut Microbiota 238 9.2.5 Placental Microbime and Meconium 239 9.3 Maternal Microbiota and Health 240 9.3.1 Developmental Origins of Adult-Onset Diseases: Barker Hypothesis 240 9.3.2 Maternal Microbiota and Obesity 240 9.3.2.1 Maternal Diet and Gut Microbiota 240 9.3.2.2 Body Mass Index, Insulin Resistance, and Obesity in Pregnancy 241 9.3.2.3 Childhood Obesity 241 9.3.3 Miscarriages and Microbiome 242 9.3.4 Postpartum Microbiome 242 9.3.4.1 Mode of Delivery 242 9.3.4.2 Vaginal Seeding 243 9.3.5 Maternal Microbiota and Gestational Age at Birth 243 9.3.6 Maternal Microbiota and Maternal Inflammation and Intrauterine Infections 244 9.4 Human Milk Microbiota and Infant Health 245 9.5 Drug Treatment, Unhealthy Conditions, and Microbiome 247 9.5.1 Perinatal Antibiotic Treatment 247 9.5.2 Smoking 249 9.5.3 Stress Under Pregnancy 249 9.5.4 Autism Spectrum Disorders 250 9.5.5 Critical Illness of Newborns 250 9.6 Probiotic and Prebiotic Therapies as Modulators of Microbiome 250 References 252 10 Transcription Factor-Based Biosensors and Their Application in Microbiome Engineering 277Seong Keun Kim, Seung Gyun Woo, Tae Hyun Kim, Seong Hyun Park, Jin Ju Lee, A Young Park, So Hyung Oh, Seong Kun Bak, Seung-Goo Lee, and Dae-Hee Lee Summary 277 10.1 Design: TF-Based Biosensors 278 10.1.1 Transcriptional Repressors 278 10.1.2 Transcriptional Activators 282 10.1.3 One-Component Regulatory System or Two-Component Regulatory System 283 10.1.4 Types of Output Modules 284 10.1.5 Layered Genetic Circuits 285 10.2 Build: TF-Based Biosensors 286 10.2.1 Construction of Genetic Circuits 286 10.2.1.1 Gene Synthesis 287 10.2.1.2 Restriction Enzyme–Based Cloning 287 10.2.1.3 Gibson Assembly 288 10.2.2 Chassis 288 10.3 Test: TF-Based Biosensors Application in Microbiome 289 10.3.1 Diagnostics 289 10.3.2 Therapeutics 291 10.3.3 Biocontainment 292 10.4 Learn: Strategies for TF-Based Biosensor Improvement 293 10.5 Conclusions 294 List of Abbreviations 294 Acknowledgments 295 References 295 Index 305
£106.25
Wiley-VCH Verlag GmbH Natural Materials for Food Packaging Application
Book SynopsisNatural Materials for Food Packaging Application Analyze the future of biodegradable food packaging with this cutting-edge overview Packaging plays an essential role in the production of food and its movement through the global supply chain. Food packaging has been a significant site of innovation recently, allowing consumers better access to natural and organic foods, extended shelf lives, and more. However, food packaging has become an increasingly serious environmental hazard, with the result that biodegradable food packaging has become a vital and growing area of research. Natural Materials for Food Packaging Application provides a thorough and detailed introduction to natural packaging and its applications in food transportation. Treating both recent innovations and prospective future developments, it provides readers with extensive insights into the current state of research in this field. The result is a volume designed to meet the aspirational needs of a sustainable food industry. Natural Materials for Food Packaging Application readers will also find: Detailed treatment of biodegradable packaging materials including thermo-plastic starch, polybutylene succinate, and more Discussion of subjects including chitosan-based food packaging films, clay-based packaging films, and more An authorial team with vast expertise in the field of biological