Other technologies and applied sciences Books
Springer International Publishing AG EcoMechatronics: Challenges for Evolution,
Book SynopsisThis book showcases how EcoMechatronics can increase sustainability within engineering and manufacturing. It brings together material from experts in core mechatronics technologies, discussing the challenges related to moving towards more environmentally friendly methods, and presenting numerous case studies and examples of EcoMechatronics oriented applications. The book begins with an introduction to EcoMechatronics in the context of sustainability, before covering core conceptual, technical and design issues associated with EcoMechatronics. It then offers a series of case studies and examples of EcoMechatronics oriented applications and finally, a consideration of the educational issues associated with moving to a new generation of environmentally oriented mechatronic engineers. EcoMechatronics will be of interest to practicing engineers, researchers, system developers. and graduate students in the field of mechatronics and environmental engineering.Table of ContentsEcoMechatronics: Concepts, Objectives, and Outcomes.- Re-Envisioning Innovation for Sustainability.- Mechatronic applications in Respect of Sustainability & Climate Change.- EcoMechatronics and Bioinspired Design: Ecology, Circular Economy and Sustainability.- A Holistic and Sustainable View on the Product Creation Process for Mechatronic Systems.- Applied Sensor Technologies.- MBSE for Mechatronic Systems Design with Human, Energetic, Cyber and Physical Aspects.- Concurrent Multi-domain Modelling and Simulation for Energy-efficient Mechatronic Systems.- Artificial Intelligence, Ethics & Privacy.- Mechatronic Applications in Rail Systems and Technologies.- Sustainable Mechatronic Solution for Agricultural Precision Farming Inspired by Space Robotics Technologies.- The Achievement of Sustainability in the Built Environment.- Eco-design of Hydropower Device in River.- Micro/Nano Positioning Systems with Piezoelectric Actuators and Their Role on Sustainability and Ecosystem.- Energy Saving in Industrial Mechatronic Systems Through Optimal Motion Planning.- Minimisation of C02 Footprint of Hybrid Propulsion Systems for Mobility and Power Tool Applications.- Developing Education in Mechatronics to Support the Challenges for Evolution, Development and Sustainability.- Education and Simulation for Electric and Mechatronic Systems in Renewable Energy.- Robot-Assisted Teaching – The Future of Education?.- EcoMechatronics: Enabling Technologies, and Future Prospects.
£125.99
Wiley-VCH Verlag GmbH Die Bierbrauerei: Band 1 - Die Technologie der
Book SynopsisDie lang erwartete, vollständig überarbeitete Neuauflage des traditionsreichsten Handbuchs der Bierbrauerei bietet sämtliche Grundlagen der modernen Braupraxis, von der Auswahl der Rohwaren bis zur gärfertigen Würze. Mit umfangreichem Bild- und Tabellenmaterial.Trade Review"Das komplette Wissen über die 'Kunst der Bierbrauens' ist in diesem Handbuch vereint." Chemie & Schule (3/2012, 05.11.2012)Table of ContentsBAND 1 DIE TECHNOLOGIE DER MALZBEREITUNG Braugerste Wasser Vorbereitung der Gerste zur Vermälzung, Lagerung Keimung Weichen der Gerste Mälzungssysteme: Technologie, Gebäude und Anlagen, Energiebedarf Spezielle Mälzungsmethoden, Einsatz von Enzymen Darren Malzenschwand Malzeigenschaften Sonder- und Spezialmalze Die Kleinmälzung BAND 2 DIE TECHNOLOGIE DER WÜRZEBEREITUNG Rohmaterialien Schroten des Malzes Maischen Würzegewinnung, Abläutern Kochen und Hopen der Würze Automation des Sudablaufes, Betriebssicherheit Sudhausausbeute Würzebehandlung vor der Gärung Besonderheiten beim Brauen mit hoher Stammwürze Anlagenplanung Energie- und Umweltbilanz der Würzebereitung
£193.50
Wiley-VCH Verlag GmbH Chemical Product Formulation Design and
Book SynopsisChemical Product Formulation Design and Optimization Explore the cutting-edge in chemical product formulation and design In Chemical Product Formulation Design and Optimization: Methods, Techniques, and Case Studies, a team of renowned technologists and engineers delivers a practice guide to chemical product design. Offering real-world case studies for disinfectant formulation, the optimization of defined media, and the formulation of biocomposites, the book contains introduction to the current product design process. In addition to the background of related statistical techniques, readers will find: Clear illustrations, figures, and tables that improve understanding and retention of critical topics Thorough introductions to the mathematical principles of chemical product design A complete examination of intellectual property considerations in the chemical product design process Ideal for process and chemical engineers, Chemical Product Formulation Design and Optimization: Methods, Techniques, and Case Studies is a must-read resource for professionals in the pharmaceutical and cosmetics industry as well as chemical engineers working in the food, paint, and dye industries who seek a one-stop resource that includes the latest advances in chemical product formulation.Table of ContentsBACKGROUND CHEMICAL PRODUCT DESIGN OVERVIEW Specialty Chemicals Overview Traditional Chemical Product Design BACKGROUND TO STATISTICAL METHODS FOR PRODUCT DESIGN Introduction to Design of Experiments Factorial Design Mixture Design Optimal Design Linear Regression Analysis Nonlinear Regression Analysis Artificial Neural Networks PATENTS AND EXCLUSIVITY Patents Overview US/PCT Patent Application Filing Avoiding Infringements GREEN CHEMISTRY Green Chemistry Overview Background to Chemical Products Toxicity Mammalian Toxicity Aquatic Toxicity Green Chemistry Requirements Green Chemistry Regulations CASE STUDIES CASE STUDY#1, DISINFECTANT FORMULATION DESIGN Background to Disinfectant Products Antimicrobial Tests Stability Tests Corrosion Tests Formulation Optimization CASE STUDY#2, DEFINED MEDIA OPTIMIZATION Background on Medium Development Microorganism Analytical Methods Medium Design and Optimization Verification of the optimized Medium DESIGN OF WHEAT STRAW POLYPROPYLENE COMPOSITES Background on Biocomposites and their Applications. Modeling Fiber Properties before and after Compounding Modeling Composite Properties as a Function of Fiber Properties Materials and Response Measurement Methods Results and Discussions Flexural Modulus Flexural Strength Yield Strength Density Optimum Ratio of MAPP/Wheat Straw Summary and Conclusions Concluding Remarks REFERENCES
£71.25
Wiley-VCH Verlag GmbH Experimente rund ums Kochen, Braten, Backen
Book SynopsisKüche und Chemie - passt das zusammen? Ja, wie Georg Schwedt in der dritten Auflage seines Experimentierbuchs zum Kochen, Braten und Backen eindrücklich demonstriert. Von der Molekular- zur Suppenküche, von unterschiedliche Garverfahren bis zur analytischen Erfassung von Nährstoffverlusten beim Kochen: Mit zahlreichen Versuchen und Rezepten werden physikalisch-chemische Vorgänge beim Kochen, Braten und Backen verständlich, erfahr- und sogar genießbar!Trade Review"Dieses Buch ist auf jeden Fall etwas für den vielseitig-interessierten Chemie-Nerd." FRS Chemie Universität Leipzig (01.03.2016) "Also wer nicht nur den Festbraten zubereiten und genießen, sondern auch etwas über die Küchenhistorie erfahren und die physikalisch-chemischen Vorgänge besser verstehen möchte, dem sei dieses Buch, das ein gewisses chemisches Grundwissen voraussetzt, empfohlen." Materials and Corrosion / matcorr.com (66/Nr.12/2015) "Dieses Buch mit der dritten aktualisierten und erweiterten Auflage (...) versetzte mich ins Staunen. Alle 10 Hauptthemen sind hervorragend ausgearbeitet und mit Abbildungen, Zeichnungen, Tabellen, Skizzen und alten fotografierten Kupferstichen versehen, die von heute bis ins 15. Jahrhundert reichen. (...) Meine Empfehlung, jeder der mit Kochen beginnt, sollte eine solche Lektüre besitzen und man bekommt so ein sehr gutes Hintergrundwissen." Amazon.de; Bücher.de; Bol-Kundenrezension; (Kundenrezension) (23.10.2015) "Zusammenfassend bildet das Buch eine unterhaltsame und gleichzeitig interessante Alternative zum alltäglichen Lernstress im Unialltag mit Experimenten, die teilweise selbst auch zuhause durchgeführt werden können." Fachschaftsrat BCE / Universität Potsdam (08.10.2015) "Das Werk richtet sich an alle Köche und Hobby-Köche die genau wissen wollen, was eigentlich abläuft, wenn sie mit ihren Töpfen, Zutaten und Flüssigkeiten hantieren. Ich kann das Buch als Wissenserweiterung und unterhaltsame Reise durch die Welt der Chemie in der eigenen Küche nur empfehlen." Grandgourmand.de (24.08.2015) "Schwendts Buch ist somit nicht weniger als der praxistauglichste Chemiebaukasten der Gegenwart." CarpeGusta.de (24.08.2015) Table of ContentsVorwort zur 3. Auflage VII Vorwort zur 2. Auflage IX Vorwort zur 1. Auflage XI 1 Von der Kochkunst zur Lebensmittelchemie 1 1.1 Die Küche – ein chemisches Laboratorium 1 1.2 Die Schlossküche von Sanssouci 5 1.3 Feinschmecker über die Kochkunst 8 1.4 Chemiker, Physiker und Apotheker über das Kochen, Braten und Backen 23 1.5 Entwicklungen bis zur Lebensmittelchemie heute 33 2 Sieben Parameter für Versuche in der Küche 35 2.1 pH-Werte 35 2.2 Mineralstoffe 36 2.3 Eiweißstoffe (Proteine) 41 2.4 Stärkeprodukte 43 2.5 Reduzierende Stoffe 44 2.6 Phenolische Stoffe 45 2.7 Gerbstoffe (Polyphenole) 46 3 Garungsarten und -verfahren imÜberblick 47 3.1 Definitionen und Systematik 47 3.2 Garverfahren und Lebensmittelgruppen 56 4 Garen inWasser 75 4.1 Kochen 75 4.2 Blanchieren 106 4.3 Dünsten 110 4.4 Dämpfen 113 4.5 Garziehen lassen: Pochieren 114 4.6 Garen in der Mikrowelle 117 5 GareninFett 123 5.1 Braten 123 5.2 Anschwitzen 131 5.3 Schmoren 132 5.4 Frittieren 136 6 Garen in trockener Hitze 139 6.1 Backen 139 6.2 Grillen 154 6.3 Rösten 156 6.4 Toasten 164 7 Garen ohne Hitze 167 7.1 Salzgaren 167 7.2 Essiggaren 170 8 Suppenchemie – Fertigsuppen und ihre Inhaltsstoffe 173 8.1 Aus der Historie 173 8.2 Fertigsuppen-Technologie heute 178 8.3 Inhaltsstoffe von Fertigsuppen 181 9 Molekularküche 187 9.1 Die Väter der Molekularküche 187 9.2 Die Verfahren der Molekularküche 190 9.3 Rezeptbeispiele 191 10 Nährstoffverluste beim Kochen von Gemüse – analytisch mit Teststäbchen erfasst 195 10.1 Einleitung – mit Beschreibung der eingesetzten Teststäbchen 195 10.2 Knollengemüse 198 10.3 Wurzelgemüse 200 10.4 Hülsenfrüchte 201 10.5 Fruchtgemüse 205 10.6 Kohlgemüse 207 Literatur 211 Sachverzeichnis 215
