Calculus Books

247 products


  • Applications and QExtensions of Hypergeometric Functions

    American Mathematical Society Applications and QExtensions of Hypergeometric Functions

    15 in stock

    15 in stock

    £104.40

  • AP Calculus Flashcards, Fourth Edition:

    Kaplan Publishing AP Calculus Flashcards, Fourth Edition:

    Out of stock

    Book SynopsisBe prepared for exam day with Barron’s. Trusted content from AP experts!Barron’s AP Calculus Flashcards includes more than 400 up-to-date content review cards and practice questions. Written by Experienced Educators Learn from Barron’s--all content is written and reviewed by AP experts Build your understanding with review and practice tailored to the most recent exams Be Confident on Exam Day Strengthen your knowledge with in-depth review covering all units on the AP Calculus AB exam and the AP Calculus BC exam Find specific concepts quickly and easily with cards organized by topic Sharpen your test-taking skills with content review questions Customize your review using the enclosed sorting ring to arrange the cards in an order that best suits your study needs Check out Barron’s AP Calculus AB & BC Premium for even more review, full-length practice tests, and access to Barron’s Online Learning Hub for a timed test option and automated scoring.

    Out of stock

    £17.24

  • Fourier Transforms Using Mathematica

    SPIE Press Fourier Transforms Using Mathematica

    1 in stock

    Book SynopsisThe Fourier transform is a ubiquitous tool used in most areas of engineering and physical sciences. The purpose of this book is two-fold: (1) to introduce the reader to the properties of Fourier transforms and their uses, and (2) to introduce the reader to the program Mathematica® and demonstrate its use in Fourier analysis. Unlike many other introductory treatments of the Fourier transform, this treatment will focus from the start on both one-dimensional and two-dimensional transforms, the latter of which play an important role in optics and digital image processing, as well as in many other applications. It is hoped that by the time readers have completed this book, they will have a basic understanding of Fourier analysis and Mathematica.Table of Contents Introduction Some Useful 1D and 2D Functions Definition of the Continuous Fourier Transform Convolutions and Correlations Some Useful Properties of Fourier Transforms Fourier Transforms in Polar Coordinates Linear Systems and Fourier Transforms Sampling and Interpolation From Fourier Transforms to Fourier Series The Discrete Fourier Transforms The Fresnel Transform Fractional Fourier Transforms Other Transforms Related to the Fourier Transform Fourier Transforms and Digital Image Processing with Mathematica® Fourier Transforms and Mathematica® in Coherent Optical Systems

    1 in stock

    £35.66

  • Calculus: Special Edition: Chapters 1-5

    Kendall/Hunt Publishing Co ,U.S. Calculus: Special Edition: Chapters 1-5

    Out of stock

    Book SynopsisSpecial Edition for Rutgers UniversityThe NEW 7th edition of Calculus blends the best aspects of calculus reform along with the goals and methodology of traditional calculus. The format of this text is enhanced, but is not dominated by new technology. Its innovative presentation includes: Conceptual Understanding through Verbalization Mathematical Communication Cooperative Learning Group Research Projects Integration of Technology Greater Text Visualization Supplementary Materials Interactive art - Many pieces of art in the book link online to dynamic art to illustrate such topics as limits, slopes, areas, and direction fields Calculus features: An early presentation of transcendental functions: Logarithms, exponential functions, and trigonometric functions Differential equations in a natural and reasonable way Utilization of the humanness of mathematics Precalculus mathematics being taught at most colleges and universities correctly reflected A student solutions manual, instructor's manual, and accompanying website It's all about Problems, problems, problems, and even more problems: Modeling Problems require the reader to make assumptions about the real world. Think Tank Problems prove the proposition true or to find a counterexample to disprove the proposition. Exploration Problems go beyond the category of counterexample problem to provide opportunities for innovative thinking. Historical Quest Problems invite the students to participate in the historical development of mathematics. History becomes active rather than passive. Journal Problems have been reprinted from leading mathematics journals in an effort to show that ""mathematicians work problems too."" Putnam Examination Problems have been included to challenge not only the ""best of the best"" but to offer stimulating content for everybody. Uniform Problem Sets 60 in every set allow for easy and consistent problem assignment. Cumulative Problem Sets for Chapters 1-5. Huge Chapter Supplementary Problem Set of 99 miscellaneous problems in each Chapter. Proficiency Examination Problem Sets consisting of both concept and practice problems.

    Out of stock

    £90.72

  • Variational Calculus on Time Scales

    Nova Science Publishers Inc Variational Calculus on Time Scales

    1 in stock

    Book SynopsisThis book encompasses recent developments of variational calculus for time scales. It is intended for use in the field of variational calculus and dynamic calculus for time scales. It is also suitable for graduate courses in the above fields. This book contains eight chapters, and these chapters are pedagogically organized. This book is specially designed for those who wish to understand variational calculus on time scales without having extensive mathematical background.The aim of this book is to present a clear and well-organized treatment of the concept behind the development of mathematics and solution techniques. The text material of this book is presented in a highly readable and mathematically solid format. Many practical problems are illustrated displaying a wide variety of solution techniques.

    1 in stock

    £195.19

  • Convex Optimization: Theory, Methods and

    Nova Science Publishers Inc Convex Optimization: Theory, Methods and

    1 in stock

    Book SynopsisOver the past two decades, it has been recognized that advanced image processing techniques provide valuable information to physicians for the diagnosis, image guided therapy and surgery, and monitoring of human diseases. This book introduces novel and sophisticated mathematical problems which encourage the development of advanced optimisation and computing methods, especially convex optimisation. The authors go on to study Steffensen-King-type methods of convergence to approximate a locally unique solution of a nonlinear equation and also in problems of convex optimisation. Real-world applications are also provided. The following study is focused on the design and testing of a Matlab code of the Frank-Wolfe algorithm. The Nesterov step is proposed in order to accelerate the algorithm, and the results of some numerical experiments of constraint optimization are also provided. Lagrangian methods for numerical solutions to constrained convex programs are also explored. For enhanced algorithms, the traditional Lagrange multiplier update is modified to take a soft reflection across the zero boundary. This, coupled with a modified drift expression, is shown to yield improved performance. Next, Newtons mesh independence principle was used to solve a certain class of optimal design problems from earlier studies. Motivated by optimization considerations, the authors show that under the same computational cost, a finer mesh independence principle can be given than before. This compilation closes with a presentation on a local convergence analysis for eighthorder variants of HansenPatricks family for approximating a locally unique solution of a nonlinear equation. The radius of convergence and computable error bounds on the distances involved are also provided.

    1 in stock

    £67.99

  • Mathematics for Agricultural and Life Sciences:

    Nova Science Publishers Inc Mathematics for Agricultural and Life Sciences:

    3 in stock

    Book SynopsisOne of the difficulties that arise in teaching mathematics is related to the identification of the target and the most appropriate teaching methods for the people who are part of it. This aspect, true for all disciplines, applies to mathematics in particular. In fact, for example, an axiomatic approach is certainly suitable for Mathematical, Physical and Engineering Sciences, while students of many applied sciences, such as Agricultural and Life Sciences, need to focus on calculation tools and methodologies useful for their professional development rather than in dealing with the theoretical foundations of mathematics. The peculiarity of this book is not so much in setting classical approach "Theorem: Hypothesis, Thesis" with relative proofs, but in adopting a more pragmatic approach that renounce classical demonstrations, while maintaining a formal coherence in the topics dealt with. In this perspective, considering the approach required by the target to which it is addressed, the objective of this book is to provide methods to studying the variation of a phenomenon and its cumulative effects and consequently the study of the functions and the calculation of integrals respectively. One of the qualifying features is given by a series of completely resolved problems, occupying two-thirds of the volume, in which each mathematical step is detailed to understand "step by step" how to obtain the solution.Table of ContentsPreface; Principles of Set Theory; Real Numbers; Functions of Real Variables; Limit of a Function; Derivative of a Function; Study of a Function: Points of Maximum and Minimum, Points of Inflection; Indefinite Integral; Definite Integral; Calculation of Function Limits; Calculation of Function Derivatives; Problems Related to the Study of Functions; Calculation of Integrals; Index.