polymer production Natural Materials for Food Packaging Applications is a useful reference for chemists, materials scientists, and food scientists, as well as for any industry professionals working in food distribution and the food supply chain.Table of ContentsPreface xiii About the Editors xv 1 Introduction to Natural Materials for Food Packaging 1 Manickam Ramesh, Lakshminarasimhan Rajeshkumar, Venkateswaran Bhuvaneswari, and Devarajan Balaji 1.1 Introduction 1 1.2 Natural Biodegradable Polymers 4 1.2.1 Starch-Based Natural Materials 4 1.2.2 Poly-Lactic Acid-Based Natural Materials 5 1.2.3 Poly-Caprolactone (PCL)-Based Natural Materials 5 1.2.4 Poly-Hydroxy Alkanoate-Based Natural Materials 6 1.2.5 Polyglycolide-Based Natural Materials 6 1.2.6 Polycarbonate-Based Natural Materials 7 1.2.7 Soy-Based Bio-degradable Polymers 7 1.2.8 Polyurethanes 7 1.2.9 Polyanhydrides 7 1.3 Biodegradable Polymer Blends and Composites 8 1.3.1 Polylactic Acid and Polyethylene Blends 8 1.3.2 PLA and Acrylobutadiene Styrene (ABS) Blends 8 1.3.3 PCL and Polyethylene Blends 8 1.3.4 PCL and Polyvinyl Chloride Blends 9 1.3.5 TPS and Polypropylene Blends 9 1.3.6 TPS/PE Blends 9 1.3.7 Poly(Butylene Succinate) Blends 10 1.4 Properties of Natural Materials for Food Packaging 10 1.4.1 Barrier Properties 10 1.4.2 Biodegradation Properties 11 1.4.3 Consequences of Storage Time 12 1.5 Environmental Impact of Food Packaging Materials 14 1.6 Conclusion 14 References 15 2 Plant Extracts-Based Food Packaging Films 23 Aris E. Giannakas 2.1 Introduction 23 2.2 Extraction Methods for Plant Extracts 24 2.3 Research Investigation of Bibliographic Data 25 2.4 Chitosan Plant Extract-Based Food Packaging Films 27 2.5 Starch/Extract-Based Food Packaging Films 30 2.6 Cellulose and Cellulosic Derivatives-Based Food Packaging Films Modified with Plant Extract 32 2.7 Gelatin and Alginate/Plant Extract-Based Food Packaging Films 34 2.8 Composites/Plant Extract-Based Food Packaging Films 35 2.8.1 Chitosan Composites/Plant Extract-Based Food Packaging Films 36 2.8.2 Starch Composites/Extract-Based Food Packaging Films 38 2.8.3 Other Composites Plant Extract-Based Food Packaging Films 39 2.9 Conclusion 41 Acknowledgment 41 References 42 3 Essential Oils in Food Packaging Applications 51 Madhushree Hegde, Akshatha Chandrashekar, Mouna Nataraja, Niranjana Prabhu, Jineesh A. Gopi, and Jyotishkumar Parameswaranpillai 3.1 Introduction 51 3.2 Chemistry and Classification of Essential Oils 52 3.3 Essential Oils in Food Packaging Applications 55 3.3.1 Effect of Essential Oil on the Mechanical, Barrier, and Other Physical Properties of Food Packaging Materials 55 3.3.1.1 Tensile Properties 55 3.3.1.2 Barrier Properties 56 3.3.1.3 Other Physical Properties 56 3.3.2 Antioxidant Properties of Essential Oil Incorporated Food Packaging Materials 58 3.3.3 Antibacterial Properties of Essential Oil Incorporated Food Packaging Materials 61 3.4 Challenges and Future Trends Associated with the Use of Essential Oil in Food Packaging Applications and Future Trends 65 3.5 Conclusions 65 References 66 4 Agro-Waste Residue-Based Food Packaging Films 75 Rajarathinam Nithya and Arunachalam Thirunavukkarasu 4.1 Introduction 75 4.2 Agro-Waste-Based Biopolymers 76 4.2.1 Cellulose 76 4.2.2 Hemicellulose 77 4.2.3 Lignin 77 4.2.4 Starch 78 4.2.5 Pectin 79 4.3 Edible Coatings and Films – Classification and Properties 80 4.4 Conclusion and Future Prospects 83 References 83 5 