£26.12
Wiley-VCH Verlag GmbH Abriss der Bierbrauerei
Book SynopsisDas Lehrbuch zur Bierbrauerei von Ludwig Narziß ist seit vielen Jahren das Standardwerk auf diesem Gebiet. Die neue, achte Auflage wurde komplett überarbeitet und aktualisiert. Für Studenten ist das Buch ein kurz gefasster Leitfaden, der jedoch alle wesentlichen Aspekte abdeckt. Der bereits im Betrieb tätige Praktiker erhält eine Fülle von Anregungen und einen umfassenden Überblick über den heutigen Stand der Brauereitechnologie sowie der naturwissenschaftlichen Grundlagen der Bierbrauerei. Neu in dieser Auflage: * das Kapitel "Die Deutschen Biertypen" * das Kapitel "Malze aus anderen Getreidearten und deren Verarbeitung" * weiterführende Literatur ab Kapitel 3 Das Autorenteam ist um drei hervorragende Fachleute auf dem Gebiet der Bierbrauerei erweitert worden. Werner Back, Martin Zarnkow und Martina Gastl (alle Technische Universität München, Weihenstephan) stehen für die kontinuierliche Weiterentwicklung dieses Lehrbuches.Trade Review"Von den Autoren wurde das Buch völlig überarbeitet, ergänzt und mit neuen Entwicklungen aus der Praxis und aktuellen Forschungsständen den Anforderungen der heutigen Zeit angepasst." DEI Die Ernährungsindustrie (01.06.2017) Dieses Lehrbuch zur Bierbrauerei ist in seiner jetzt vorliegenden 8. Auflage ein kompaktes, aber umfassendes Kompendium über alle wesentlichen Aspekte der Malz- und Bierherstellung. Für Studenten stellt es einen Leitfaden dar, für den bereits im Betrieb tätigen Praktiker enthält es eine Fülle von Anregungen und gibt einen umfassenden Überblick über den heutigen Stand der Brauereitechnologie sowie der naturwissenschaftlichen Grundlagen der Bierbrauerei. Auf einen Nenner gebracht: Der neue "Abriss der Bierbrauerei" gehört für jeden, der auf der Höhe der modernen Brauereitechnologie sein will, zur Pflichtlektüre. Brauwelt (13.06.2017) Sehr umfassende und kompakte Darstellung des Fachgebiets; gut gegliedert, so dass der Fachmann schnell die gewünschten Informationen findet; gut als Nachschlagewerk zu gebrauchen. Für Studierende, die sich erst mit dem Fachgebiet vertraut machen, wären Abbildungen hilfreich. Prof. Dr.-Ing. habil. Robert Kabbert, Beuth Hochschule für Technik Berlin (30.03.2017) Der Klassiker, der sich in vielen Jahren der Lehre und beruflichen Praxis bewährt hat, beinhaltet als umfassendstes und ultimatives Handbuch seiner Art eingehendes Wissen und weitreichende Informationen zu modernen Mälz- und Brautechnologien auf dem neuesten Stand der Wissenschaft. CHEManager (28.03.2017) "Bewährtes Lehrbuch der Mälzerei- und Brauereitechnologie in komprimierter Zusammenstellung für Studierende und Praktiker." ekz-Infornationsdienst "Das Buch kann als Lehrbuch und Nachschlagewerk empfohlen werden. Es gibt einen umfassenden Überblick über den heutigen Stand der Brauereitechnik und beschreibt ausführlich die naturwissenschaftlichen Grundlagen des Brauprozesses." F & S Filtrieren und Separieren "Dieses Buch ist eher etwas für diejenigen, die sich auch abseits des Studiums weiterbilden wollen. Es muss ein gewisses Interesse an der Materie vorhanden sein, dafür aber wenige Vorkenntnisse, da diese Lektüre sowohl grundlegende als auch spezifischere Informationen zu Braumaterial und Brautechnik liefert." Kommentiertes Vorlesungsverzeichnis der Univ. Potsdam "Das bewährte Standardwerk beinhaltet eingehendes Wissen und weitreichende Informationen zu modernen Mälz- und Brautechnologien auf dem neuesten Stand der Wissenschaft." Allgemeines Ministerialblatt der Bayerischen Staatsregierung (22.12.2017) Table of ContentsVorwort zur achten Auflage ix Vorwort zur siebenten Auflage xi Vorwort zur sechsten Auflage xiii 1 Die Technologie der Malzbereitung 1 1.1 Die Braugerste 1 1.1.1 Die Morphologie der Gerste 1 1.1.2 Chemische Zusammensetzung der Gerste 2 1.1.3 Die Eigenschaften der Gerste und ihre Beurteilung 6 1.2 Die Vorbereitung der Gerste zur Vermӓlzung 9 1.2.1 Die Anlieferung der Gerste 9 1.2.2 Transportanlagen 9 1.2.3 Das Putzen und Sortieren der Gerste 9 1.2.4 Die Lagerung und Aufbewahrung der Gerste 13 1.2.5 Die künstliche Trocknung der Gerste 16 1.2.6 Pflanzliche und tierische Schӓdlinge der Gerste 17 1.2.7 Gewichtsverӓnderungen der Gerste wӓhrend der Lagerung 18 1.3 Das Weichen der Gerste 18 1.3.1 Die Wasseraufnahme des Gerstenkorns 18 1.3.2 Die Sauerstoffversorgung des Weichgutes 19 1.3.3 Die Reinigung der Gerste 20 1.3.4 Wasserverbrauch 21 1.3.5 Die Weicheinrichtungen 21 1.3.6 Die Technik des Weichens 24 1.4 Die Keimung 26 1.4.1 Die Theorie der Keimung 26 1.4.2 Die Praxis der Keimung 35 1.5 Die verschiedenen Mӓlzungssysteme 39 1.5.1 Die Tennenmӓlzerei 39 1.5.2 Die pneumatische Mӓlzerei 43 1.5.3 Die Keimanlagen der pneumatischen Mӓlzerei 46 1.5.4 Das fertige Grünmalz 62 1.6 Das Darren des Grünmalzes 62 1.6.1 Die Vorgӓnge beim Darren 62 1.6.2 Die Darren 68 1.6.3 Praxis des Darrens 75 1.6.4 Kontrolle und Automatisierung der Darrarbeit – Pflege der Darren 83 1.6.5 Maßnahmen zur Energieeinsparung 83 1.6.6 Die Nebenarbeiten beim Darren 84 1.6.7 Die Behandlung des Malzes nach dem Darren 85 1.6.8 Die Lagerung und Aufbewahrung des Malzes 85 1.7 Der Malzschwand 87 1.7.1 Der Weichschwand 88 1.7.2 Atmungs- und Keimschwand 88 1.7.3 Die Ermittlung des Malzschwandes 89 1.8 Die Eigenschaften des Malzes 89 1.8.1 Ӓußere Merkmale 89 1.8.2 Die mechanische Analyse 89 1.8.3 Die chemisch-technische Analyse 90 1.9 Malze aus anderen Getreidearten 92 1.9.1 Weizenmalz 92 1.9.2 Malze aus anderen Getreidearten 94 1.9.3 Pseudogetreide 96 1.9.4 Spezialmalze 97 1.9.5 Die Kleinmӓlzung 99 2 Die Technologie der Würzebereitung 101 2.1 Die Rohmaterialien des Brauprozesses 101 2.1.1 Malz 101 2.1.2 Ersatzstoffe desMalzes 101 2.1.3 Das Brauwasser 103 2.1.4 Der Hopfen 115 2.2 Das Schroten des Malzes 126 2.2.1 Die Kontrolle des Schrotes 128 2.2.2 Die Schrotmühlen 128 2.2.3 Beschaffenheit und Zusammensetzung des Schrotes 135 2.2.4 Die Anordnung der Schroterei 136 2.3 Die Herstellung der Würze 136 2.3.1 Die Theorie des Maischens 137 2.3.2 Die Praxis des Maischens 145 2.3.3 Die Maischverfahren 150 2.3.4 Spezielle Probleme beim Maischen 160 2.3.5 Die Kontrolle des Maischprozesses 161 2.4 Die Gewinnung der Würze (Das Ablӓutern) 163 2.4.1 Das Ablӓutern mit dem Lӓuterbottich 163 2.4.2 Der Lӓuterbottich 163 2.4.3 Der Lӓutervorgang im Lӓuterbottich 166 2.4.4 Ablӓutern mit dem konventionellen Maischefilter 175 2.4.5 Dünnschicht-Maischefilter mit Membranen 176 2.4.6 Der Dünnschicht-Kammerfilter 178 2.4.7 Schlussfolgerungen zu den beiden Systemen der Dünnschicht- Maischefilter im Vergleich zu modernen Lӓuterbottichen 180 2.4.8 Der Strainmaster 180 2.4.9 Kontinuierliche Lӓutermethoden 181 2.4.10 Das Vorlaufgefӓß 182 2.5 Das Kochen und Hopfen der Würze 182 2.5.1 Die Würzepfannen 182 2.5.2 Physikalische Vorgӓnge bei der Würzekochung 187 2.5.3 Die Koagulation des Eiweißes 188 2.5.4 Die Hopfung der Würze 190 2.5.5 Das Verhalten von Aromastoffen der Würze 197 2.5.6 Technologische und energiewirtschaftliche Beurteilung moderner Würzekochsysteme 200 2.5.7 Das Ausschlagen der Würze 206 2.5.8 Die Ausschlagwürze 207 2.5.9 Die Reinigung der Sudwerksanlage 208 2.5.10 Die Automatisierung des Würzekochprozesses 209 2.5.11 Möglichkeiten des Einsatzes von Extraktresten 209 2.5.12 Die Treber 211 2.5.13 Sicherheit und Gleichmӓßigkeit des Sudablaufes 211 2.6 Die Sudhausausbeute 212 2.6.1 Die Berechnung der Sudhausausbeute 212 2.6.2 Die Beurteilung der Sudhausausbeute 213 2.6.3 Schlussfolgerungen zum Thema Ausbeute 216 2.7 Würzekühlung und Trubausscheidung 216 2.7.1 Die Abkühlung der Würze 216 2.7.2 Die Sauerstoffaufnahme der Würze 216 2.7.3 Die Ausscheidung des Trubs 217 2.7.4 Sonstige Vorgӓnge 218 2.7.5 Kühlhauseinrichtung 218 2.7.6 Der Betrieb mit Kühlschiff, Berieselungskühler oder geschlossenem Kuhler 218 2.7.7 Geschlossene Würzekühlsysteme 220 2.8 Die Bestimmung der Kaltwürze-Ausbeute 228 2.8.1 Messwerte 228 2.8.2 Errechnung der Kaltwürze-Ausbeute 229 2.8.3 Die Gesamtausbeute bei der Würzebereitung (Overall Brewhouse Yield – OBY) 229 3 Die Technologie der Gärung 231 3.1 Die Bierhefen 231 3.1.1 Morphologie der Hefe 231 3.1.2 Die chemische Zusammensetzung der Hefe 232 3.1.3 Die Enzyme der Hefe 232 3.1.4 Die Vermehrung der Hefe 233 3.1.5 Die Genetik der Hefe 234 3.1.6 Gen-Manipulation der Hefe 234 3.1.7 Autolyse der Hefe 236 3.2 Der Stoffwechsel der Hefe 236 3.2.1 Der Kohlenhydratstoffwechsel 237 3.2.2 Der Eiweißstoffwechsel 239 3.2.3 Der Fettstoffwechsel 240 3.2.4 Der Mineralstoffwechsel 241 3.2.5 Wuchsstoffe (Vitamine) 242 3.2.6 Die Stoffwechselprodukte und ihre Bedeutung für die Beschaffenheit des Bieres 242 3.3 Die untergӓrige Hefe in der Praxis der Brauerei 246 3.3.1 DieWahl der Hefe 246 3.3.2 Die Reinzucht der Bierhefen 247 3.3.3 Entartung und Degeneration der Hefe 249 3.3.4 Gewinnung der Hefe 249 3.3.5 Reinigen der Hefe 250 3.3.6 Lagerung der Hefe 251 3.3.7 Versand der Hefe – Trockenhefen 252 3.3.8 Der Zustand der Hefe 252 3.4 Die Gӓrung in der untergӓrigen Brauerei 253 3.4.1 Die Gӓrrӓume 253 3.4.2 Die Gӓrgefӓße 255 3.4.3 Das Anstellen der Würze mit Hefe 260 3.4.4 Die Gӓrführung 264 3.4.5 Der Verlauf der Hauptgӓrung 264 3.4.6 Der Vergӓrungsgrad 267 3.4.7 Die Schlauchreife des Bieres 269 3.4.8 Die Verӓnderung der Würze wӓhrend der Gӓrung 269 3.4.9 Die Gewinnung der Gӓrungskohlensӓure 272 3.5 Die Nachgӓrung und Lagerung des Bieres 274 3.5.1 Die Lagerkeller 274 3.5.2 Die Lagergefӓße 276 3.5.3 Der Verlauf der Nachgӓrung 277 3.6 Moderne Methoden zur Vergӓrung und Lagerung des Bieres 285 3.6.1 Die konventionelle Arbeitsweise bei Gӓrtanks und Großgefӓßen 285 3.6.2 Die Anwendung von Zwischenlagertanks, der Einsatz einer Jungbierzentrifuge 289 3.6.3 Verfahren zur beschleunigten Gӓrung und Reifung des Bieres 290 3.6.4 Kontinuierliche Gӓrverfahren 297 3.6.5 Anlage mit klassischen ZKGs für ein Durchflussverfahren 298 3.6.6 Die Kalthopfung des Bieres 298 4 Die Filtration des Bieres 301 4.1 Die Theorie der Filtration 301 4.2 Die Technik der Filtration 302 4.2.1 Die Massefiltration 303 4.2.2 Die Kieselgurfiltration 304 4.2.3 Die Schichtenfilter 310 4.2.4 Die Membranfiltration 311 4.2.5 Die Zentrifugen 312 4.3 Die Kombination der Klӓrverfahren 313 4.4 Wege zum Ersatz der Kieselgurfiltration 314 4.4.1 Kombination von Zentrifuge und Massefilter 314 4.4.2 Kombination von Feinklӓrzentrifuge und Horizontalfilter 314 4.4.3 Multi-Mikrofiltration 314 4.4.4 