    3 in stock

    £163.19

  • Do Dice Play God?: The Mathematics of Uncertainty

    10 in stock

    £21.00

  • Fitzhenry & Whiteside Advantage Calculus: Calculus Problems and Answers

    1 in stock

    Book Synopsis

    1 in stock

    £13.60

  • Calculus 1

    Barcharts, Inc Calculus 1

    7 in stock

    Book SynopsisFunctions, limits and derivatives for first-year calculus students.

    7 in stock

    £8.66

  • The Humongous Book of Calculus Problems

    Dorling Kindersley Ltd The Humongous Book of Calculus Problems

    Out of stock

    Book SynopsisThe only way to learn calculus is to do calculus problems. Lots of them!And that's what you get in this book--more calculus problems than your worst nightmare—but with a BIG difference. Award-winning calculus teacher W. Michael Kelley has been through the whole book and made a ton of notes, so you get:• 1,000 problems with comprehensive solutions• Annotated notes throughout the text, clarifying exactly what's being asked• Really detailed answers (no more skipped steps!)• Extra explanations that make what's baffling perfectly clear• Pointers to other problems that show skills you needAnd all of the major players are here: limits, continuity, derivatives, integrals, tangent lines, velocity, acceleration, area, volume, infinite series—even the really tough stuff like epsilon-delta proofs and formal Riemann sums.So dig in to your heart's content!

    Out of stock

    £22.19

  • The Concept of a Riemann Surface

    WWW.Snowballpublishing.com The Concept of a Riemann Surface

    15 in stock

    15 in stock

    £11.39

  • Classical Analysis of Real-Valued Functions

    Society for Industrial & Applied Mathematics,U.S. Classical Analysis of Real-Valued Functions

    4 in stock

    Book SynopsisDivided into two self-contained parts, this textbook is an introduction to modern real analysis. More than 350 exercises and 100 examples are integrated into the text to help clarify the theoretical considerations and the practical applications to differential geometry, Fourier series, differential equations, and other subjects. The first section of Classical Analysis of Real-Valued Functions covers the theorems of existence of supremum and infimum of bounded sets on the real line and the Lagrange formula for differentiable functions. Applications of these results are crucial for classical mathematical analysis, andmany are threaded through the text. In the second part of the book, the implicit function theorem plays a central role, while the Gauss–Ostrogradskii formula, surface integration, Heine–Borel lemma, the Ascoli–Arzelà theorem, and the one-dimensional indefinite Lebesgue integral are also covered. This book is intended for students in the first and second years of classical universities majoring in pure and applied mathematics, but students of engineering disciplines will also gain important and helpful insights. It is appropriate for courses in mathematical analysis, functional analysis, real analysis, and calculus and can be used for self-study as well.

    4 in stock

    £79.05

  • Linear and Nonlinear Functional Analysis with

    Society for Industrial and Applied Mathematics (SIAM) Linear and Nonlinear Functional Analysis with

    Out of stock

    Book Synopsis

    Out of stock

    £88.20

  • Calculus: The Basics

    NY Research Press Calculus: The Basics

    Out of stock

    Book Synopsis

    Out of stock

    £97.02

  • Foundations of Iso-Differential Calculus: Volume

    Nova Science Publishers Inc Foundations of Iso-Differential Calculus: Volume

    2 in stock

    Book SynopsisThis book is intended for readers who have had a course in theory of functions, isodifferential calculus and it can also be used for a senior undergraduate course. Chapter One deals with the infinite sets. We introduce the main operations on the sets. They are considered as the one-to-one correspondences, the denumerable sets and the nondenumerable sets, and their properties. Chapter Two introduces the point sets. They are defined as the limit points, the interior points, the open sets, and the closed sets. Also included are the structure of the bounded open and the closed sets, and an examination of some of their main properties. Chapter Three describes the measurable sets. They are defined and deducted as the main properties of the measure of a bounded open set, a bounded closed set, and the outer and the inner measures of a bounded set. Chapter Four is devoted to the theory of the measurable iso-functions. They are defined as the main classes of the measurable iso-functions and their associated properties are defined as well. In Chapter Five, the Lebesgue iso-integral of a bounded iso-function continue the discussion of the book. Their main properties are given. In Chapter Six the square iso-summable iso-functions, the iso-orthogonal systems, the iso-spaces Lp and l p, p > 1 are studied. The Stieltjes iso-integral and its properties are investigated in Chapter Seven.

    2 in stock

    £170.39

  • Essential Calculus

    Murphy & Moore Publishing Essential Calculus

    Out of stock

    Book Synopsis

    Out of stock

    £108.11

  • Calculus: An Introduction

    Willford Press Calculus: An Introduction

    Out of stock

    Book Synopsis

    Out of stock

    £101.18

  • Willford Press Concepts and Applications of Fractional Calculus

    Out of stock

    Book Synopsis

    Out of stock

    £117.37

  • Willford Press Theory and Applications of Integral

    Out of stock

    Book Synopsis

    Out of stock

    £114.45

  • Make: Calculus: Build models to learn, visualize,

    O'Reilly Media Make: Calculus: Build models to learn, visualize,

    15 in stock

    Book SynopsisWhen Isaac Newton developed calculus in the 1600s, he was trying to tie together math and physics in an intuitive, geometrical way. But over time math and physics teaching became heavily weighted toward algebra, and less toward geometrical problem solving. However, many practicing mathematicians and physicists will get their intuition geometrically first and do the algebra later. Make:Calculus imagines how Newton might have used 3D printed models, construction toys, programming, craft materials, and an Arduino or two to teach calculus concepts in an intuitive way. The book uses as little reliance on algebra as possible while still retaining enough to allow comparison with a traditional curriculum. This book is not a traditional Calculus I textbook. Rather, it will take the reader on a tour of key concepts in calculus that lend themselves to hands-on projects. This book also defines terms and common symbols for them so that self-learners can learn more on their own.

    15 in stock

    £19.19

  • Foundations of Iso-Differential Calculus: Volume

    Nova Science Publishers Inc Foundations of Iso-Differential Calculus: Volume

    2 in stock

    Book SynopsisThis is the second edition of Foundations of Iso-Differential Calculus, Volume 1, which gives an overview of the development of iso-differential calculus. The second edition introduces a new class of iso-functions, named iso-functions of the fifth kind. Also, further examples, exercises and problems have been added. Chapter 1 reviews Ruggero Maria Santilli''s scientific journey, identifying its most important references. Chapter 2 introduces iso-real numbers, some basic functions and their properties. Chapter 3 defines sequences of iso-real numbers and deduces their properties. Chapter 4 gives definitions for five kinds of iso-functions and outlines their properties. Chapter 5 introduces the limits of iso-functions and continuous iso-functions. Chapter 6 presents the first comprehensive study of iso-differential calculus for the specific intent of showing its non-triviality. Chapter 7 reflects integral calculus in the language of iso-mathematics. Lastly, Chapter 8 outlines the isodual iso-mathematics and presents the first comprehensive study of isodual iso-differential calculus.