Hydrogel-Based Food Packaging Films 89 Kunal Singha and Kumar Rohit 5.1 Introduction 89 5.2 Hydrogel Nature, Definition 91 5.2.1 Hydrogel Types and Features 91 5.2.1.1 Classification According to Polymeric Composition 91 5.2.1.2 Classification Based on Configuration: Classification is Done Based on the Setting 91 5.2.1.3 Classification Based on the Type of Cross-Linking 91 5.2.1.4 Classification Based on Physical Appearance 92 5.2.1.5 Classification According to Network Electrical Charge 92 5.3 Preparation of Hydrogel Film 92 5.4 Hydrogel as Food Packaging Material 92 5.4.1 Hydrogels Functional Properties 93 5.5 Classification of Hydrogel 93 5.6 Hydrogels Functional Properties 93 5.7 Potential Application of Hydrogel in Food Packaging Systems 95 5.7.1 Applications of Hydrogels in Vitro and Food Matrices 96 5.7.2 Biodegradable Packaging 96 5.7.3 Biodegradability 97 5.7.4 Other Potential Applications in the Food Industry 98 5.8 Latest Development in the Hydrogel in the Field of Food Packaging 98 5.9 Futuristic Uses of Hydrogel in Miscellaneous Process 99 5.10 Conclusions 100 References 101 6 Natural Fiber-Based Food Packaging Films 105 G. Rajeshkumar, M. Karthick, A.K. Aseel Ahmed, T. Vikram Raj, V. Abinaya, K. Madhu Mitha, and R. Ronia Richelle 6.1 Introduction 105 6.2 Manufacturing of Fiber-Reinforced Biofilms 107 6.3 Rice Straw-Based Films 109 6.4 Wheat Straw-Based Films 109 6.5 Jute-Based Films 111 6.6 Pineapple-Based Films 112 6.7 Flax-Based Films 113 6.8 Kenaf-Based Films 114 6.9 Hemp-Based Films 115 6.10 Conclusions 115 References 116 7 Natural Clay-Based Food Packaging Films 121 Ram Kumar Deshmukh, Dakuri Ramakanth, Konala Akhila, and Kirtiraj K. Gaikwad 7.1 Introduction 121 7.2 Clay Materials Classification 127 7.2.1 TO or 1:1 Type (One‐One Tetra‐octahedral Layer) 127 7.2.2 TOT or 2:1 Type (One‐Octahedral in Between Two Tetrahedral Layers) 128 7.2.3 2:1:1 or TOTO Type (Two Tetrahedral with Two Octahedral) 128 7.3 Preparation of Natural Clay Nanocomposites 128 7.3.1 In situ Polymerization Method 130 7.3.2 Solution‐Induced Intercalation 130 7.3.3 Melt Processing 130 7.4 Properties of Natural Clay‐Based Nanocomposite Polymer 130 7.4.1 Mechanical Properties 131 7.4.2 Barrier Properties 132 7.4.3 Thermal Stability of Clay‐Based Polymer Composites 133 7.4.4 Oxygen and Ethylene Scavenging Activity of Nano‐Clay Polymer Composite 133 7.5 Application of Natural Clay in Food Packaging Film 135 7.5.1 Montmorillonite (MMT)‐Based Nanocomposite 139 7.5.2 Laponite‐Reinforced Polymer Nanocomposite 141 7.5.3 Sepiolite‐Reinforced PNC 141 7.5.4 Bentonite‐Reinforced Polymer Nanocomposite 142 7.5.5 Hectorite‐Reinforced Polymer Nanocomposite 143 7.5.6 Rectorite‐Reinforced Polymer Nanocomposite 144 7.5.7 Other Nanoclay Materials‐Based Nanocomposites 145 7.6 Challenges of Using Clay in Food Packaging Applications 145 7.6.1 Migration and Exposure of Nanoclay Materials to Humans and the Environment 146 7.6.2 Toxicity of Nanoclay 148 7.7 Future Outlook and Conclusion 149 References 150 8 Curcumin-Based Food Packaging Material 165 Leidy T. Sanchez, Andres F. Cañon-Ibarra, J. Alejandro Arboleda-Murillo, and Cristian C. Villa 8.1 Structural Characteristics of Curcumin 165 8.2 Antimicrobial, Antifungal, and Antioxidant Properties of Curcumin 166 8.3 Nanoencapsulation of Curcumin 167 8.4 Curcumin-Based Food Packaging 168 8.5 Curcumin-Based Nanocomposite Food Packaging 169 8.6 Curcumin-Based Active Food Packaging 169 8.7 Curcumin-Based