Filterschichten 315 4.4.5 Anwendung synthetischer Extrudate 315 4.4.6 Kreuzstrom-Mikrofiltration 316 4.4.7 Folgerung zu modernen Filtersystemen 320 4.5 Die Hilfs- und Kontrollapparate der Filtration 320 4.5.1 Hilfsapparate 320 4.5.2 Kontrollgerӓte 321 4.6 Einleitung und Beendigung der Filtration 322 4.7 Das Gelӓger 322 4.8 Die Druckluft 323 5 Das Abfüllen des Bieres 325 5.1 Die Aufbewahrung des filtrierten Bieres 325 5.2 Die Fassfüllerei 325 5.2.1 Die Fӓsser 325 5.2.2 Die Fassreinigung 326 5.2.3 Die Fassabfüllung 327 5.2.4 Verbesserungen in der herkömmlichen Fassfüllerei 328 5.2.5 Die Reinigung und Abfüllung zylindrischer Metӓllfasser (Kegs) 328 5.2.6 Der Fassfüll- und Stapelkeller 331 5.3 Die Flaschen- und Dosenfüllerei 331 5.3.1 Die Gefӓße 331 5.3.2 Die Flaschenreinigung 334 5.3.3 Die Flaschenfüllung 336 5.3.4 Reinigen und „Sterilisieren“der Füllmaschinen 341 5.3.5 Verschließen der Flaschen 342 5.3.6 Aufnahme von Sauerstoff beim Abfüllen 342 5.4 „Sterilabfüllung“und Pasteurisation des Bieres 346 5.4.1 „Sterilabfüllung“346 5.4.2 Pasteurisation des Bieres 349 5.5 Gliederung der Flaschenfüllerei 352 6 Bierschwand 353 6.1 Faktoren des Bierschwandes 353 6.1.1 Würzeschwand 353 6.1.2 Eigentlicher Bierschwand 355 6.2 Ermittlung des Bierschwandes 357 6.2.1 Berechnung des Volumenschwandes 357 6.2.2 Ermittlung der Mehr- bzw. Fehlmengen 358 6.2.3 Berechnung der aus 100 kg Malz erzielten Würze- und Biermenge 358 6.2.4 Berechnung des Extraktschwandes ab Ausschlagwürze bzw. ab Malzschüttung 358 6.2.5 Die Restbierwirtschaft 359 7 Das fertige Bier 361 7.1 Zusammensetzung des Bieres 361 7.1.1 Bierextrakt 361 7.1.2 Flüchtige Bestandteile 362 7.2 Einteilung der Biere 362 7.3 Eigenschaften der Biere 363 7.3.1 Allgemeine Eigenschaften 363 7.3.2 Redoxpotenzial des Bieres 363 7.3.3 Farbe des Bieres 364 7.4 Aroma des Bieres 364 7.4.1 Aromamerkmale 364 7.4.2 Beeinflussung der Geschmacksfaktoren 365 7.4.3 Geschmacksfehler des Bieres 367 7.5 Schaum des Bieres 369 7.5.1 Theorie des Schaumes 369 7.5.2 Technologische Einflüsse auf den Bierschaum 370 7.6 Chemisch-physikalische Haltbarkeit und ihre Stabilisierung 373 7.6.1 Zusammensetzung der kolloiden Trübungen 373 7.6.2 Ausbildung der kolloiden Trübungen 374 7.6.3 Technologische Maßnahmen zur Verbesserung der kolloiden Stabilitӓt 374 7.6.4 Stabilisierung des Bieres 374 7.6.5 Geschmacksstabilitӓt des Bieres 381 7.6.6 Methoden zur Kontrolle und Vorhersage der Geschmacksstӓbilitat 387 7.6.7 Chemische Biertrübungen 388 7.6.8 Wildwerden des Bieres (Gushing) 389 7.7 Die Filtrierbarkeit des Bieres 391 7.7.1 Ursachen einer schlechten Filtrierbarkeit des Bieres 391 7.7.2 Abhilfemaßnahmen 393 7.8 Biologische Stabilitӓt des Bieres 394 7.8.1 Kontaminationsursachen 394 7.8.2 Sicherung der biologischen Haltbarkeit 396 7.9 Physiologische Wirkung des Bieres 397 7.9.1 Nӓhrwert des Bieres 397 7.9.2 Diӓtetische Wirkung des Bieres 398 7.10 Deutsche Biertypen 399 7.10.1 Helles Lagerbier 399 7.10.2 Hell Export (12,5 GG%+) 399 7.10.3 Pilsener Biere 400 7.10.4 Heller Bock 400 7.10.5 Mӓrzenbier 401 7.10.6 Dunkle und Schwarzbiere 401 7.10.7 Deutscher Porter 402 7.10.8 Rauchbier 402 7.11 Besondere Biere 402 7.11.1 Frühere Diӓtbiere 403 7.11.2 Nӓhrbiere 405 7.11.3 Alkoholfreie Biere 405 7.11.4 Verfahren zur Begrenzung des Alkoholgehaltes 406 7.11.5 Alkoholentzug mit physikalischen Verfahren 408 7.11.6 Die Kombination der verschiedenen Verfahren zur Herstellung von alkoholfreiem Bier 411 7.11.7 Leichtbiere 412 8 Die Obergärung 415 8.1 Allgemeines 415 8.2 Die obergӓrige Hefe 415 8.2.1 Morphologische Merkmale 415 8.2.2 Physiologische Unterschiede 416 8.2.3 Gӓrungstechnologische Merkmale 416 8.2.4 Hefebehandlung 417 8.3 Die Fuhrüng der Obergӓrung 418 8.3.1 Gӓrraum und Gӓrbehӓlter 418 8.3.2 Die Würzebeschaffenheit 419 8.3.3 Das Anstellen 419 8.3.4 Der Ablauf der Hauptgӓrung 420 8.3.5 Die Verӓnderung der Würze wӓhrend der Obergӓrung 422 8.3.6 Die Nachgӓrung 423 8.3.7 Filtration und Abfüllung 425 8.4 Verschiedene obergӓrige Biere und ihre Herstellung 426 8.4.1 Das Altbier (Dusseldorf, Niederrhein) 426 8.4.2 Das Kölsch 428 8.4.3 Weizenbier – hefefrei 429 8.4.4 Hefeweizenbier 432 8.4.5 Obergӓrige Biere aus Malzen anderer Getreidearten als Gerste und Weizen 436 8.4.6 Das Berliner Weißbier 438 8.4.7 Traditionelle obergӓrige Biere 439 8.4.8 Malzbier (auch Süßbier genannt) 440 8.4.9 Obergӓrige Nӓhrbiere bayerischer Brauart 441 8.4.10 Obergӓrige, alkoholfreie Biere 441 8.4.11 Obergӓrige Leichtbiere 441 8.5 Glutenfreie Biere 441 8.5.1 Herstellung aus konventionellen Rohstoffen – züchterische Modifikation der Rohstoffe 442 8.5.2 Enzymatische Modifikation der Rohstoffe 442 8.5.3 Bierherstellung aus glutenfreien Zucker- bzw. Stӓrkequellen 442 8.5.4 Kohlenhydratreiche Körnerfrüchte 442 9 Das Brauen mit hoher Stammwürze 445 9.1 Die Herstellung der starkeren Würze 445 9.1.1 Das Ablautern 445 9.1.2 Das Maischen 445 9.1.3 Das Würzekochen 445 9.1.4 Whirlpoolbetrieb 446 9.1.5 Die Verdünnung der starken Wurze bei der Würzekühlung 446 9.2 Die Vergarung der starkeren Würzen 446 9.3 Die Verdünnung des ausgereiften Bieres 447 9.4 Die Eigenschaften der Biere 448 Weiterführende Literatur 449 Sachregister 453
£58.50
Wiley-VCH Verlag GmbH Automated Sample Preparation: Methods for GC-MS
Book SynopsisAn essential guide to the proven automated sample preparation process While the measurement step in sample preparation is automated, the sample handling step is manual and all too often open to risk and errors. The manual process is of concern for accessing data quality as well as producing limited reproducibility and comparability. Handbook of Automated Sample Preparation for CG-MS and LC-MS explores the advantages of implementing automated sample preparation during the handling phase for CG-MS and LC-MS. The author, a noted expert on the topic, includes information on the proven workflows that can be put in place for many routine and regulated analytical methods. This book offers a guide to automated workflows for both on-line and off-line sample preparation. This process has proven to deliver consistent and comparable data quality, increased sample amounts, and improved cost efficiency. In addition, the process follows Standard Operation Procedures that are essential for audited laboratories. This important book: Provides the information and tools needed for the implementation of instrumental sample preparation workflows Offers proven and detailed examples that can be adapted in analytical laboratories Shows how automated sample preparation can reduce cost per sample, increase sample amounts, and produce faster results Includes illustrative examples from various fields such as chemistry to food safety and pharmaceuticals Written for personnel in analytical industry, pharmaceutical, and medical laboratories, Handbook of Automated Sample Preparation for CG-MS and LC-MS offers the much-needed tools for implementing the automated sample preparation for analytical laboratories.Table of ContentsForeword xiii Preface xv 1 Introduction 1 1.1 A Perspective on Human Performance 2 References 5 2 The Analytical Process 7 2.1 Laboratory Logistics 7 2.1.1 Analytical Benefits of Instrumental Workflows 9 2.1.1.1 Data Quality 11 2.1.1.2 Turnkey Operation 11 2.1.1.3 Green Analytical Chemistry 11 2.1.1.4 Productivity 12 2.1.2 Standard Operation Procedure 13 2.1.3 Economical Aspects 15 References 16 3 Workflow Concepts 19 3.1 Sample Preparation Workflow Design 19 3.1.1 Transfer of Standard Methods to Automated Workflows 20 3.1.2 Method Translation 21 3.1.2.1 Sketching the Automated Workflow 22 3.1.2.2 Robotic System Configuration 22 3.1.3 Online or Offline Configuration 25 3.2 Instrumental Concepts 25 3.2.1 Workstations 25 3.2.2 Revolving Tray Autosamplers 26 3.2.3 Selective Compliance Articulated Robots 28 3.2.4 Cartesian Robots 28 3.2.5 Multiple Axis Robots 32 3.2.6 Collaborative Robots 33 3.3 Sample Processing 35 3.3.1 Sequential Sample Preparation 35 3.3.2 Prep-ahead Mode 35 3.3.3 Incubation Overlapping 36 3.3.4 Batch Processing 36 3.3.5 Parallel Processing Workflows 38 3.3.6 Sample Identification 38 3.3.6.1 Barcodes 38 3.3.6.2 Radio-Frequency Identification Chips 40 3.4 Tool Change 41 3.4.1 Manual Tool Change 41 3.4.2 Automated Tool Change 42 3.4.3 Tool Identification 44 3.5 Object Transport 46 3.5.1 Magnetic Transport 46 3.5.2 Gripper Transport 48 3.5.3 Needle Transport 50 3.6 Vial Decapping 50 References 52 4 Analytical Aspects 55 4.1 Liquid Handling 55 4.1.1 About Drops and Droplets 55 4.1.2 Syringes 56 4.1.2.1 Precision and Accuracy 57 4.1.2.2 Syringe Needles 58 4.1.2.3 Syringe Needle Point Styles 59 4.1.2.4 Syringe Plunger Types 60 4.1.2.5 Syringe Termination 61 4.1.2.6 Operational Parameters 62 4.1.3 Vial Bottom Sensing 66 4.1.4 Pipetting 67 4.1.4.1 Air Displacement Pipettes 68 4.1.4.2 Positive Displacement Pipets 69 4.1.4.3 Pipetting Modes 69 4.1.4.4 Aspiration 71 4.1.4.5 Dispensing 73 4.1.4.6 Liquid-Level Detection 74 4.1.4.7 Liquid Classes 75 4.1.4.8 Pipet Tips 75 4.1.4.9 Functional Pipet Tips 78 4.1.4.10 Pipet Tip Materials 81 4.1.5 Dilutor/Dispenser Operation 82 4.1.6 Flow Cell Sampling 84 4.2 Solid Materials Handling 85 4.2.1 Workflows with Solid Materials 86 4.2.2 Automated Solids Dosing by Powder Dispensing 86 4.3 Weighing 88 4.4 Extraction 90 4.4.1 Liquid Extraction 91 4.4.2 Pressurized Fluid Extraction 92 4.4.2.1 Solvents and Extraction 93 4.4.2.2 Miniaturization and Automation 94 4.4.2.3 In-Cell Clean-Up 96 4.4.2.4 International Standard Methods 97 4.4.3 Liquid/Liquid Extraction 97 4.4.4 Dispersive Liquid/Liquid Micro-Extraction 100 4.4.4.1 Automated DLLME Workflows 103 4.4.4.2 DLLME for Soil and Urine 103 4.4.4.3 DLLME for Pesticides in Food 104 4.4.4.4 DLLME Hyphenation with LC 104 4.4.5 Sorptive Sample Preparation 104 4.4.5.1 Solid-Phase Micro-Extraction 105 4.4.5.2 SPME Fiber 109 4.4.5.3 SPME Arrow 112 4.4.5.4 Solid-Phase Micro-Extraction with Derivatization 116 4.4.5.5 Direct Solid-Phase Micro-Extraction Mass Spectrometry 119 4.4.5.6 Stir Bar Sorptive Extraction 121 4.4.5.7 Thin-Film Micro-Extraction 123 4.5 Clean-Up Procedures 124 4.5.1 Filtration 124 4.5.1.1 Filter Materials 125 4.5.1.2 Syringe Filter 126 4.5.1.3 Filter Vials 127 4.5.2 Solid-Phase Extraction 129 4.5.2.1 The General SPE Clean-Up Procedure 133 4.5.2.2 On-Line SPE 134 4.5.2.3 Micro-SPE Clean-Up 137 4.5.2.4 Syringe-Based Micro-SPE 141 4.5.3 Gel Permeation Chromatography 143 4.5.3.1 Standardized Methods 145 4.5.3.2 