    2 in stock

    £163.19

  • Infinitesimal: How a Dangerous Mathematical

    Oneworld Publications Infinitesimal: How a Dangerous Mathematical

    15 in stock

    Book SynopsisOn August 10, 1632, five leading Jesuits convened in a sombre Roman palazzo to pass judgment on a simple idea: that a continuous line is composed of distinct and limitlessly tiny parts. The doctrine would become the foundation of calculus, but on that fateful day the judges ruled that it was forbidden. With the stroke of a pen they set off a war for the soul of the modern world. Amir Alexander takes us from the bloody religious strife of the sixteenth century to the battlefields of the English civil war and the fierce confrontations between leading thinkers like Galileo and Hobbes. The legitimacy of popes and kings, as well as our modern beliefs in human liberty and progressive science, hung in the balance; the answer hinged on the infinitesimal. Pulsing with drama and excitement, Infinitesimal will forever change the way you look at a simple line.Trade Review'A well-spun yarn, a cracking read… engaging…unique’ -- History Today‘A gripping and thorough history of the ultimate triumph of the mathematical tool… Infinitesimal will inspire you to dig deeper into the implications of the philosophy of mathematics and knowledge’ * New Scientist *‘A complex story told with skill and verve… Alexander does an excellent job of presenting both sides of the debate.’ * THES Book of the Week *‘Amir Alexander’s enthralling book presents a controversial mathematical breakthrough, vividly describing the players and showing exactly what was at stake.’ * Tony Mann, Director of the Maths Centre, University of Greenwich and Former President of the British *“Bertrand Russell once wrote that mathematics had a ‘beauty cold and austere’… Amir Alexander shows that mathematics can also become entangled in ugliness hot and messy… [a] fascinating narrative.” * New York Times *“[Told with] high drama and thrilling tension.” * Kirkus Reviews (starred review) *‘A gripping tale of mathematical, philosophical, and theological controversies in the run-up to calculus.' * Ian Stewart, author of Professor Stewart's Cabinet of Mathematical Curiosities *‘Clever and enthralling.' -- Simon Schaffer, Professor of the History of Science, University of Cambridge‘A real-world Da Vinci Code’ * Publishers Weekly *‘Fascinating.. Amir Alexander vividly recreates a wonderfully strange chapter of scientific history... You will never look at calculus the same way again.’ -- Jordan Ellenberg, Professor of Mathematics, University of Wisconsin-Madison‘Gripping… Amir Alexander writes with elegance and verve... A page-turner full of fascinating stories about the struggles of remarkable individuals and ideas, Infinitesimal will help you understand the world at a deeper level.’ -- Edward Frenkel, Professor, University of California at Berkeley, and author of Love and Math‘We thought we knew the whole story: Copernicus, Galileo, the sun in the centre, the Church rushing to condemn. Now this remarkable book puts the deeply subversive doctrine of atomism and its accompanying mathematics at the heart of modern science.’ -- Margaret C. Jacob, Distinguished Professor of History, University of California, Los Angeles‘A seamless synthesis of cultural history and storytelling... The history of mathematics has rarely been so readable.’ -- Michael Harris, Professor of Mathematics, Columbia University and Université Paris Diderot‘You may find it hard to believe that illustrious mathematicians, philosophers, and religious thinkers would engage in a bitter dispute over infinitely small quantities. Yet this is precisely what happened in the seventeenth century. In Infinitesimal, Amir Alexander puts this fascinating battle in historical and intellectual context.’ -- Mario Livio, Astrophysicist, Space Telescope Science Institute, and author of Brilliant Blunders: Fr

    15 in stock

    £10.44

  • Using Counter-examples In Calculus

    Imperial College Press Using Counter-examples In Calculus

    Out of stock

    Book SynopsisThis book makes accessible to calculus students in high school, college and university a range of counter-examples to “conjectures” that many students erroneously make. In addition, it urges readers to construct their own examples by tinkering with the ones shown here in order to enrich the example spaces to which they have access, and to deepen their appreciation of conspectus and conditions applying to theorems.Table of ContentsWorking with Counter-examples; The Pathological Debate; Bones to Chew: Collection of False Statements; Suggested Solutions and New Challenges.

    Out of stock

    £60.80

  • Using Counter-examples In Calculus

    Imperial College Press Using Counter-examples In Calculus

    Out of stock

    Book SynopsisThis book makes accessible to calculus students in high school, college and university a range of counter-examples to “conjectures” that many students erroneously make. In addition, it urges readers to construct their own examples by tinkering with the ones shown here in order to enrich the example spaces to which they have access, and to deepen their appreciation of conspectus and conditions applying to theorems.Table of ContentsWorking with Counter-examples; The Pathological Debate; Bones to Chew: Collection of False Statements; Suggested Solutions and New Challenges.

    Out of stock

    £30.40

  • Operator Calculus On Graphs: Theory And

    Imperial College Press Operator Calculus On Graphs: Theory And

    Out of stock

    Book SynopsisThis pioneering book presents a study of the interrelationships among operator calculus, graph theory, and quantum probability in a unified manner, with significant emphasis on symbolic computations and an eye toward applications in computer science.Presented in this book are new methods, built on the algebraic framework of Clifford algebras, for tackling important real world problems related, but not limited to, wireless communications, neural networks, electrical circuits, transportation, and the world wide web. Examples are put forward in Mathematica throughout the book, together with packages for performing symbolic computations.Table of ContentsCombinatorial Algebras and Their Properties; Combinatorics and Graph Theory; Operator Calculus; Probability on Algebraic Structures; Computational Complexity; Symbolic Computations Using Mathematica.

    Out of stock

    £121.50

  • Fractional Calculus with Applications in

    ISTE Ltd and John Wiley & Sons Inc Fractional Calculus with Applications in

    Out of stock

    Book SynopsisThis book contains mathematical preliminaries in which basic definitions of fractional derivatives and spaces are presented. The central part of the book contains various applications in classical mechanics including fields such as: viscoelasticity, heat conduction, wave propagation and variational Hamilton–type principles. Mathematical rigor will be observed in the applications. The authors provide some problems formulated in the classical setting and some in the distributional setting. The solutions to these problems are presented in analytical form and these solutions are then analyzed numerically. Theorems on the existence of solutions will be presented for all examples discussed. In using various constitutive equations the restrictions following from the second law of thermodynamics will be implemented. Finally, the physical implications of obtained solutions will be discussed in detail.Trade Review“The book will be useful to researchers and students looking for applications of fractional calculus in applied mechanics and engineering.” (Zentralblatt MATH, 1 November 2014) Table of ContentsPreface ixPart 1. Mathematical Preliminaries, Definitions and Properties of Fractional Integrals and Derivatives 1 Chapter 1. Mathematical Preliminaries 3Chapter 2. Basic Definitions and Properties of Fractional Integrals and Derivatives 17 Part 2. Mechanical Systems 49 Chapter 3. Restrictions Following from the Thermodynamics for Fractional Derivative Models of a Viscoelastic Body 51 Chapter 4. Vibrations with Fractional Dissipation 83 Chapter 5. Lateral Vibrations and Stability of Viscoelastic Rods 123 Chapter 6. Fractional Diffusion-Wave Equations 185 Chapter 7. Fractional Heat Conduction Equations 257Bibliography 289Index 311