Intelligent Food Packaging 170 8.8 Perspectives 171 References 171 9 Sustainable Materials from Starch-Based Plastics 179 Asanda Mtibe and Maya J. John 9.1 Introduction 179 9.1.1 Starch 179 9.1.2 Preparation of Thermoplastic Starch (TPS) 180 9.1.3 Plasticization of Starch 180 9.1.4 Processing of TPS 183 9.1.5 Properties of TPS 185 9.1.5.1 Mechanical Properties 185 9.1.5.2 Thermal Properties 186 9.1.5.3 Barrier Properties 186 9.2 TPS-Biopolymer Blends 187 9.3 TPS-Biopolymer Composites 188 9.4 Global Producers, Market Volumes, and Applications of Starch-Based Plastics 191 9.5 Conclusions 193 References 193 10 Main Marine Biopolymers for Food Packaging Film Applications 199 Jesús Rubén Rodríguez-Núñez, Diana Gabriela Montoya-Anaya, Judith Fortiz-Hernández, Yolanda Freile-Pelegrín, and Tomás Jesús Madera-Santana 10.1 Introduction 199 10.2 Polysaccharides from Seaweeds 200 10.2.1 Main Seaweed Polysaccharides 201 10.2.2 Alginate 202 10.2.2.1 Properties and Limitations of Alginate 204 10.2.2.2 Applications of Alginate in Edible Films and Coatings 205 10.2.3 Agar 205 10.2.3.1 Applications of Agar in Edible Films and Coatings 210 10.2.4 Carrageenan 213 10.2.5 Fucoidan 216 10.2.6 Ulvan 218 10.3 Modified Chitosan for Food Film Applications 220 10.3.1 Chemical Modifications of Chitosan for Food Packaging 220 10.3.2 Chitosan Blends/Composites for Films and Coating for Food Applications 222 10.3.3 Nanomaterials of Chitosan for Food Packaging 224 10.4 Conclusions and Future Trends 226 References 227 11 Chitosan-Based Food Packaging Films 241 Kunal Singha and Kumar Rohit 11.1 Introduction 241 11.1.1 A Brief History of Food Packaging Materials Used 241 11.1.2 Characteristics of Typical Food Packaging Materials 242 11.1.3 Need for Biodegradable Food Packaging Materials 242 11.2 Chitin and Chitosan Chemical Structure 243 11.3 Chitosan as a Potential Biodegradable Food Packaging Material 243 11.3.1 Chitosan as Food Packaging Material 244 11.3.2 Chitosan Film in Food Packaging and Their Types 244 11.3.2.1 Chitosan-Based Films 245 11.3.2.2 Flexible Packaging Films 245 11.3.3 Chitosan Film in Food Packaging 245 11.3.4 Films Embedded with Nanomaterials 245 11.3.5 Films Embedded with Clays 246 11.3.6 Films Embedded with Polysaccharide Particles, Fibres, and Whiskers 247 11.3.7 Films Embedded with Natural Oils and Extracts 247 11.4 Future Research Directions and Developments 249 11.4.1 Chitin/Chitosan Derivatives and Their Interactions with Microorganisms: A Comprehensive Review and Future Perspectives 249 11.4.2 A Future Perspective in Crop Protection: Chitosan and its Oligosaccharides 249 11.4.3 Chitosan in Molecularly-Imprinted Polymers: Current and Future Prospects 250 11.4.4 Crosstalk Between Chitosan and Cell Signaling Pathways 250 11.4.5 Resorbable Chitosan Matrix – As a Promising Biomaterial for the Future 250 11.5 Conclusions 251 References 251 12 Effect of Natural Materials on Thermal Properties of Food Packaging Film: An Overview 255 H. M. Prathibhani C. Kumarihami, Nishant Kumar, Pratibha, Anka T. Petkoska, and Neeraj Abbreviations 255 12.1 Introduction 256 12.2 Biodegradable Films: An Alternative for Food Packaging 257 12.2.1 Biodegradable Polymers 258 12.3 Thermal Properties of Food Packaging 259 12.4 Effects of Natural Materials on the Thermal Stability of Food Packaging 260 12.4.1 Effects of Plant Extract 260 12.4.2 Effects of Essential Oils 261 12.4.3 Effects of Color Agent 262 12.4.4 Effects of