Workflow and Instrument Configuration 145 4.5.3.3 GPC-GC Online Coupling 146 4.5.3.4 Micro-GPC-GC Online Coupling 147 4.6 Centrifugation 148 4.7 Evaporation 150 4.8 Derivatization 153 4.8.1 For LC and LC-MS 154 4.8.1.1 Aromatic Acid Chlorides 154 4.8.1.2 Dansylchloride 155 4.8.1.3 Ninhydrin Reaction 155 4.8.1.4 FMOC Derivatization 155 4.8.2 For GC and GC-MS 156 4.8.2.1 Silylation 156 4.8.2.2 Acetylation 157 4.8.2.3 Methylation 157 4.8.2.4 Methoxyamination 158 4.8.2.5 Fluorinating Reagents 158 4.8.3 For GC and GC-MS In-Port Derivatization 159 4.9 Temperature Control 163 4.9.1 Heating 163 4.9.1.1 Incubation Overlapping 163 4.9.2 Cooling 164 4.10 Mixing 166 4.10.1 Vortexing 166 4.10.2 Agitation 167 4.10.3 Spinning 169 4.10.4 Mixing with Syringes 169 4.10.5 Cycloidal Mixing 169 References 171 5 Integration into Analysis Techniques 191 5.1 GC Volatiles Analysis 191 5.1.1 Static Headspace Analysis 192 5.1.1.1 Overcoming Matrix Effects 194 5.1.1.2 Measures to Increase Analyte Sensitivity 195 5.1.1.3 Static Headspace Injection Technique 195 5.1.2 Multiple Headspace Quantification 197 5.1.3 Dynamic Headspace Analysis 201 5.1.3.1 Purge and Trap 202 5.1.3.2 Dynamic Headspace Analysis with In-Tube Extraction 204 5.1.3.3 Dynamic Headspace Analysis Using Sorbent Tubes 207 5.1.3.4 Needle Trap Microextraction 208 5.1.4 Tube Adsorption 210 5.2 GC Liquid Injection 222 5.2.1 Sandwich Injection 222 5.2.2 Hot Needle Injection 222 5.2.3 Liquid Band Injection 224 5.2.4 Automated Liner Exchange 226 5.3 LC–GC Online Injection 230 5.4 LC Injection 233 5.4.1 Dynamic Load and Wash 234 5.4.2 Using LC Injection Ports with a Pipette Tool 235 References 237 6 Solutions for Automated Analyses 247 First About Safety 248 6.1 Dilution 248 6.1.1 Geometric Dilution of Reference Standards 248 6.1.2 Dilution for Calibration Curves 251 6.1.3 Preparation of Working Standards 256 6.2 Derivatization 259 6.2.1 Silylation 260 6.2.2 SPME On-Fiber Derivatization 262 6.2.3 Metabolite Profiling by Methoximation and Silylation 266 6.3 Taste and Odor Compounds Trace Analysis 271 6.4 Sulfur Compounds in Tropical Fruits 276 6.5 Ethanol Residues in Halal Food 284 6.6 Volatile Organic Compounds in Drinking Water 289 6.7 Geosmin and 2-MIB 295 6.8 Solvent Elution from Charcoal 301 6.9 Semivolatile Organic Compounds in Water 304 6.10 Polyaromatic Hydrocarbons in Drinking Water 315 6.11 Fatty Acid Methylester 321 6.11.1 Application 321 6.12 MCPD and Glycidol in Vegetable Oils 328 6.13 Mineral Oil Hydrocarbons MOSH/MOAH 339 6.14 Pesticides Analysis – QuEChERS Extract Clean-Up 347 6.15 Glyphosate, AMPA, and Glufosinate by Online SPE-LC-MS 362 6.16 Pesticides, PPCPs, and PAHs by Online-SPE Water Analysis 368 6.17 Residual Solvents 375 6.18 Chemical Warfare Agents in Water and Soil 382 6.19 Shale Aldehydes in Beer 390 6.20 Phthalates in Polymers 394 References 400 A Appendix 413 A.1 Robotic System Control 413 A.1.1 Maestro Software 413 A.1.2 Chronos Software 414 A.1.3 Graphical Workflow Programming 415 A.1.4 Sample Control Software 416 A.1.5 Local System Control 417 A.1.6 Script Control Language 418 A.2 System Maintenance 418 A.2.1 Syringes 418 A.2.1.1 Manual Syringe Handling 418 A.2.1.2 Syringe Cleaning 418 A.2.1.3 Plunger Cleaning 419 A.2.1.4 Needle Cleaning 419 A.2.1.5 Confirming the Dispensed Volume of a Syringe 420 A.2.1.6 Sterilization 420 A.2.2 Pipettes 421 A.2.2.1 Calibration 421 A.2.2.2 Pipette Parts Maintenance 421 A.2.3 System Hardware Maintenance Schedule 422 A.3 Syringe Needle Gauge 423 A.4 Pressure Units Conversion 425 A.5 Solvents 425 A.5.1 Solvent Miscibility 425 A.5.2 Solvent Stability 428 A.5.2.1 Halogenated Solvents 428 A.5.2.2 Ethers 429 A.5.3 Solvent Viscosity 429 A.6 Material Resistance 429 A.6.1 Glass 432 A.6.2 Polymers 432 A.6.3 Stainless Steel 433 References 437 Glossary 441 References 451 Index 453
£107.96
Wiley-VCH Verlag GmbH Mikro- und Ultrafiltration mit Membranen
Book SynopsisMikro- und Ultrafiltration mit Membranen Klar strukturiert und kompakt wird hier die Mikro- und Ultrafiltration mit Membranen behandelt, von den Grundlagen und Charakterisierung von Membranen bis hin zu industriellen Anwendungen und Instandhaltung Die Mikro- und Ultrafiltration mit Membranen ist eine verbreitete und etablierte Schlüsseltechnologie für die Aufbereitung von Stoffströmen. Im Buch werden sowohl die Grundlagen der Mikro- und Ultrafiltration mit Membranen, Herstellung und Charakterisierung, Filtrationsverfahren, industrielle Anwendungen als auch die Instandhaltung und Reinigung von Membranen behandelt. Prinzipien und praktische Anwendungen werden klar strukturiert dem Leser zugänglich gemacht Behandelt alle Prozesse von Grundlagen bis zu den Anwendungen Unverzichtbar für die Ausarbeitung, Etablierung und Instandhaltung von Membrantrennverfahren Es bietet eine umfassende Einführung in die Theorie und Praxis der Membranfiltration und gibt wertvolle Einblicke in die verschiedenen Anwendungen und Technologien. Ob Sie nun ein erfahrener Ingenieur sind oder gerade erst in die Welt der Membranfiltration eintauchen, dieses Buch wird Ihnen helfen, Ihre Kenntnisse zu vertiefen und Ihre Fähigkeiten zu verbessern. Mit klaren Erklärungen, anschaulichen Beispielen und praktischen Tipps ist es ein unverzichtbares Nachschlagewerk für jeden, der sich mit der Filtration von Flüssigkeiten beschäftigt.Table of ContentsVorwort xi Liste Der Symbole xiii 1 Mikro- und Ultrafiltration mit Membranen 1 1.1 Übersicht über die Membranverfahren 1 1.2 Einordnung der Mikro- und Ultrafiltration 4 1.2.1 Die Mikrofiltration 5 1.2.2 Die Ultrafiltration 6 1.3 Bekannte Verfahrensweisen und Ausführungsformen 9 1.3.1 Dead-End-Filtration (statische Filtration) 9 1.3.2 Crossflow-Filtration mit Membranmodulen 10 1.3.3 Dynamische Filtration mit Filtrationsmaschinen 11 1.3.4 Single-Pass-Crossflow-Filtration 11 1.3.5 GetauchteMembraneninBeckenundBehältern 12 1.4 Entscheidende Faktoren für eine industrielle Membrananwendung 12 1.5 Technische und wirtschaftliche Bedeutung 15 Literatur 17 2 Historische Entwicklung der Mikro- und Ultrafiltration 19 2.1 Entdeckung grundlegender Naturgesetze 19 2.2 Herstellung von Polymermembranen 21 2.3 Entwicklungen der Entkeimungs- und Sterilfiltration 27 2.4 Entwicklung anorganischer Membranen 29 Literatur 32 3 Membranen zur Ultra- und Mikrofiltration 35 3.1 Allgemeine Beschreibung und Einteilung 35 3.2 Polymermembranen und ihre Herstellung 37 3.2.1 Membranherstellung durch Phasenseparation 40 3.2.2 Herstellung von Rohrmembranen durch Spiralwickeln 48 3.2.3 Membranherstellung durch Verstrecken von Polymerfolien 50 3.2.4 Das Kernspurverfahren („track etching“) 51 3.2.5 Herstellung mikroporöser Strukturen durch Sintern 53 3.3 Anorganische Membranen 53 3.4 Charakterisierung von Membranen zur Mikro- und Ultrafiltration 56 3.4.1 Überblick über die zu charakterisierenden Eigenschaften 56 3.4.2 Äußere Abmaße 59 3.4.3 Die Porenstruktur 59 3.4.4 Die Topographie der äußeren Oberfläche 63 3.4.5 Die Permeabilität 64 3.4.6 Die Trenngrenze bzw. das Rückhaltevermögen 71 3.4.7 Benetzungseigenschaften von Membranen 79 3.4.8 Blaspunktdruck und maximale Porengröße 87 3.4.9 Die Porengrößenverteilung 89 3.4.10 Adsorptionseigenschaften und elektrochemische Eigenschaften 94 3.4.11 Mechanische Membraneigenschaften 97 3.4.12 Die Temperatur- und Chemikalienbeständigkeit 99 Literatur 102 4 Relevante Eigenschaften der behandelten Stoffsysteme 105 4.1 Besonderheiten der behandelten Stoffsysteme 105 4.2 Agglomeration und Flockung 108 4.3 Absetzgeschwindigkeit 109 4.4 Verhalten von Partikeln und Makromolekülen im elektrischen Feld 110 4.5 Diffusion 110 4.6 Osmotischer Druck 111 4.7 Das Fließverhalten von Dispersionen 115 4.8 Strömungswiderstand der Deckschicht 122 5 Die Dead-End-Filtration mit Membranen 135 5.1 Einführung 135 5.2 Ausführungsformen 137 5.2.1 Scheibenfilter zur Dead-End-Filtration 137 5.2.2 Capsule-Filter 138 5.2.3 Filterkerzen mit den zugehörigen Gehäusen 138 5.3 Physikalische Überlegungen zur Dead-End-Filtration 142 5.3.1 Flüssigkeits- bzw. Gasdurchsatz reiner Medien 142 5.3.2 Flüssigkeitsdurchsatz bei einer Oberflächenfiltration 144 5.3.3 Die Schmutzaufnahmefähigkeit 148 5.4 Validierung von Membranfiltern 150 5.4.1 Entwicklung der Validierungspraxis 150 5.4.2 Integritätstestverfahren 152 5.4.3 Nachweise für einen unbedenklichen Einsatz von Filtern 160 5.4.4 Qualitätssicherung bei der Produktion 166 Literatur 169 6 Crossflow-Filtration mit durchströmten Membranmodulen 171 6.1 Apparative Ausführung und wichtige Betriebsparameter 171 6.2 Membranmodule zur Crossflow-Filtration 179 6.2.1 Übersicht über einzelne Bauarten 179 6.2.2 Der konzentratseitige Druckabfall im Membranmodul 184 6.3 Betriebsweisen zur Crossflow-Filtration 190 6.3.1 Diskontinuierliche Betriebsweisen 190 6.3.2 Kontinuierliche Betriebsweisen 193 6.3.3 Beispiel zum Vergleich verschiedener Betriebsweisen 195 6.3.4 Die Diafiltration 198 6.4 Berechnungsansätze zur Crossflow-Filtration 203 6.4.1 Bekannte Berechnungsansätze 203 6.4.2 Gekoppeltes Diffusions- und hydrodynamisches Modell 213 6.4.3 Modellierung des zeitlichen Filtrationsverlaufs 218 6.4.4 Schlussfolgerungen 220 6.5 Klassierverfahren 220 6.6 Die UTP-Betriebsweise 221 6.7 Der Einsatz von Gradientenmembranen 223 6.8 Dynamische Precoat-Filtration 225 6.9 Fouling 225 Literatur 228 7 Sonstige Verfahrensweisen mit feststehenden, überströmten Membranen 233 7.1 Single-Pass-Crossflow-Filtration 233 7.2 Filtration mit getauchten Membranen 236 7.3 Pumpe-Düse-Filtersysteme 237 7.4 Crossflow-Filtration mit Dean-Wirbeln 237 7.5 Zyklonmodule 239 Literatur 241 8 Filtrationsmaschinen 243 8.1 Einführung 243 8.2 Rührzellen 245 8.3 Scherspaltfilter mit radialem Spalt und Rührorganen 246 8.4 Filter mit rotierenden Filterscheiben 249 8.5 Filter mit zylindrischen Filterelementen 254 8.6 Filter mit oszillierenden Membranen 260 8.7 Filter mit Schaber zum Entfernen der Deckschicht 260 8.8 Hinweise zur Auslegung und zum Betrieb 261 Literatur 262 9 Zusätzliche Maßnahmen zur Erhöhung des Filtratstroms 265 9.1 Crossflow-Filtration mit periodischer Rückspülung 265 9.2 Crossflow-Filtration mit überlagertem elektrischen Feld 273 9.3 Crossflow-Filtration mit überlagertem Ultraschall 276 9.4 Einsatz abrasiv wirkender Partikeln 277 Literatur 278 10 Anwendungsgebiete der Ultra- und Mikrofiltration 281 10.1 Anwendungen in der Labor- und Analysetechnik 281 10.2 Entkeimungsfiltration von Flüssigkeiten 284 10.3 Entkeimungsfiltration von Gasen 