    Out of stock

    £142.16

  • Chapters in Probability

    College Publications Chapters in Probability

    15 in stock

    15 in stock

    £19.47

  • A Treatise on the Binomial Theorem

    College Publications A Treatise on the Binomial Theorem

    15 in stock

    15 in stock

    £15.20

  • Imperial College Press Introduction To Stochastic Calculus With Applications

    Out of stock

    Book SynopsisThis book provides a concise introduction to stochastic calculus with some of its applications in mathematical finance, engineering and the sciences. Applications in finance include pricing of financial derivatives, such as options on stocks, exotic options and interest rate options. The filtering problem and its solution is presented as an application in engineering. Population models and randomly perturbed equations of physics are given as examples of applications in biology and physics.Only a basic knowledge of calculus and probability is required for reading the book. The text takes the reader from a fairly low technical level to a sophisticated one gradually. Heuristic arguments are often given before precise results are stated, and many ideas are illustrated by worked-out examples. Exercises are provided at the end of chapters to help to test readers' understanding. This book is suitable for advanced undergraduate students, graduate students as well as research workers and practitioners.Trade Review"It provides a good introduction to stochastic analysis, leaving out several of the more technical proofs. The variety of examples and exercises suggests to use the book for self-studies" Zentralblatt MATH "This book is an excellent introduction to a subject which often presents difficulties to the student of probability ... The numerous exercises are both challenging and illuminating. I greatly enjoyed the book, and can recommend it unreservedly to all probabilists and statisticians wishing to acquire a working knowledge of the stochastic calculus. For libraries, it is an absolute 'must'." Australian & New Zealand Journal of Statistics, 1999 "... the author does a good job at achieving a difficult objective ... the text is best suited for the mathematically inclined graduate student in engineering ... It fills a niche in the literature, as it is hard to find books on stochastic analysis which present such a wide spectrum of results with relatively modest prerequisites." Mathematical Reviews, 2002Table of ContentsPreliminaries from calculus; concepts of probability theory; basic stochastic processes; Brownian motion calculus; stochastic differential equations; diffusion processes; martingales; calculus for semimartingales; pure jump processes; change of probability measure; applications in finance; applications in biology; applications in engineering and physics.

    Out of stock

    £41.80

  • A Guided Tour of the Ti-85 Graphics Programmable

    Ardsley House Publishers Inc.,U.S. A Guided Tour of the Ti-85 Graphics Programmable

    Out of stock

    Book SynopsisTo find more information about Rowman and LIttlefield titles, please visit www.rowmanlittlefield.com.

    Out of stock

    £35.00

  • An Introduction to Mathematical Analysis

    The Blackburn Press An Introduction to Mathematical Analysis

    15 in stock

    15 in stock

    £23.97

  • Réflexions Sur La Métaphysique Du Calcul

    Hachette Livre - BNF Réflexions Sur La Métaphysique Du Calcul

    15 in stock

    Book Synopsis

    15 in stock

    £14.00

  • Librarie Philosophique J. Vrin Qu'est-Ce Que Et Pourquoi l'Analyse?: Essai de

    3 in stock

    Book Synopsis

    3 in stock

    £29.45

  • Librarie Philosophique J. Vrin Antoine Augustin Cournot: Iuvres Completes VI-1

    1 in stock

    Book Synopsis

    1 in stock

    £85.50

  • A Course in Calculus and Real Analysis

    Springer Nature Switzerland AG A Course in Calculus and Real Analysis

    2 in stock

    Book SynopsisThis book provides a self-contained and rigorous introduction to calculus of functions of one variable, in a presentation which emphasizes the structural development of calculus. Throughout, the authors highlight the fact that calculus provides a firm foundation to concepts and results that are generally encountered in high school and accepted on faith; for example, the classical result that the ratio of circumference to diameter is the same for all circles. A number of topics are treated here in considerable detail that may be inadequately covered in calculus courses and glossed over in real analysis courses.Trade Review“This book would be a valuable asset to a university library and that many instructors would do well to have a copy of this book in their personal libraries. In addition, I believe that some students would benefit if they possessed a copy of this book to use for reference purposes.” (Jonathan Lewin, MAA Reviews, April 15, 2019)Table of ContentsNumbers and Functions.- Sequences.- Continuity and Limits.- Differentiation.- Applications of Differentiation.- Integration.- Elementary Transcendental Functions.- Applications and Approximations of Riemann Integrals.- Infinite Series and Improper Integrals.

    2 in stock

    £49.49

  • Computational Calculus: A Numerical Companion to

    Springer International Publishing AG Computational Calculus: A Numerical Companion to

    Out of stock

    Book SynopsisThis book offers readers the methods that are necessary to apply the power of calculus to analyze real problems. While most calculus textbooks focus on formula-based calculus, this book explains how to do the analysis of calculus, rates of change, and accumulation from data. The author’s introductory approach prepares students with the techniques to handle numerically-based problems in more advanced classes or in real-world applications. This self-contained book uses the computer algebra system Maple for computation, and the material is easily adaptable for calculators or other computer algebra systems. The author includes historical context and example exercises throughout the book in order to provide readers with a thorough understanding of the topic. This book: Prepares students with the techniques to handle numerically-based problems in in real-world applications Provides historical context and example exercises to give a thorough understanding of the topic Utilizes Maple for computation and is adaptable for calculators or other computer algebra systems Table of ContentsNumerical Differentiation.- Numerical Integration.- Projects.

    Out of stock

    £33.24

  • Computational Calculus

    Springer International Publishing AG Computational Calculus

    1 in stock

    Book SynopsisThis book offers readers the methods that are necessary to apply the power of calculus to analyze real problems.

    1 in stock

    £31.49

  • Chaos and Chance: An Introduction to Stochastic Aspects of Dynamics

    De Gruyter Chaos and Chance: An Introduction to Stochastic Aspects of Dynamics

    15 in stock

    With emphasis on stochastic aspects of deterministic systems this short book introduces the reader to the basic facts and some special topics of applied ergodic theory. It adresses advanced undergraduate and graduate students from various disciplines, i.e. mathematicians, physicists, electrical and mechanical engineers. Based upon a sound (but non-technical) mathematical introduction, a number of typical examples from applications (mostly from mechanics) are thoroughly discussed. By studying both probabilistic and deterministic features of dynamical systems the reader will develop what might be considered a unified view on chaos and chance as two sides of the same thing.

    15 in stock

    £34.67

  • Young Measures and Compactness in Measure Spaces

    De Gruyter Young Measures and Compactness in Measure Spaces

    Out of stock

    Book SynopsisIn recent years, technological progress created a great need for complex mathematical models. Many practical problems can be formulated using optimization theory and they hope to obtain an optimal solution. In most cases, such optimal solution can not be found. So, non-convex optimization problems (arising, e.g., in variational calculus, optimal control, nonlinear evolutions equations) may not possess a classical minimizer because the minimizing sequences have typically rapid oscillations. This behavior requires a relaxation of notion of solution for such problems; often we can obtain such a relaxation by means of Young measures. This monograph is a self-contained book which gathers all theoretical aspects related to the defining of Young measures (measurability, disintegration, stable convergence, compactness), a book which is also a useful tool for those interested in theoretical foundations of the measure theory. It provides a complete set of classical and recent compactness results in measure and function spaces. The book is organized in three chapters: The first chapter covers background material on measure theory in abstract frame. In the second chapter the measure theory on topological spaces is presented. Compactness results from the first two chapters are used to study Young measures in the third chapter. All results are accompanied by full demonstrations and for many of these results different proofs are given. All statements are fully justified and proved.Table of ContentsPreface 1 Weak Compactness in Measure Spaces 1.1 Measure spaces 1.2 Radon-Nikodym theorem. The dual of L1 1.3 Convergences in L1(l) and ca(A) 1.4 Weak compactness in ca(A) and L1(l) 1.5 The bidual of L1(l) 1.6 Extensions of Dunford-Pettis' theorem 2 Bounded Measures on Topological Spaces 2.1 Regular measures 2.2 Polish spaces. Suslin spaces 2.3 Narrow topology 2.4 Compactness results 2.5 Metrics on the space (Rca+(BT ), T) 2.6 Wiener measure 3 Young Measures 3.1 Preliminaries 3.2 Definitions. Examples 3.3 The stable topology 3.4 The subspace M(S) Y(S) 3.5 Compactness 3.6 Biting lemma 3.7 Product of Young measures 3.8 Jordan finite tight sets 3.9 Strong compactness in Lp(μ,E) References Index