Nanomaterials 263 12.4.5 Effects of Plasticizers 265 12.4.6 Effects of Emulsifiers 266 12.5 Conclusions 266 References 267 13 Mechanical Properties of Natural Material-Based Packaging Films: Current Scenario 275 Johnsy George, Muhammed Navaf, Aksalamol P. Raju, Ranganathan Kumar, and Kappat V. Sunooj 13.1 Introduction 275 13.2 Mechanical Properties of Packaging Films 276 13.2.1 Tensile Strength (TS) 277 13.2.2 Young’s Modulus (Y) 277 13.2.3 Elongation at Break (EB) 278 13.2.4 Seal Strength 278 13.2.5 Tear Resistance 278 13.2.6 Puncture Resistance 279 13.2.7 Impact Resistance 279 13.2.8 Burst Strength 279 13.3 Mechanical Properties of Natural Polymer-Based Packaging Films 279 13.3.1 Naturally Occurring Polymers 280 13.3.1.1 Starch 280 13.3.1.2 Cellulose 283 13.3.1.3 Chitosan 284 13.3.1.4 Alginates 285 13.3.1.5 Pectin 285 13.3.1.6 Casein 286 13.3.1.7 Whey Protein 287 13.3.1.8 Collagen 287 13.3.1.9 Gelatin 288 13.3.1.10 Zein Protein 289 13.3.1.11 Soy Protein 290 13.3.1.12 Gluten Protein 291 13.3.2 Polymers Synthesized from Natural/Bioderived Monomers 292 13.3.2.1 Polylactic Acid (PLA) 292 13.3.2.2 Polyethylene Furanoate (PEF) 295 13.3.2.3 Polybutylene Succinate (PBS) 295 13.3.2.4 Poly(Butylene Adipate-co-Terephthalate) 296 13.3.2.5 Bio-based Polyethylene 296 13.3.2.6 Bio-Based Polypropylene (Bio-PP) 296 13.4 Mechanical Properties of Natural Polymers Synthesized from Microorganisms-Based Packaging Films 296 13.4.1 Polymer Processed from Microorganisms 296 13.4.1.1 Polyhydroxyalkanoate (PHA) 296 13.4.1.2 Bacterial Cellulose 298 13.4.1.3 Xanthan 299 13.4.1.4 Pullulan 299 13.4.1.5 Gellan 300 13.4.1.6 Levan 300 13.5 Conclusion 300 References 301 14 Effects of Natural Materials on Food Preservation and Storage 313 Subhanki Padhi and Winny Routray 14.1 Introduction 313 14.1.1 Major Objective of Food Preservation and Storage 313 14.1.2 Available Solutions from the Natural Resources and Combination with Technology 314 14.2 Biomolecules Utilized for Preservation,Their Properties, and Uses 315 14.2.1 Polysaccharides 315 14.2.2 Essential Oil 316 14.2.3 Phenolic Compounds 318 14.2.4 Aromatic Compounds 319 14.2.5 Proteins 320 14.2.6 Bacteriocins 320 14.2.7 Other Animal-Based Antimicrobials 321 14.3 Different Extraction Processes Employed for Natural Materials 321 14.4 Effects of Natural Materials on Different Product Quality and Storage 323 14.4.1 Drying Methods and Corresponding Properties 323 14.4.2 Enhancement of Packaging Characteristics 323 14.4.3 Maintenance of Physiochemical Properties of Raw and Processed Products 324 14.5 Conclusion 325 References 326 15 Marketing, Environmental, and Future Perspectives of Natural Materials in Packaging 333 Prakash Binu, Sasi Arun Sasi, Velamparambil Gopalakrishnan Gopikrishna, Abdul Shukkur, Balu Balachandran, and Mahesh Mohan 15.1 Introduction 333 15.2 Biodegradable Food Packaging 334 15.3 Different Bio-Based Packaging Materials 336 15.3.1 Bioplastics 336 15.3.2 Biopolymers 336 15.4 Nano Food Packaging 338 15.5 Natural Antimicrobial Agents in Food Packaging 338 15.6 Edible Films in Food Packaging 339 15.7 Environment and Food Packaging 341 15.8 Sustainable Packaging 342 15.9 Marketing of Natural Materials in Packaging 343 15.10 Future Perspectives of Natural Materials in Packaging 344 15.11 Conclusion 345 References 345 Index 353
£106.25
S Chand & Co Ltd Linear Integrated Circuit
Book Synopsis
£9.59
ListLab Ideas and the Matter: What Will We Be Made Of and
Book Synopsis
£19.00