286 10.4 Pyrogenabtrennung 288 10.5 Anwendungen in der Biotechnologie 290 10.6 Anwendungen in der Medizin 298 10.7 Anwendungen in der Lebensmitteltechnik 301 10.7.1 Klären und Entkeimen 302 10.7.2 Anwendungen in der Zucker- und Stärkeindustrie 311 10.7.3 Anwendungen bei der Verarbeitung von Milch und Molke 313 10.7.4 Anwendungen bei der Gewinnung von Sojaprodukten 315 10.7.5 Filtration von Reinigungslösungen 315 10.8 Anwendungen zur Wasseraufbereitung 316 10.8.1 Trinkwassergewinnung 317 10.8.2 Vorbehandlung von Wasser für die Umkehrosmose 319 10.8.3 Rein- und Reinstwasserbereitung 320 10.8.4 Beurteilung der Filtrierbarkeit von Wasser 323 10.8.5 Membranbioreaktoren zur Abwasseraufbereitung 326 10.8.6 Zero Liquid Discharge 330 10.9 Anwendungen in der Produktions- und Umweltschutztechnik 332 10.9.1 Aufarbeitung öl- und fetthaltiger Wässer 333 10.9.2 Recycling von Schleifereiwasser 335 10.9.3 Anwendung bei der elektrophoretischen Tauchlackierung 337 10.9.4 Abtrennung von gefällten Metallverbindungen 337 10.9.5 Anwendungen bei der Herstellung von Zellstoff und Papier 338 10.9.6 Anwendungen in der chemischen Produktion 339 10.10 Mikroporöse Membranen in konventionellen Filterapparaten 342 Literatur 343 11 Reinigung, Desinfektion und Sterilisation von Membrananlagen 347 11.1 Einführung 347 11.2 Die CIP-Reinigung 349 11.3 Desinfektion und Sterilisation von Membrananlagen 361 11.3.1 Einführung 361 11.3.2 Chemische Desinfektion und Desinfektionsmittel 362 11.3.3 Desinfektion und Sterilisation durch Hitze 365 11.3.4 Validierung des Desinfektions- oder Sterilisationserfolgs 367 Literatur 368 12 Hinweise zur Projektbearbeitung 369 12.1 Verfahrensauswahl 369 12.2 Hybridprozesse 371 12.3 Bedeutung experimenteller Untersuchungen 371 12.4 Projektbearbeitung zur Ultra- und Mikrofiltration 373 12.5 Betriebswirtschaftliche Betrachtungen 379 Literatur 385 Stichwortverzeichnis 387
£99.00
Wiley-VCH Verlag GmbH Sustainable Food Packaging Technology
Book SynopsisTowards more sustainable packaging with biodegradable materials! The combination of the continuously increasing food packaging waste with the non-biodegradable nature of the plastic materials that have a big slice of the packaging market makes it necessary to move towards sustainable packaging for the benefit of the environment and human health. Sustainable packaging is the type of packaging that can provide to food the necessary protection conditions, but at the same type is biodegradable and can be disposed as organic waste to the landfills in order to biodegrade through a natural procedure. In this way, sustainable packaging becomes part of the circular economy. ?Sustainable Food Packaging Technology? deals with packaging solutions that use engineered biopolymers or biocomposites that have suitable physicochemical properties for food contact and protection and originate both from renewable or non-renewable resources, but in both cases are compostable or edible. Modified paper and cardboard with increased protective properties towards food while keeping their compostability are presented as well. The book also covers natural components that can make the packaging functional, e.g., by providing active protection to the food indicating food spoilage. * Addresses urgent problems: food packaging creates a lot of hard-to-recycle waste - this book puts forward more sustainable solutions using biodegradable materials * State-of-the-art: ?Sustainable Food Packaging Technology? provides knowledge on new developments in functional packaging * From lab to large-scale applications: expert authors report on the technology aspects of sustainable packagingTable of ContentsPreface xiii Part I Review on Biopolymers for Food Protection 1 1 Emerging Trends in Biopolymers for Food Packaging 3Sergio Torres-Giner, Kelly J. Figueroa-Lopez, Beatriz Melendez-Rodriguez, Cristina Prieto, Maria Pardo-Figuerez, and Jose M. Lagaron 1.1 Introduction to Polymers in Packaging 3 1.2 Classification of Biopolymers 4 1.3 Food Packaging Materials Based on Biopolymers 7 1.3.1 Polylactide 7 1.3.2 Polyhydroxyalkanoates 8 1.3.3 Poly(butylene adipate-co-terephthalate) 9 1.3.4 Polybutylene Succinate 10 1.3.5 Bio-based Polyethylene 11 1.3.6 Bio-based Polyethylene Terephthalate 13 1.3.7 Poly(ethylene furanoate) 14 1.3.8 Poly(ε-caprolactone) 15 1.3.9 Thermoplastic Starch 15 1.3.10 Cellulose and Derivatives 17 1.3.11 Proteins 17 1.3.11.1 Gelatin 18 1.3.11.2 Wheat Gluten 18 1.3.11.3 Soy Protein 20 1.3.11.4 Corn Zein 20 1.3.11.5 Milk Proteins 21 1.4 Concluding Remarks 21 References 24 2 Biopolymers Derived from Marine Sources for Food Packaging Applications 35Jone Uranga, Iratxe Zarandona, Mireia Andonegi, Pedro Guerrero, and Koro de la Caba 2.1 Introduction 35 2.2 Fish Gelatin Films and Coating 37 2.2.1 Collagen and Gelatin Extraction 37 2.2.2 Preparation and Characterization of Fish Gelatin Films and Coatings 39 2.2.3 Food Shelf Life Extension Using Fish Gelatin Films and Coatings 40 2.3 Chitosan Films and Coatings 42 2.3.1 Chitin and Chitosan Extraction 42 2.3.2 Preparation and Characterization of Chitosan Films and Coatings 43 2.3.3 Food Shelf Life Extension Using Chitosan Films and Coatings 44 2.4 Future Perspectives and Concluding Remarks 46 References 46 3 Edible Biopolymers for Food Preservation 57Elisabetta Ruggeri, Silvia Farè, Luigi De Nardo, and Benedetto Marelli 3.1 Introduction 57 3.2 Polysaccharides 61 3.2.1 Alginate 63 3.2.2 Carrageenans 63 3.2.3 Cellulose 67 3.2.4 Chitosan 69 3.2.5 Pectin 70 3.2.6 Pullulan 71 3.2.7 Starch 71 3.3 Proteins 72 3.3.1 Casein 73 3.3.2 Collagen 74 3.3.3 Gelatin 74 3.3.4 Wheat Gluten 75 3.3.5 Whey Protein 75 3.3.6 Silk Fibroin 76 3.3.7 Zein 77 3.4 Lipids 78 3.4.1 Beeswax 80 3.4.2 Candelilla Wax 80 3.4.3 Carnauba Wax 81 3.4.4 Shellac 81 3.5 Edible Composite Materials 82 3.6 Active Coatings 85 3.6.1 Antimicrobial Agents 85 3.6.2 Antioxidant Agents 85 3.7 Materials Selection and Application 86 3.8 Conclusions 87 References 88 Part II Food Packaging Based on Individual Biopolymers and their Composites 107 4 Polylactic Acid (PLA) and Its Composites: An Eco-friendly Solution for Packaging 109Swati Sharma 4.1 Introduction 109 4.2 Synthesis of PLA and Its Properties 110 4.3 Properties Required for Food Packaging 111 4.3.1 Barrier Properties 111 4.3.2 Optical Properties 113 4.3.3 Mechanical Properties 114 4.3.4 Thermal Properties 114 4.3.5 Antibacterial Properties 115 4.4 General Reinforcements for PLA 116 4.4.1 Natural Fibers 116 4.4.2 Synthetic Fibers 121 4.4.3 Functional Fillers 122 4.4.3.1 Clay/PLA Composites 122 4.4.3.2 Metal-oxide/PLA Composites 123 4.5 Biodegradability of PLA 123 4.6 Conclusions and Future Prospects 124 References 124 5 Green and Sustainable Packaging Materials Using Thermoplastic Starch 133Anshu A. Singh and Maria E. Genovese 5.1 Sustainability and Packaging: Toward a Greener Future 134 5.1.1 The Plastic Threat 134 5.1.2 The Call for Sustainability 135 5.1.3 Biomaterials for Sustainable Packaging 135 5.2 Thermoplastic Starch 137 5.2.1 Starch: Physicochemical Properties, Processing, Applications 137 5.2.2 From Starch to Thermoplastic Starch 141 5.2.3 Plasticizers of Starch 142 5.2.4 Processing of Thermoplastic Starch 143 5.3 Thermoplastic Starch-Based Materials in Packaging 145 5.3.1 Technical and Legal Requirements for Packaging Materials 145 5.3.2 Composites of TPS with Fillers 146 5.3.3 Composites of Thermoplastic Starch with Polysaccharides 147 5.3.4 Composites of Thermoplastic Starch with Polyesters 149 5.3.5 Composite of TPS Based on Chemical Modification 152 5.3.6 Commercial Packaging Materials Based on Thermoplastic Starch 152 5.4 Conclusions 153 References 155 6 Cutin-Inspired Polymers and Plant Cuticle-like Composites as Sustainable Food Packaging Materials 161Susana Guzmán-Puyol, Antonio Heredia, José A. Heredia-Guerrero, and José J. Benítez 6.1 Introduction 161 6.1.1 Bioplastics as Realistic Alternatives to Petroleum-Based Plastics 161 6.1.2 The Plant Cuticle and Cutin: The Natural Food Packaging of the Plant Kingdom 166 6.1.3 A Comparison of Cutin with Commercial Plastics and Bioplastics 169 6.1.4 Tomato Pomace is the Main and Most Sustainable Cutin Renewable Resource 172 6.1.5 Toward a Sustainable Industrial Production of Cutin-Inspired ommodities 173 6.2 Synthesis of Cutin-Inspired Polyesters 173 6.2.1 The Influence of the Monomer Architecture in the Physical and Chemical Properties of Cutin-Inspired Polyhydroxyesters 173 6.2.2 The Effect of Oxidation in the Structure and Properties of Cutin-Inspired Fatty Polyhydroxyesters 177 6.2.3 Surface vs. Bulk Properties 180 6.3 Cutin-Based and Cutin-like Coatings and Composites 183 6.3.1 Cutin-Inspired Coatings on Metal Substrates 183 6.3.2 Plant Cuticle-like Film Composites 186 6.4 Concluding Remarks 188 Acknowledgments 189 References 189 7 Zein in Food Packaging 199Ilker S. Bayer 7.1 Introduction 199 7.2 Solvent Cast Zein Films 202 7.3 Chemical Characteristics of Solvent-Cast Zein Films 206 7.4 Extrusion of Zein 209 7.5 Zein Laminates with Various Packaging Films 212 7.6 Zein Blend Films with Other Biopolymers 214 7.7 Outlook and Future Directions 217 7.8 Conclusions 219 References 220 Part III Biocomposites of Cellulose and Biopolymers in Food Packaging 225 8 Cellulose-Reinforced Biocomposites Based on PHB and PHBV for Food Packaging Applications 227Estefania L. Sanchez-Safont, Luis Cabedo, and Jose Gamez-Perez 8.1 Introduction to Bioplastics 227 8.2 PHB and PHBV: a SWOT (Strength, Weakness, Opportunity, and Threat) Analysis 229 8.2.1 Polyhydroxyalkanoates (PHA): Poly-3-hydroxybutyrate (PHB) and Poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) 229 8.2.2 PHB and PHBV: Strengths 231 8.2.3 PHB and PHBV: Weaknesses 232 8.2.4 PHB and PHBV: Opportunities 235 8.2.5 PHB and PHBV: Threats 236 8.3 Cellulose Biocomposites 236 8.3.1 Structure, Composition, and General Properties of Lignocellulosic fibers 237 8.3.2 Lignocellulosic Fibers in Polymer Composites 240 8.3.2.1 Fiber Modification 241 8.3.2.2 Fiber-matrix Chemical Anchor 242 8.4 PHA/Fiber Composites 242 8.4.1 PHB and PHBV/Cellulose Composites: Achievements and Limitations 242 8.4.2 New Trends in PHB and PHBV/Cellulose-Reinforced Biocomposites 245 8.4.3 The Potential Use of PHA-Based Composites in the Food Packaging Sector 247 8.5 Conclusions 248 References 250 9 Poly-Paper: Cellulosic-Filled Eco-composite Material with Innovative Properties for Packaging 263Romina Santi, Silvia