    Out of stock

    £138.98

  • De Gruyter Theory of Fractional Engineering Vibrations

    Out of stock

    Book Synopsis Vibration is important subject in many fields, ranging from mechanical engineering to electronic one. This book aims at giving a combination of conventional linear vibrations with recent fractional ones from a view of engineering. It consists of two parts. One is for conventional linear vibrations in Chapters 1 - 6 based on the authors lectures on the course of ship hull vibrations for undergraduates and postgraduates in Ocean College, Zhejiang University, China. The other, Chapters 7 - 15, contains his research in fractional vibrations. the book is suitable for researchers and graduate students in science and engieering. Preferred preliminaries are calculus, university physics, theoretic mechanics, and material mechanics for readers.

    Out of stock

    £208.58

  • Sequences and Series in Calculus

    De Gruyter Sequences and Series in Calculus

    15 in stock

    Book SynopsisThe book Sequences and Series in Calculus is designed as the first college/university calculus course for students who take and do well on the AP AB exam in high school and who are interested in a more proof-oriented treatment of calculus. The text begins with an ε-ℕ treatment of sequence convergence, then builds on this to discuss convergence of series—first series of real numbers, then series of functions. The difference between uniform and pointwise convergence is discussed in some detail. This is followed by a discussion of calculus on power series and Taylor series. Finally improper integrals, integration by parts and partial fractions integration all are introduced. This book is designed both to teach calculus, and to give the readers and students a taste of analysis to help them determine if they wish to study this material even more deeply. It might be used by colleges and universities who teach special versions of calculus courses for their most mathematically advanced entering first-year students, as might its older sibling text Multivariable and Vector Calculus which appeared in 2020 and is intended for students who take and do well on the AP BC exam.

    15 in stock

    £56.52

  • Differential and Integral Calculus on the Basis

    15 in stock

    £24.22

  • Proximity Approach to Problems in Topology and

    De Gruyter Proximity Approach to Problems in Topology and

    Out of stock

    Book SynopsisDieses Buch konzentriert das aktuelle Gesamtwissen zum Proximity-Konzept und stellt es dem Leser in gut strukturierter Form dar. Hauptaugenmerk liegt auf den vielfältigen Möglichkeiten, die sich aus dem Proximity-Konzept der räumlichen Nähe und seiner Verallgemeinerung im Nearness-Konzept ergeben.

    Out of stock

    £68.40

  • Lineare Operatoren in Hilberträumen: Teil II:

    Springer Fachmedien Wiesbaden Lineare Operatoren in Hilberträumen: Teil II:

    1 in stock

    Book SynopsisDie im ersten Teil des Buchs dargestellten Grundlagen der Theorie der linearen Operatoren in Hilberträumen werden hier benutzt, um die Spektraltheorie von Ein- und Mehrteilchen-Schrödingeroperatoren sowie des Dirac-Operators eingehend zu untersuchen.Table of ContentsSpektrale Teilräume eines selbstadjungierten Operators - Sturm-Liouville-Operatoren - Eindimensionale Diracoperatoren - Periodische Differentialoperatoren - Ein-Teilchen-Schrödingeroperatoren - Separation der Variablen und Kugelflächenfunktionen - Spektraltheorie von N-Teilchen-Schrödingeroperatoren - Grundbegriffe der Streutheorie - Existenz der Wellenoperatoren - Ein eindimensionales Streuproblem

    1 in stock

    £34.19

  • Analysis kompakt für Dummies

    Wiley-VCH Verlag GmbH Analysis kompakt für Dummies

    Out of stock

    Book SynopsisAn der Analysis kommen Sie nicht vorbei: Sei es nun in der Schule oder wenn Sie Natur-, Ingenieurs- oder Wirtschaftswissenschaften studieren. Dieses Buch hilft Ihnen, wenn Sie sich einen schnellen Überblick über das Thema verschaffen wollen. Mark Ryan erklärt Ihnen leicht verständlich, was Sie über Grenzwerte, Ableitungen und Integrale unbedingt wissen sollten. Übungsaufgaben helfen Ihnen dabei, das Gelernte zu verinnerlichen. So ist dies Ihr perfekter Nachhilfelehrer für die Tasche: freundlich, kompetent, günstig.Table of ContentsEinführung 19 Teil I: Analysis – ein Überblick 25 Kapitel 1: Was ist Analysis? 27 Kapitel 2: Die beiden wichtigen Konzepte der Analysis: Differenziation und Integration 33 Kapitel 3: Warum die Analysis funktioniert 39 Teil II: Die Voraussetzungen für die Analysis 45 Kapitel 4: Überblick über Vor-Algebra und Algebra 47 Kapitel 5: Verrückte Funktionen und ihre wunderbaren Graphen 63 Kapitel 6: Trigonometrie ist Trumpf! 81 Teil III: Grenzwerte 85 Kapitel 7: Grenzwerte und Stetigkeit 87 Kapitel 8: Grenzwerte auswerten 97 Teil IV: Differenziation 107 Kapitel 9: Differenziation – Orientierung 109 Kapitel 10: Regeln für die Differenziation – was sein muss, muss sein! 127 Kapitel 11: Differenziation und die Form von Kurven 137 Kapitel 12: Wunschlos glücklich: Der Differenziation sei Dank! 157 Teil V: Integration 177 Kapitel 13: Integration und Flächenannäherung – ein Einstieg 179 Kapitel 14: Integration: Differenziation rückwärts 195 Kapitel 15: Integrationstechniken für Profis 219 Kapitel 16: Grau ist alle Theorie: Mit Integralen echte Probleme lösen 233 Teil VI: Der Top-Ten-Teil 253 Kapitel 17: Zehn Dinge, die Sie sich merken sollten 255 Kapitel 18: Zehn Dinge, die Sie vergessen können 257 Anhang: Lösungen 259 Abbildungsverzeichnis 279 Stichwortverzeichnis 283

    Out of stock

    £11.87

  • Analysis 1

    Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Analysis 1

    1 in stock

    Book SynopsisAusführlicher Einblick in die Anfänge der Analysis: von der Einführung der reellen Zahlen bis hin zu fortgeschrittenen Themen wie Differentialformen auf Mannigfaltigkeiten, asymptotische Betrachtungen, Fourier-, Laplace- und Legendre-Transformationen, elliptische Funktionen und Distributionen. Ausgerichtet auf naturwissenschaftliche Fragestellungen und in detaillierter Herangehensweise an die Integral- und Differentialrechnung. Mit einer Fülle hilfreicher Beispiele, Aufgaben und Anwendungen. In Band 1: vollständige Übersicht zur Integral- und Differentialrechnung einer Variablen, erweitert um die Differentialrechnung mehrerer Variablen. Trade ReviewAus den Rezensionen der englischen Ausgabe: "Diese profunde Einführung [Math.Analysis I und II] in die Analysis sollte in keiner mathematischen Bibliothek fehlen, selbst bei budgetären Restriktionen, trotz der Überfülle an Einführungsbüchern. Eine genaue, bewußte Lektüre dieses profunden Werks könnte mögliche künftige Autoren mittelmäßiger Analysisbücher vielleicht abschrecken. [...]Meisterhaft wird hier intuitives Verstehen gefördert, vermittelt durch anschauliche geometrische Denkweisen, heuristische Ideen und induktive Vorgangsweisen, ohne Exaktheitsansprüche hintanzustellen oder konkrete Details oder Anwendungen auch nur ansatzweise zu vernachlässigen. Der Aufbau ist in vieler Hinsicht ungewöhnlich, eröffnet frühe Einblicke und Weitblicke und regt zum Denken an [...], ist auch der historischen Entwicklung angemessen und bietet eine wichtige Alternative zu den vielen "eleganten" Zugängen, bei denen die Vermittlung wichtiger nötiger Entwicklungsschritte für ein aktives Verständnis zu kurz kommt. Der umfassende, Nachbardisziplinen laufend berührende Zugang trägt reiche Früchte, ebenso die facettenreiche Fülle an Erklärungen der Wurzeln und Essenz der grundlegenden Konzepte und Resultate, die Beschreibungen von Zusammenhängen und Ausblicke auf weitere Entwicklungen mit vielen in Einführungsbüchern leider eher unüblichen Anwendungen und Querbezügen [...]. Man erwirbt mit diesem Werk zusätzlich ein vollständiges, umfangreiches und wertvolles "Problem-Buch". Bei aller reichhaltiger Fülle stellt sich die Mathematik hier aber immer als eine Einheit dar, in ihrer auf den heutigen Stellenwert Bezug nehmenden historischen und philosophischen Entwicklung, geprägt durch, an passender Stelle kompetent gewürdigte, bedeutende große schöpferische Persönlichkeiten. [...] Dieses vorzügliche Werk atmet den Geist einer bewunderungswürdigen, vielschichtigen Forscher- und Lehrerpersönlichkeit." H.Rindler, Monatshefte für Mathematik 146, Issue 4, 2005 "Die vorliegenden zwei Bände sind die englische Übersetzung eines russischen Werkes, das bereits Anfang der achtziger Jahre erschienen ist und inzwischen bereits zum vierten Mal aufgelegt wurde. Die Bücher beinhalten auf über 1200 Seiten die klassische Analysis in einer zeitgemäßen Darstellung sowie Querverbindungen zu Algebra, Differenzailgleichungen, Differenzialgeometrie, komplexe Analysis und Funktionalanlaysis. Addressaten sind Studenten (und Lehrende), die neben einer strengen mathematischen Theorie auch konkrete Anwendungen suchen... Dieses ausgezeichnete Werk kann Studienanfängern und fortgeschrittenen Studierenden uneingeschränkt empfohlen werden, aber auch Lehrende werden viele Anregungen darin finden." M.Kronfellner (Wien), IMN - Internationale Mathematische Nachrichten 59, Issue 198, 2005, S. 36-37 Aus den Rezensionen: "Der umfangreiche Band enthält den … Stoff einer Analysisvorlesung … Viel Raum wird … der Behandlung der Grundlagen gewidmet. … Im weiteren Verlauf beleben dann immer wieder naturwissenschaftliche und technische Anwendungen die mathematische Theorie. Jeder Abschnitt endet mit Aufgabenstellungen. Bei aller mathematischen Strenge sind die Ausführungen verständlich und vermeiden nicht unbedingt erforderliche abstrakte Ausweitungen … Empfehlenswert als Begleitlektüre zum Studium." (Wolfgang Grölz, in: ekz-Informationsdienst Einkaufszentrale für öffentliche Bibliotheken, 2006, Issue 52)Table of ContentsInhaltsverzeichnis 1 Allgemeine mathematische Begriffe und Schreibweisen . . . . . 1 1.1 Logische Symbole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Bindew¨orter und Klammern . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Hinweise zu Beweisen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.3 Einige besondere Schreibweisen. . . . . . . . . . . . . . . . . . . . . . 3 1.1.4 Abschließende Anmerkungen . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.5 ¨Ubungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Mengen und elementare Mengenoperationen . . . . . . . . . . . . . . . . 5 1.2.1 Der Begriff einer Menge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 Teilmengen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.3 Elementare Mengenoperationen . . . . . . . . . . . . . . . . . . . . . 9 1.2.4 ¨Ubungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 Funktionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3.1 Der Begriff einer Funktion (Abbildung) . . . . . . . . . . . . . . 12 1.3.2 Elementare Klassifizierung von Abbildungen . . . . . . . . . . 17 1.3.3 Zusammengesetzte Funktionen. Inverse Abbildungen . . . 18 1.3.4 Funktionen als Relationen. Der Graph einer Funktion . . 20 1.3.5 ¨Ubungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.4 Erg¨anzungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.4.1 Die M¨achtigkeit einer Menge (Kardinalzahlen) . . . . . . . . 27 1.4.2 Axiome der Mengenlehre . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.4.3 S¨atze in der Sprache der Mengenlehre . . . . . . . . . . . . . . . . 31 1.4.4 ¨Ubungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2 Die reellen Zahlen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.1 Axiome und Eigenschaften der reellen Zahlen . . . . . . . . . . . . . . . 38 2.1.1 Definition der Menge der reellen Zahlen . . . . . . . . . . . . . . 38 2.1.2 Algebraische Eigenschaften der reellen Zahlen . . . . . . . . . 42 2.1.3 Das Vollst¨andigkeitsaxiom. Die kleinste obere Schranke 46 2.2 Klassen reeller Zahlen und Berechnungen . . . . . . . . . . . . . . . . . . . 49 2.2.1 Die nat¨urlichen Zahlen. Mathematische Induktion . . . . . 49 XVI Inhaltsverzeichnis 2.2.2 Rationale und irrationale Zahlen . . . . . . . . . . . . . . . . . . . . 52 2.2.3 Das archimedische Prinzip . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.2.4 Geometrische Interpretation. Gesichtspunkte beim Rechnen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.2.5 ¨Ubungen und Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 2.3 Wichtige S¨atze zur Vollst¨andigkeit . . . . . . . . . . . . . . . . . . . . . . . . . 74 2.3.1 Der Satz zur Intervallschachtelung . . . . . . . . . . . . . . . . . . . 74 2.3.2 Der Satz zur endlichen ¨Uberdeckung . . . . . . . . . . . . . . . . . 75 2.3.3 Der Satz vom H¨aufungspunkt . . . . . . . . . . . . . . . . . . . . . . . 76 2.3.4 ¨Ubungen und Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 2.4 Abz¨ahlbare und ¨uberabz¨ahlbare Mengen . . . . . . . . . . . . . . . . . . . 78 2.4.1 Abz¨ahlbare Mengen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 2.4.2 Die M¨achtigkeit des Kontinuums . . . . . . . . . . . . . . . . . . . . 80 2.4.3 ¨Ubungen und Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3 Grenzwerte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.1 Der Grenzwert einer Folge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.1.1 Definitionen und Beispiele . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.1.2 Eigenschaften des Grenzwertes einer Folge . . . . . . . . . . . . 86 3.1.3 Existenz des Grenzwertes einer Folge . . . . . . . . . . . . . . . . 90 3.1.4 Elementares zu Reihen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.1.5 ¨Ubungen und Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 3.2 Der Grenzwert einer Funktion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 3.2.1 Definitionen und Beispiele . . . . . . . . . . . . . . . . . . . . . . . . . . 112 3.2.2 Eigenschaften des Grenzwertes einer Funktion . . . . . . . . . 116 3.2.3 Grenzwert auf einer Basis . . . . . . . . . . . . . . . . . . . . . . . . . . 132 3.2.4 Existenz des Grenzwertes einer Funktion . . . . . . . . . . . . . 137 3.2.5 ¨Ubungen und Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 4 Stetige Funktionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 4.1 Wichtige Definitionen und Beispiele . . . . . . . . . . . . . . . . . . . . . . . . 157 4.1.1 Stetigkeit einer Funktion in einem Punkt . . . . . . . . . . . . . 157 4.1.2 Unstetigkeitsstellen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 4.2 Eigenschaften stetiger Funktionen . . . . . . . . . . . . . . . . . . . . . . . . . 165 4.2.1 Lokale Eigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 4.2.2 Globale Eigenschaften stetiger Funktionen . . . . . . . . . . . . 167 4.2.3 ¨Ubungen und Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 5 Differentialrechnung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 5.1 Differenzierbare Funktionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 5.1.1 Problemstellung und einleitende Betrachtungen . . . . . . . 181 5.1.2 In einem Punkt differenzierbare Funktionen . . . . . . . . . . . 186 5.1.3 Tangenten und geometrische Interpretation der Ableitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 5.1.4 Die Rolle des Koordinatensystems . . . . . . . . . . . . . . . . . . . 192 Inhaltsverzeichnis XVII 5.1.5 Einige Beispiele . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 5.1.6 ¨Ubungen und Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 5.2 Wichtige Ableitungsregeln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 5.2.1 Differentiation und arithmetische Operationen . . . . . . . . 201 5.2.2 Differentiation einer verketteten Funktion (Kettenregel) 205 5.2.3 Differentiation einer inversen Funktion . . . . . . . . . . . . . . . 208 5.2.4 Ableitungstabelle der Elementarfunktionen . . . . . . . . . . . 213 5.2.5 Differentiation einer sehr einfachen impliziten Funktion 213 5.2.6 Ableitungen h¨oherer Ordnung . . . . . . . . . . . . . . . . . . . . . . . 218 5.2.7 ¨Ubungen und Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 5.3 Die zentralen S¨atze der Differentialrechnung . . . . . . . . . . . . . . . . 