Farè, Alberto Cigada, and Barbara Del Curto 9.1 Introduction 263 9.2 Materials 265 9.2.1 Matrix 265 9.2.2 Reinforcement 266 9.2.3 Composite Formulations 266 9.2.4 Extrusion Process 267 9.3 Mechanical Properties 268 9.4 Suitable Processes for Poly-Paper 268 9.4.1 Injection Molding 269 9.4.2 Thermoforming 270 9.4.3 Poly-Paper Expansion 270 9.5 Additional Properties of Poly-Paper 272 9.5.1 Shape Memory Forming 272 9.5.2 Self-Healing by Water 273 9.6 End-of-Life 275 9.7 Conclusions 277 References 278 10 Paper and Cardboard Reinforcement by Impregnation with Environmentally Friendly High-Performance Polymers for Food Packaging Applications 281Uttam C. Paul and José A. Heredia-Guerrero 10.1 Introduction 281 10.2 Improving the Barrier Properties of Paper and Cardboard by Impregnation in Capstone and ECA Solutions 282 10.2.1 Preparation of the Samples 283 10.2.2 Morphological Characterization 283 10.2.3 Chemical Characterization 285 10.2.4 Barrier Properties, Wettability, and Water Uptake 285 10.2.5 Mechanical Characterization 291 10.3 Water, Oil and Grease Resistance of Biocompatible Cellulose Food Containers 292 10.3.1 Preparation of the Samples 294 10.3.2 Morphological Analysis 295 10.3.3 Water and Oil Resistance Properties 296 10.3.4 Mechanical, Grease Resistance, and Barrier Properties of Treated Paper 296 10.4 Conclusions 300 References 300 11 Nanocellulose-Based Multidimensional Structures for Food Packaging Technology 305Saumya Chaturvedi, Sadaf Afrin, Mohd S. Ansari, and Zoheb Karim 11.1 Introduction 305 11.2 Necessities in Food Packaging Industry 307 11.3 An Overview of NC 308 11.4 Cellulose Fibrils and Crystalline Cellulose 308 11.5 Why NC for Packaging? 310 11.6 Effect on NCs on Networking 310 11.7 Migration Process of Molecules Through NC Dimensional Film 312 11.8 Processing Routes of NC-based Multidimensional Structures for Packaging 312 11.9 CNFs for Barrier Application 314 11.10 CNCs for Barrier Application 315 11.11 Conclusion 316 References 317 Part IV Natural Principles in Active and Intelligent Food Packaging for Enhanced Protection and Indication of Food Spoilange or Pollutant Presence 323 12 Sustainable Antimicrobial Packaging Technologies 325Selçuk Yildirim and Bettina Röcker 12.1 Introduction 325 12.2 Antimicrobial Food Packaging 326 12.3 Natural Antimicrobial Agents 328 12.3.1 Plant Extracts 328 12.3.2 Organic Acids, Their Salts and Anhydrides 335 12.3.3 Bacteriocins 336 12.3.4 Enzymes 337 12.3.5 Chitosan 338 12.4 Conclusions and Perspectives 340 References 341 13 Active Antioxidant Additives in Sustainable Food Packaging 349Thi-Nga Tran 13.1 Introduction 349 13.2 Antioxidant Capacities of Plant-Based Food Packaging Materials 352 13.2.1 Antioxidant Natural Extracts in Food Packaging 353 13.2.2 Antioxidant Raw Materials Derived from Food Wastes and Agro-Industry by-Products 359 13.3 Conclusions and Future Perspectives 361 References 363 14 Natural and Biocompatible Optical Indicators for Food Spoilage Detection 369Maria E. Genovese, Jasim Zia, and Despina Fragouli 14.1 Food Spoilage 370 14.1.1 Food Spoilage: A Never-ending Challenge 370 14.1.2 Microbial Spoilage 370 14.1.3 Physical and Chemical Spoilage 372 14.1.4 Factors Determining Food Spoilage 372 14.2 Food Spoilage Detection 372 14.2.1 Conventional Methods and Technologies for the Detection of Food Spoilage 372 14.2.2 On Package and on Site Sensing Technologies: A New Strategy for Food Spoilage Detection 373 14.3 Natural and Biocompatible Optical Indicators for Food Spoilage 379 14.3.1 Optical and Colorimetric Detection 379 14.3.2 Natural and Biocompatible Indicators 379 14.3.3 Detection of pH, Acids, and Amines 380 14.3.4 Detection of Oxygen 386 14.3.5 Detection of Carbon Dioxide 387 14.3.6 Detection of Bacteria 388 14.4 Concluding Remarks and Future Perspectives 388 References 389 Part V Technological Developments in the Engineering of Biocomposite Materials for Food Packaging Applications 395 15 Biopolymers in Multilayer Films for Long-Lasting Protective Food Packaging: A Review 397Ilker S. Bayer 15.1 Introduction 397 15.2 Biopolymer Coatings and Laminates on Common Oil-Derived Packaging Polymers 399 15.3 Multilayer Films Based on Proteins 405 15.4 Multilayer Films Based on Polysaccharides 409 15.5 Coatings on Biopolyesters 415 15.6 Summary and Outlook 418 References 420 Index 427
£98.96
Wiley-VCH Verlag GmbH Natural Flavours, Fragrances, and Perfumes:
Book SynopsisNatural Flavours, Fragrances, and Perfumes Explore this one-stop resource on every relevant aspect of natural flavors and fragrances The use of sensory science has the potential to give scientists, researchers, and industry specialists a way to overcome the challenges in nutraceuticals and, more generally, in the functional food industry. Flavor and fragrance have the potential to significantly influence consumer satisfaction with products and its success in the marketplace. In order to effectively produce and optimize a customer’s experience in both food and household products, it is essential to have a strong understanding of the fundamentals of chemistry and physicochemical processes. Natural Flavours, Fragrances and Perfumes offers a comprehensive look at the sensory sciences necessary to produce the most appealing olfactory responses derived from natural resources for consumers – from the analysis and biomolecular aspects of natural products to the processing and isolation of desired products, from the perceptual properties to regulatory aspects. Specifically, the book presents novel approaches to the processes involved in producing plant-derived functional products by examining how characteristic flavors arise due to complex interactions between hundreds of molecules, as well as studying the physiological variables that affect flavor perception. Natural Flavours, Fragrances, and Perfumes readers will also find: Insights into the identification and characterization of plant volatiles, as well as chromatography techniques for sensory fingerprints Chapters devoted to biosynthesis and metabolic pathways for the development of household products composed of organic materials Additional chapters on the advances in flavor science, on technological advances in the effective delivery of flavor, and challenges in the retention and release of flavor Natural Flavours, Fragrances, and Perfumes is a useful reference for chemists of all kinds, food scientists, biotechnologists, and perfumers, as well as those studying in these fields.Table of ContentsChapter 1 - Natural Product diversity and its biomolecular aspects Chapter 2 - Sensory science and its perceptual properties Chapter 3 - Flavor technology and flavor delivery systems Chapter 4 - Identification and comprehensive characterization of plant volatiles Chapter 5 - Multidimensional chromatography techniques for sensory fingerprints Chapter 6 - Flavor signatures of beverages and confectionaries Chapter 7 - Molecular complexities in aroma chemistry and perfumes Chapter 8 - Recent advances in the processing of aromatic plants Chapter 9 - Biogenesis of plant derived aroma compounds Chapter 10 - A Sense of design: Pathway unravelling and rational metabolic-flow switching for the production of novel materials Chapter 11 - The Resinoids: Their chemistry and uses Chapter 12 - Seasonings, herbs and spices Chapter 13 - Flavor biochemistry of fermented alcoholic beverages Chapter 14 - Regulatory aspects for flavor and fragrance materials Chapter 15 - Challenges of sensory science: retention and release Chapter 16 - Virtual screening: an insilico approach to aroma compounds Chapter 17 - Endpoint: A sensory perception of the future
£103.50
Wiley-VCH Verlag GmbH Principles in Microbiome Engineering
Book SynopsisPrinciples in Microbiome Engineering Provides an overview of the techniques and applications insight into the complex composition and interactions of microbiomes Microbiomes, the communities of microorganisms that inhabit specific ecosystems or organisms, can be engineered to modify the structure of microbiota and reestablish ecological balance. In recent years, a better understanding of microbial composition and host-microbe interactions has led to the development of new applications for improving human health and increasing agricultural productivity and quality. Principles in Microbiome Engineering introduces readers to the tools and applications involved in manipulating the composition of a microbial community to improve the function of an eco-system. Covering a range of key topics, this up-to-date volume discusses current research in areas such as microbiome-based therapeutics for human diseases, crop plant breeding, animal husbandry, soil engineering, food and beverage applications, and more. Divided into three sections, the text first describes the critical roles of systems biology, synthetic biology, computer modelling, and machine learning in microbiome engineering. Next, the volume explores various state-of-the-art applications, including cancer immunotherapy and prevention of diseases associated with the human microbiome, followed by a concluding section offering perspectives on the future of microbiome engineering and potential applications. Introduces a variety of applications of microbiome engineering in the fields of medicine, agriculture, and food and beverage products Presents current research into the complex interactions and relationships between microbiomes and biotic and abiotic elements of their environments Examines the use of technologies such as Artificial Intelligence (AI), Machine Learning (ML), and Big Data analytics to advance understanding of microbiomes Discusses the engineering of microbiomes to address human health conditions such as neuro psychiatric disorders and autoimmune and inflammatory diseases Edited and authored by leading researchers in the rapidly evolving field, Principles in Microbiome Engineering is an essential resource for biotechnologists, biochemists, microbiologists, pharmacologists, and practitioners working in the biotechnology and pharmaceutical industries.Table of ContentsPreface xiii 1 Diet-Based Microbiome Modulation: You are What You Eat 1Jiashu Li, Zeyang Qu, Feng Liu, Hao Jing, Yu Pan, Siyu Guo, and Chun Loong Ho 1.1 Introduction 1 1.1.1 Microbiome Diversity in Human Body 1 1.1.1.1 Oral Microbiome 2 1.1.1.2 Gastrointestinal Microbiome 3 1.1.1.3 Skin Microbiome 4 1.1.1.4 Respiratory Microbiome 5 1.1.1.5 Urogenital