223 5.3.1 Der Satz von Fermat und der Satz von Rolle . . . . . . . . . . 223 5.3.2 Der Mittelwertsatz und der Satz von Cauchy. . . . . . . . . . 225 5.3.3 Die Taylorschen Formeln . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 5.3.4 ¨Ubungen und Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 5.4 Differentialrechnung zur Untersuchung von Funktionen . . . . . . . 246 5.4.1 Bedingungen f¨ur die Monotonie einer Funktion . . . . . . . . 246 5.4.2 Bedingungen f¨ur ein inneres Extremum einer Funktion . 247 5.4.3 Bedingungen f¨ur die Konvexit¨at einer Funktion . . . . . . . 253 5.4.4 Die Regel von L’Hˆopital . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 5.4.5 Das Konstruieren von Graphen von Funktionen . . . . . . . 263 5.4.6 ¨Ubungen und Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 5.5 Komplexe Zahlen und Elementarfunktionen . . . . . . . . . . . . . . . . . 276 5.5.1 Komplexe Zahlen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 5.5.2 Konvergenz in C und Reihen mit komplexen Gliedern . . 280 5.5.3 Eulersche Formel und Elementarfunktionen . . . . . . . . . . . 285 5.5.4 Analytischer Zugang zur Potenzreihendarstellung . . . . . . 288 5.5.5 Algebraische Abgeschlossenheit des K¨orpers C . . . . . . . . 293 5.5.6 ¨Ubungen und Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 5.6 Beispiele zur Differentialrechnung in den Naturwissenschaften . 301 5.6.1 Bewegung eines K¨orpers mit ver¨anderlicher Masse . . . . . 302 5.6.2 Die barometrische H¨ohenformel . . . . . . . . . . . . . . . . . . . . . 304 5.6.3 Radioaktiver Zerfall und Kernreaktoren . . . . . . . . . . . . . . 306 5.6.4 In der Atmosph¨are fallende K¨orper . . . . . . . . . . . . . . . . . . 308 5.6.5 Die Zahl e und ein erneuter Blick auf exp x . . . . . . . . . . . 310 5.6.6 Schwingungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 5.6.7 ¨Ubungen und Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 5.7 Stammfunktionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 5.7.1 Stammfunktionen und das unbestimmte Integral . . . . . . 321 5.7.2 Allgemeine Methoden zur Bestimmung einer Stammfunktion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 5.7.3 Stammfunktionen rationaler Funktionen . . . . . . . . . . . . . . 329 5.7.4 Stammfunktionen der Form R R(cos x, sin x) dx . . . . . . . . 333 5.7.5 Stammfunktionen der Form R R(x, y(x)) dx . . . . . . . . . . . 335 5.7.6 ¨Ubungen und Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 XVIII Inhaltsverzeichnis 6 Integralrechnung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 6.1 Definition des Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 6.1.1 Problemstellung und einf¨uhrende Betrachtungen . . . . . . 345 6.1.2 Definition des Riemannschen Integrals . . . . . . . . . . . . . . . 347 6.1.3 Die Menge der integrierbaren Funktionen . . . . . . . . . . . . . 349 6.1.4 ¨Ubungen und Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 6.2 Linearit¨at, Additivit¨at und Monotonie des Integrals . . . . . . . . . . 365 6.2.1 Das Integral als lineare Funktion auf dem Raum R[a, b] 365 6.2.2 Das Integral als eine additive Intervallfunktion . . . . . . . . 365 6.2.3 Absch¨atzung, Monotonie und Mittelwertsatz . . . . . . . . . . 368 6.2.4 ¨Ubungen und Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376 6.3 Das Integral und die Ableitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 6.3.1 Das Integral und die Stammfunktion . . . . . . . . . . . . . . . . . 377 6.3.2 Fundamentalsatz der Integral- und Differentialrechnung 380 6.3.3 Partielle Integration und Taylorsche Formel . . . . . . . . . . . 381 6.3.4 ¨Anderung der Variablen in einem Integral . . . . . . . . . . . . 383 6.3.5 Einige Beispiele . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385 6.3.6 ¨Ubungen und Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390 6.4 Einige Anwendungen der Integralrechnung . . . . . . . . . . . . . . . . . . 393 6.4.1 Additive Intervallfunktionen und das Integral . . . . . . . . . 393 6.4.2 Bogenl¨ange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 6.4.3 Die Fl¨ache eines krummlinigen Trapezes . . . . . . . . . . . . . . 402 6.4.4 Volumen eines Drehk¨orpers . . . . . . . . . . . . . . . . . . . . . . . . . 404 6.4.5 Arbeit und Energie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 6.4.6 ¨Ubungen und Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 6.5 Uneigentliche Integrale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413 6.5.1 Definition, Beispiele und wichtige Eigenschaften . . . . . . . 413 6.5.2 Konvergenz eines uneigentlichen Integrals . . . . . . . . . . . . 418 6.5.3 Uneigentliche Integrale mit mehr als einer Singularit¨at . 425 6.5.4 ¨Ubungen und Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428 7 Funktionen mehrerer Variabler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431 7.1 Der Raum Rm und seine Unterr¨aume . . . . . . . . . . . . . . . . . . . . . . 432 7.1.1 Die Menge Rm und der Abstand in dieser Menge . . . . . . 432 7.1.2 Offene und abgeschlossene Mengen in Rm . . . . . . . . . . . . 433 7.1.3 Kompakte Mengen in Rm . . . . . . . . . . . . . . . . . . . . . . . . . . 436 7.1.4 ¨Ubungen und Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 7.2 Grenzwerte und Stetigkeit von Funktionen mehrerer Variabler . 438 7.2.1 Der Grenzwert einer Funktion . . . . . . . . . . . . . . . . . . . . . . . 438 7.2.2 Stetigkeit einer Funktion mehrerer Variabler . . . . . . . . . . 444 7.2.3 ¨Ubungen und Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 Inhaltsverzeichnis XIX 8 Differentialrechnung mit Funktionen mehrerer Variabler . . . 451 8.1 Die lineare Struktur auf Rm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451 8.1.1 Rm als Vektorraum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451 8.1.2 Lineare Transformationen L : Rm ! Rn . . . . . . . . . . . . . . 452 8.1.3 Die Norm in Rm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 8.1.4 Die euklidische Struktur auf Rm . . . . . . . . . . . . . . . . . . . . . 455 8.2 Das Differential einer Funktion mehrerer Variabler . . . . . . . . . . . 456 8.2.1 Differenzierbarkeit und das Differential in einem Punkt . 456 8.2.2 Partielle Ableitung einer Funktion mit reellen Werten . . 457 8.2.3 Die Jacobimatrix in koordinatenweiser Darstellung . . . . 460 8.2.4 Partielle Ableitungen und Differenzierbarkeit in einem Punkt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461 8.3 Die wichtigsten Gesetze der Differentiation . . . . . . . . . . . . . . . . . 462 8.3.1 Linearit¨at der Ableitung . . . . . . . . . . . . . . . . . . . . . . . . . . . 462 8.3.2 Ableitung verketteter Abbildungen (Kettenregel) . . . . . . 465 8.3.3 Ableitung einer inversen Abbildung . . . . . . . . . . . . . . . . . . 470 8.3.4 ¨Ubungen und Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472 8.4 Reelle Funktionen mehrerer Variabler . . . . . . . . . . . . . . . . . . . . . . 478 8.4.1 Der Mittelwertsatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478 8.4.2 Eine hinreichende Bedingung f¨ur die Differenzierbarkeit 480 8.4.3 Partielle Ableitungen h¨oherer Ordnung . . . . . . . . . . . . . . . 481 8.4.4 Die Taylorsche Formel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484 8.4.5 Extrema von Funktionen mehrerer Variabler . . . . . . . . . . 486 8.4.6 Einige geometrische Darstellungen . . . . . . . . . . . . . . . . . . . 493 8.4.7 ¨Ubungen und Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 8.5 Der Satz zur impliziten Funktion . . . . . . . . . . . . . . . . . . . . . . . . . . 504 8.5.1 Einleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504 8.5.2 Ein einfacher Satz zur impliziten Funktion . . . . . . . . . . . . 506 8.5.3 ¨Ubergang zur Gleichung F(x1, . . . , xm, y) = 0 . . . . . . . . . 510 8.5.4 Der Satz zur impliziten Funktion . . . . . . . . . . . . . . . . . . . . 513 8.5.5 ¨Ubungen und Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518 8.6 Einige Korollare zum Satz zur impliziten Funktion . . . . . . . . . . . 522 8.6.1 Der Satz zur inversen Funktion. . . . . . . . . . . . . . . . . . . . . . 522 8.6.2 Lokale Reduktion in kanonische Form . . . . . . . . . . . . . . . . 527 8.6.3 Funktionale Abh¨angigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . 532 8.6.4 Lokale Zerlegung eines Diffeomorphismus . . . . . . . . . . . . . 534 8.6.5 Das Morse-Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537 8.6.6 ¨Ubungen und Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540 8.7 Fl¨achen in Rn und bedingte Extrema . . . . . . . . . . . . . . . . . . . . . . 542 8.7.1 k-dimensionale Fl¨achen in Rn . . . . . . . . . . . . . . . . . . . . . . . 542 8.7.2 Der Tangentialraum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547 8.7.3 Extrema mit Nebenbedingungen . . . . . . . . . . . . . . . . . . . . 552 8.7.4 ¨Ubungen und Aufgaben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565 XX Inhaltsverzeichnis Einige Aufgaben aus den Halbjahrespr¨ufungen . . . . . . . . . . . . . . . . 571 1. Einf¨uhrung der Analysis (Zahlen, Funktionen, Grenzwerte) . . . . . . 571 2. Differentialrechnung in einer Variablen . . . . . . . . . . . . . . . . . . . . . . . 572 3. Integration und Einf¨uhrung mehrerer Variabler . . . . . . . . . . . . . . . . 574 4. Differentialrechnung mehrerer Variabler . . . . . . . . . . . . . . . . . . . . . . 575 Pr¨ufungsgebiete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579 1. Erstes Semester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579 1.1. Einleitung und Differentialrechnung in einer Variablen . . . . 579 2. Zweites Semester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581 2.1. Integration. Differentialrechnung mit mehreren Variablen . 581 Literaturverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585 1. Klassische Werke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585 1.1 Orginalquellen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585 1.2 Wichtige umfassende grundlegende Werke . . . . . . . . . . . . . . . 585 1.3 Klassische Vorlesungen in Analysis aus der ersten H¨alfte des 20. Jahrhunderts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585 2. Lehrb¨ucher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586 3. Studienunterlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586 4. Weiterf¨uhrende Literatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587 Namensverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589 Sachverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591