Microbiome 5 1.1.2 Elements that Influence Microbiome Development 5 1.1.2.1 Prebiotics 6 1.1.2.2 Probiotics 6 1.1.2.3 Diet and Nutrition 7 1.1.3 Current Approaches Employed in Studying the Human Microbiome 7 1.2 Dietary Lifestyle Variation Affecting Host Microbiome 8 1.2.1 Dietary Role in Shaping the Microbiome 8 1.2.1.1 Protein and Polypeptides 8 1.2.1.2 Soluble Saccharides 9 1.2.1.3 Dietary Fibers 9 1.2.1.4 Lipids 10 1.2.2 The Socioeconomic Impact on Diet-Related Microbiome Changes 11 1.2.3 Age Groups and Dietary-Related Microbiome Changes 13 1.2.4 Continental Dietary Difference and Its Effect of the Local Microbiome 15 1.2.4.1 Asia 15 1.2.4.2 Europe 15 1.2.4.3 Australia 16 1.2.4.4 Africa 16 1.2.4.5 South America 16 1.2.4.6 North America 17 1.3 Dietary Modulation of Microbiome for Disease Treatment 17 1.3.1 Infection 17 1.3.1.1 Fecal Microbiota Transplantation (FMT) 17 1.3.1.2 Prebiotic-, Diet-, and Probiotic-Mediated Prevention of Pathogenic Infections 19 1.3.2 Inflammatory Disease 20 1.3.3 Cancer 21 1.3.4 Psychological Disease 22 1.3.4.1 Autism Spectrum Disorder 22 1.3.4.2 Neurodegenerative Diseases 23 1.3.5 Metabolic Disorder 23 1.3.5.1 Obesity 23 1.3.5.2 Diabetes 24 1.3.5.3 Non-alcoholic Fatty Liver Disease (NAFLD) 24 1.4 Challenges and Opportunities 25 1.4.1 Limitations in the Field 25 1.4.2 Current Microbiome Project Supporting Infrastructures 25 1.4.2.1 International and Local Initiatives 25 1.4.2.2 Global Foundations 27 1.5 Concluding Remarks 27 Acknowledgments 28 References 28 2 Microbiome Engineering for Metabolic Disorders 47Nikhil Aggarwal, Elvin W. C. Koh, Santosh Kumar Srivastava, Brendan F. L. Sieow, and In Young Hwang 2.1 Introduction 47 2.2 Microbiome Engineering for Diabetes and Obesity 49 2.2.1 Microbiome Engineering for the Hypoglycemic Effect to Treat Diabetes and Obesity 50 2.2.2 Microbiome Engineering for Immune Modulation to Treat Diabetes 52 2.3 Microbiome Engineering to Modulate Gut–Liver Axis 54 2.3.1 Microbiome Engineering to Modulate Ammonia Metabolism 54 2.3.2 Microbiome Engineering to Modulate Phenylalanine Metabolism 55 2.3.3 Microbiome Engineering to Modulate Bile-Salt Metabolism 56 2.3.4 Microbiome Engineering to Modulate Fat Metabolism 57 2.4 Microbiome Engineering for Cardiovascular Diseases 58 2.4.1 Gut Microbiome Interventions for Cardiovascular Diseases 59 2.4.2 Role of Microbiome-Derived TMAO in Cardiovascular Diseases 60 2.5 Microbiome Engineering to Modulate Gut–Brain Axis 61 2.5.1 Exploratory Studies on the Development of Psychobiotics 64 2.6 Clinical Translation of Live Biotherapeutic Products 65 2.7 Conclusion and Future Directions 76 References 76 3 Repurposing Microbes for Therapeutic Applications in Humans 93Kangsan Kim, Donghui Choe, Minjeong Kang, Bong Hyun Sung, Haseong Kim, Seung-Goo Lee, Dae-Hee Lee, and Byung-Kwan Cho 3.1 Introduction 93 3.2 A Brief Overview of Microbiota and Human Health 94 3.2.1 Interactions Between Microbes and Their Compositions Affect the Host Metabolic Status 95 3.2.2 Host–Microbe Interactions Constitute an Essential Part of Host Metabolism 97 3.3 Systems Biology Approach to Analyze the Gut Microbiota Functions 98 3.3.1 Rational Design of Gut Microbiome Editing Strategies 98 3.3.2 High-Throughput Data-Driven Understanding of Gut Microbiota 100 3.4 Engineering Microbiome to Treat Diseases 102 3.4.1 Strain Selection for Microbiome Engineering 102 3.4.2 Engineering Microbes to Sense and Respond to Disease-Related Perturbations 103 3.4.3 Engineering Microbes to Express Therapeutic Proteins for Disease Treatment 109 3.5 Perspectives and Conclusion 111 References 111 4 Modulating Residence Time and Biogeography of Engineered Probiotics 121Rana Said, Zachary J. S. Mays, and Nikhil U. Nair 4.1 Introduction 121 4.2 Adhesion Mechanisms 122 4.3 Adhesion Modulation 125 4.4 Functional Encapsulations and Biofilms that Modify Gastrointestinal Dynamics of Probiotics 126 4.5 Metabolic Engineering to Modulate Gut Adaptation 128 4.6 Conclusions 129 References 130 5 Microbiome Engineering for Next-Generation Precision Agriculture 137Mohd Firdaus Abdul-Wahab, Shruti Pavagadhi, Hitesh Tikariha, and Sanjay Swarup 5.1 Background 137 5.2 Systems Approach to Microbiome Engineering 139 5.2.1 DBTL Framework for Microbiome Engineering 139 5.2.2 Computational Tools for Robust Microbiome Engineering 142 5.2.3 Genome-Scale Metabolic Modeling 143 5.3 Synthetic Biology for Genome and Genetic Engineering of Phytobiomes 144 5.4 Conclusion and Future Perspectives 146 Acknowledgments 148 References 148 6 Biological Sensors for Microbiome Diagnostics 155Amy M. Ehrenworth Breedon, Kathryn R. Beabout, Heidi G. Coia, Christina M. Davis, Svetlana V. Harbaugh, Camilla A. Mauzy, M. Tyler Nelson, Roland J. Saldanha, Blake W. Stamps, and Michael S. Goodson 6.1 Introduction 155 6.1.1 The Malleable Microbiome 155 6.1.2 Engineered Probiotics 155 6.2 Diagnosing the Microbiome 156 6.2.1 Microbiome Analyses 156 6.2.1.1 Small Subunit rRNA Analysis 156 6.2.1.2 Metagenomics and Metatranscriptomics 157 6.2.1.3 Proteomics and Metabolomics 157 6.2.2 Considerations and Future of Microbiome Diagnosis 158 6.3 Types of Biosensors 159 6.3.1 Riboswitches 159 6.3.1.1 Riboswitches and Their Regulatory Mechanisms 160 6.3.1.2 Design and Selection of Synthetic Riboswitches 160 6.3.1.3 Riboswitches in Molecular Detection of Microbiome Metabolites 161 6.3.2 Transcription Factors 163 6.3.2.1 Transcription Factor Mining 163 6.3.2.2 Engineering Transcription Factors 164 6.3.2.3 Applications of Transcription Factors 165 6.3.3 Two-Component Systems 166 6.3.3.1 Introduction to Two-Component Systems 166 6.3.3.2 Expression of Natural TCS Systems for Gut Diagnostics 166 6.3.3.3 Engineering TCS-Based Sensors for the Microbiome 167 6.3.4 G Protein-Coupled Receptors 168 6.3.4.1 GPCRs and the Gut Microbiome 168 6.3.4.2 GPCRs Engineered Into Yeast 168 6.3.4.3 Recent Advances in Yeast GPCR-Based Sensors 170 6.4 Testing and Utilizing Engineered Biosensors 171 6.4.1 Cell-Free Protein Expression Systems (CFPS) for Biosensing 171 6.4.2 In Vitro Testing 173 6.4.2.1 In Vitro Models 174 6.4.2.2 Organ-on-a-Chip 174 6.4.2.3 In Vitro Host–Microbe Characterization 174 6.4.3 Examples of Engineered Microbes 176 6.4.3.1 Identifying Microbiome Changes In Situ 176 6.4.3.2 Engineered Microbes for Disease Diagnostics 176 6.4.3.3 Cancer 177 6.4.3.4 Inflammatory Bowel Disease 178 6.4.3.5 Infection 178 6.4.3.6 Future Translation 178 6.5 Conclusions/Summary 179 Acknowledgments 180 References 180 7 Principles, Tools, and Applications of Synthetic Consortia Toward Microbiome Engineering 195Eliza Atkinson, Alice Boo, Huadong Peng, Guy-Bart Stan, and Rodrigo Ledesma-Amaro 7.1 Introduction 195 7.2 Advantages of Labor Division via Synthetic Microbial Consortia 197 7.2.1 Providing Optimal Conditions 198 7.2.2 Reducing the Metabolic Burden on the Host 198 7.2.3 Reducing Crosstalk and Competition Within Synthetic Pathways 199 7.3 Tools for Engineering Synthetic Consortia 200 7.3.1 Genetic Manipulation Tools 200 7.3.2 Cell-to-Cell Communication 200 7.3.3 External and Intercellular Signal Molecules for Regulating Gene Expression and Population Composition 201 7.3.4 Secretion and Exchange of Metabolites 201 7.3.5 Analysis Tools 202 7.3.6 Computational Models 202 7.3.6.1 Dynamic/Deterministic Models 202 7.3.6.2 Agent-Based Models 203 7.3.6.3 Stoichiometric and Genome-Scale Metabolic Models 203 7.4 Engineering Syntrophy 205 7.5 Engineering Population Control 206 7.6 Synthetic Microbial Consortia and the Human Microbiome 207 7.7 Conclusions and Future Perspectives 208 References 209 8 Fecal Microbiota Transplantation for Microbiome Modulation: A Clinical View 219Peter C. Konturek, Thomas Hess, Walburga Dieterich, and Yurdagül Zopf 8.1 Introduction 219 8.2 Fecal Microbiota Transplantation (FMT) 219 8.2.1 Recruitment of Potential Donors 220 8.2.2 Administration of FMT 220 8.2.3 Safety 220 8.3 Clinical Application of Fecal Microbiota Therapy 222 8.3.1 C. difficile Infection (CDI) 222 8.3.2 Inflammatory Bowel Disease 223 8.3.3 FMT as a Therapeutic Option to Eradicate Highly Drug-Resistant Enteric Bacteria Carriage 224 8.3.4 FMT and Irritable Bowel Syndrome 224 8.3.5 FMT and Slow-Transit Constipation 225 8.3.6 FMT and Liver Diseases 225 8.4 FMT – Novel Indications 226 8.4.1 Chemotherapy-Induced Diarrhea 226 8.4.2 Obesity and Metabolic Syndrome 227 8.4.3 Graft-versus-Host Disease (GvHD) 227 8.4.4 Autoimmune Diseases 227 8.4.5 Neuropsychiatric Disorders 228 8.5 Conclusion 228 References 228 9 Maternal Microbiota as a Therapeutic Target 233Ferit Saracoglu 9.1 Introduction 233 9.2 Human Maternal Microbiota 233 9.2.1 Oral Microbiota 233 9.2.2 Vaginal Microbiota 234 9.2.3 Endometrial Microbiome 234 9.2.4 Gut Microbiome 236 9.2.4.1 Maternal Gut Microbiome and Immune Functions 236 9.2.4.2 Gut and Brain Axis 238 9.2.4.3 Epigenetic Regulation of Gut Microbiota 238 9.2.5 Placental Microbime and Meconium 239 9.3 Maternal Microbiota and Health 240 9.3.1 Developmental Origins of Adult-Onset Diseases: Barker Hypothesis 240 9.3.2 Maternal Microbiota and Obesity 240 9.3.2.1 Maternal Diet and Gut Microbiota 240 9.3.2.2 Body Mass Index, Insulin Resistance, and Obesity in Pregnancy 241 9.3.2.3 Childhood Obesity 241 9.3.3 Miscarriages and Microbiome 242 9.3.4 Postpartum Microbiome 242 9.3.4.1 Mode of Delivery 242 9.3.4.2 Vaginal Seeding 243 9.3.5 Maternal Microbiota and Gestational Age at Birth 243 9.3.6 Maternal Microbiota and Maternal Inflammation and Intrauterine Infections 244 9.4 Human Milk Microbiota and Infant Health 245 9.5 Drug Treatment, Unhealthy Conditions, and Microbiome 247 9.5.1 Perinatal Antibiotic Treatment 247 9.5.2 Smoking 249 9.5.3 Stress Under Pregnancy 249 9.5.4 Autism Spectrum Disorders 250 9.5.5 Critical Illness of Newborns 250 9.6 Probiotic and Prebiotic Therapies as Modulators of Microbiome 250 References 252 10 Transcription Factor-Based Biosensors and Their Application in Microbiome Engineering 277Seong Keun Kim, Seung Gyun Woo, Tae Hyun Kim, Seong Hyun Park, Jin Ju Lee, A Young Park, So Hyung Oh, Seong Kun Bak, Seung-Goo Lee, and Dae-Hee Lee Summary 277 10.1 Design: TF-Based Biosensors 278 10.1.1 Transcriptional Repressors 278 10.1.2 Transcriptional Activators 282 10.1.3 One-Component Regulatory System or Two-Component Regulatory System 283 10.1.4 Types of Output Modules 284 10.1.5 Layered Genetic Circuits 285 10.2 Build: TF-Based Biosensors 286 10.2.1 Construction of Genetic Circuits 286 10.2.1.1 Gene Synthesis 287 10.2.1.2 Restriction Enzyme–Based Cloning 287 10.2.1.3 Gibson Assembly 288 10.2.2 Chassis 288 10.3 Test: TF-Based Biosensors Application in Microbiome 289 10.3.1 Diagnostics 289 10.3.2 Therapeutics 291 10.3.3 Biocontainment 292 10.4 Learn: Strategies for TF-Based Biosensor Improvement 293 10.5 Conclusions 294 List of Abbreviations 294 Acknowledgments 295 References 295 Index 305