    1 in stock

    £17.99

  • Grundkurs Analysis 2: Differentiation und

    Springer Fachmedien Wiesbaden Grundkurs Analysis 2: Differentiation und

    Out of stock

    Book SynopsisAm Anfang des zweiten Teils des Grundkurses Analysis steht die Differenzialrechnung von mehreren Veränderlichen. Es werden alle klassischen Themen behandelt, einschließlich des Satzes über implizite Funktionen und der Bestimmung von Extremwerten unter Nebenbedingungen. Auch bei schwierigeren oder längeren Beweisen wird großer Wert auf eine klare und verständliche Darstellung gelegt.Das Buch wendet sich an Studierende in Mathematik und Physik, aber auch an Ingenieure mit großem Bedarf an Mathematik. Durch die zahlreichen Illustrationen, Beispiele und Aufgaben ist es ideal geeignet zum Selbststudium, als Begleitlektüre und ganz besonders auch zur Prüfungsvorbereitung.Die zweite Auflage ist inhaltlich und didaktisch überarbeitet und um ein eigenständiges Kapitel zu Differenzialgleichungen ergänzt. Table of ContentsDifferentialrechnung in mehreren Variablen.- Lebesgue-Theorie.- Integralsätze.- Anhang: Ergebnisse der linearen Algebra.- Literaturverzeichnis.- Stichwortverzeichnis.

    Out of stock

    £26.59

© 2025 Book Curl

    • American Express
    • Apple Pay
    • Diners Club
    • Discover
    • Google Pay
    • Maestro
    • Mastercard
    • PayPal
    • Shop Pay
    • Union Pay
    • Visa

    Login

    Forgot your password?

    Don't have an account yet?
    Create account