£106.25
Wiley-VCH Verlag GmbH Membrane Contactor Technology: Water Treatment,
Book SynopsisAn eye-opening exploration of membrane contactors from a group of industry leaders In Membrane Contactor Technology: Water Treatment, Food Processing, Gas Separation, and Carbon Capture, an expert team of researchers delivers an up-to-date and insightful explanation of membrane contactor technology, including transport phenomena, design aspects, and diverse process applications. The book also includes explorations of membrane synthesis, process, and module design, as well as rarely discussed process modeling and simulation techniques. The authors discuss the technical and economic aspects of this increasingly important technology and examine the geometry, flow, energy and mass transport, and design aspects of membrane contactor modules. They also cover a wide range of application opportunities for this technology, from the materials sciences to process engineering. Membrane Contactor Technology also includes: A thorough introduction to the membrane contactor extraction process, including dispersion-free membrane extraction processes and supported liquid membrane processes Comprehensive explorations of membrane transport theory, including discussions of diffusional mass and heat transfer modeling, as well as numerical modeling In-depth examinations of module configuration and geometry, including design and flow configuration Practical discussions of modes or operation, including membrane distillation, osmotic evaporation, and forward osmosis Perfect for process engineers, biotechnologists, water chemists, and membrane scientists, Membrane Contactor Technology also belongs in the libraries of chemical engineers, polymer chemists, and chemists working in the environmental industry.Table of ContentsPreface xv About the Authors xvii 1 Introduction to Membrane Technology 1 Mohammad Younas and Mashallah Rezakazemi 1.1 Overview of Membrane Technology 1 1.2 Conventional Membrane Separation Processes 2 1.2.1 Microfiltration (MF) 2 1.2.2 Ultrafiltration (UF) 2 1.2.3 Nanofiltration (NF) 3 1.2.4 Reverse Osmosis (RO) 3 1.2.5 Electrodialysis (ED) 4 1.2.6 Pervaporation (PV) 5 1.3 Molecular Weight Cutoff (MWCO) 8 1.4 Concentration Polarization 9 1.5 Membrane Fouling 10 1.6 Diafiltration 11 1.7 Historical Perspective 11 1.8 Concluding Remarks and Future Challenges 12 References 14 2 Introduction to Membrane Contactor Technology 17 Mohammad Younas and Mashallah Rezakazemi 2.1 Membrane Contactor Separation Processes 17 2.1.1 Membrane Contactors 17 2.1.2 History and Background of Membrane Contactors 20 2.1.3 Types of Membrane Contactor Systems 21 2.1.3.1 Solid Porous Membrane as Medium of Contact in Membrane Contactors 21 2.1.3.2 Liquid Membrane Contactors 30 2.1.4 Membrane Contactor Integrated Systems 34 2.1.5 Potential of Membrane Contactor in Concentration, Temperature Polarization, Wetting, and Fouling of Membranes 35 2.2 Conclusion and Future Trends of Membrane Contactors 37 References 38 3 Transport Theory in Membrane Contactor: Operational Principle 45 Mohammad Younas, Waheed Ur Rehman, and Mashallah Rezakazemi 3.1 Diffusional Mass and Heat Transfer Modeling 45 3.2 Membrane Characterization Models 46 3.2.1 Contact Angle and Liquid Entry Pressure 46 3.2.2 Liquid Entry Pressure (LEP) 49 3.2.3 Permporometry (Pore Size Distribution) 52 3.2.4 Electron Microscopy 52 3.3 Transport Models in Liquid–Liquid Contactor 52 3.3.1 Resistance in Series Model 55 3.3.1.1 Model Approach 56 3.3.1.2 Two Film Theory 56 3.3.1.3 Phase Equilibrium in Liquid–Liquid System 58 3.3.1.4 Overall Mass Transfer Coefficient 59 3.4 Transport Model in Gas–Liquid Systems 60 3.4.1 Phase Equilibrium for Gas–Liquid System 61 3.4.2 Resistance in Series Model 61 3.5 Reactive Diffusion in Liquid-Side Boundary Layer 62 3.6 Mass Transfer Resistance Analysis 63 3.7 Correlations for Mass Transfer Coefficients 65 3.7.1 Correlation for Flow in Shell Side 66 3.7.2 Correlation for Flow in Tube Side 66 3.7.3 Correlation for Mass Transfer in Membrane Pores 68 3.8 Correlations for Heat Transfer Coefficients 69 3.9 Interfacial Transfer Area 70 3.10 Axial Pressure Drop in Membrane Contactor Module 71 3.11 Dynamic Modeling 71 3.12 Transfer Units and Module Design Length 72 3.13 Numerical Modeling of Mass Transport in Membrane Contactor Modules 73 3.13.1 Mass Transfer in Shell Side 75 3.13.2 Mass Transfer Inside Fibers 77 3.13.3 Mass Transfer in Membrane Pores 78 3.13.4 Numerical Modeling Term in the Case of Membrane Wetting 79 3.14 Numerical Modeling of Heat Transport in Membrane Contactor Modules 81 3.14.1 Governing Equation in Cold and Hot Channels 82 3.14.2 Governing Equation Inside Membrane 82 3.15 Model Solution Algorithm 83 3.16 Conclusions and Perspectives 84 3.A Membrane Transport Theory: Operational Principle 84 3.A.1 Steady-State Resistance-in-Series Model Across Liquid–Liquid Contactor 84 3.A.1.1 Hydrophobic Membrane Based on Aqueous-Phase Side (Species Transfers from Aqueous Phase to Organic Phase) 84 3.A.1.2 Hydrophobic Membrane Based on Organic-Phase Side (Species Transfers from Aqueous Phase to Organic Phase) 85 3.A.1.3 Hydrophobic Membrane Based on Organic-Phase Side (Species Transfers from Organic Phase to Aqueous Phase) 85 3.A.1.4 Hydrophobic Membrane Based on Aqueous-Phase Side (Species Transfers from Organic Phase to Aqueous Phase) 85 3.A.1.5 Hydrophilic Membrane Based on Aqueous-Phase Side (Species Transfers from Aqueous Phase to Organic Phase) 86 3.A.1.6 Hydrophilic Membrane Based on Organic-Phase Side (Species Transfers from Aqueous Phase to Organic Phase) 86 3.A.1.7 Hydrophilic Membrane Based on Organic-Phase Side (Species Transfers from Organic Phase to Aqueous Phase) 86 3.A.1.8 Hydrophilic Membrane Based on Aqueous-Phase Side (Species Transfers from Organic Phase to Aqueous Phase) 87 3.A.1.9 Composite Membrane Based on Aqueous-Phase Side (Species Transfers from Aqueous Phase to Organic Phase) 87 3.A.1.10 Composite Membrane Based on Organic-Phase Side (Species Transfers from Aqueous Phase to Organic Phase) 87 3.A.1.11 Composite Membrane Based on Organic-Phase Side (Species Transfers from Organic Phase to Aqueous Phase) 87 3.A.1.12 Composite Membrane Based on Aqueous-Phase Side (Species Transfers from Organic Phase to Aqueous Phase) 88 3.A.2 Steady-State Resistance-in-Series Model Across Gas–Liquid Contactor 88 3.A.2.1 Hydrophobic Membrane Based on Gas-Phase Side (Species Transfers from Gas Phase to Liquid Phase) 88 3.A.2.2 Hydrophobic Membrane Based on Liquid-Phase Side (Species Transfers from Gas Phase to Liquid Phase) 88 3.A.2.3 Hydrophobic Membrane Based on Liquid-Phase Side (Species Transfers from Liquid Phase to Gas Phase) 89 3.A.2.4 Hydrophobic Membrane Based on Gas-Phase Side (Species Transfers from Liquid Phase to Gas Phase) 89 3.A.2.5 Hydrophilic Membrane Based on Gas-Phase Side (Species Transfers from Gas Phase to Liquid Phase) 89 3.A.2.6 Hydrophilic Membrane Based on Liquid-Phase Side (Species Transfers from Gas Phase to Liquid Phase) 90 3.A.2.7 Hydrophilic Membrane Based on Liquid-Phase Side (Species Transfers from Liquid Phase to Gas Phase) 90 3.A.2.8 Hydrophilic Membrane Based on Gas-Phase Side (Species Transfers from Liquid Phase to Gas Phase) 91 3.A.2.9 Composite Membrane Based on Gas-Phase Side (Species Transfers from Gas Phase to Liquid Phase) 91 3.A.2.10 Composite Membrane Based on Liquid-Phase Side (Species Transfers from Gas Phase to Liquid Phase) 91 3.A.2.11 Composite Membrane Based on Liquid-Phase Side (Species Transfers from Gas Phase to Liquid Phase) 91 3.A.2.12 Composite Membrane Based on Gas-Phase Side (Species Transfers from Liquid Phase to Gas Phase) 92 3.A.3 Dynamic Modeling Across the Storage Tank 92 References 93 4 Module Design and Membrane Materials 99 Nabilah Fazil, Sidra Saqib, Ahmad Mukhtar, Mohammad Younas, and Mashallah Rezakazemi 4.1 Introduction 99 4.2 Membrane Module Design Configuration 100 4.2.1 Plate-and-Frame Modules 100 4.2.2 Spiral Wound Modules 103 4.2.3 Tubular Modules 104 4.2.4 Hollow Fiber Modules 106 4.3 Membrane Contactor Module Housing 111 4.4 Membrane Module Flow Configuration 116 4.5 Membrane Materials 116 4.5.1 Polymer Materials 118 4.5.2 Inorganic Fillers 125 4.6 Membrane and Membrane Module for Membrane Distillation (MD) and Osmotic Membrane Distillation (OMD) 126 4.7 Solvents Used in Membrane Synthesis 128 4.8 Membrane Synthesis Techniques 128 4.9 Conclusions 130 4.10 Future Perspective 131 References 131 5 Mode of Operation in Membrane Contactors 143 Waheed Ur Rehman, Zarrar Salahuddin, Sarah Farrukh, Muhammad Younas, and Mashallah Rezakazemi 5.1 Membrane Distillation (MD) 143 5.1.1 Basic Principles of MD Process 143 5.1.2 MD Configurations 144 5.1.3 Overall Driving Force 145 5.1.4 Overall Mass Transfer Coefficient, K 147 5.1.4.1 Feed-Side Mass Transfer 148 5.1.4.2 Membrane Mass Transfer 150 5.1.4.3 Strip-Side Mass Transfer 151 5.1.5 Vapor Pressure Polarization Coefficient, Θv 152 5.1.5.1 DCMD 152 5.1.5.2 Feed–Side and Strip–Side Heat Transfer 153 5.1.5.3 Membrane Heat Transfer 153 5.1.6 AGMD 154 5.1.6.1 SGMD 156 5.1.7 VMD 157 5.1.8 Membranes for MD Process 157 5.1.9 Pros and Cons of MD Process 158 5.1.10 Future Prospects of MD Process 161 5.2 Osmotic Membrane Distillation (OMD) 161 5.2.1 Basic Principles of OMD Process 161 5.2.2 Overall Mass Transfer 163 5.2.2.1 Mass Transfer Across Feed Boundary Layer 163 5.2.2.2 Mass Transfer Across Stripper Boundary Layer 163 5.2.2.3 Mass Transfer Across Membrane 164 5.2.2.4 Mass Transfer Coefficient for Feed and Stripper Side 164 5.2.2.5 Mass Transfer Coefficient Across Membrane 164 5.2.3 Stripping Solutions for OMD 165 5.2.4 Membranes for OMD Process 166 5.2.5 Pros and Cons of OMD Process 166 5.3 Forward Osmosis 167 5.3.1 Basic Principles of FO Process 167 5.3.2 Calculation of the Osmotic Pressures 167 5.3.3 Reverse Solute Flux in FO 170 5.3.4 Membranes for FO Process 170 5.3.5 Draw Solutes for FO Process 171 5.3.6 Pros and Cons of FO Process 172 5.4 Pressure-Retarded Osmosis 172 5.4.1 Basic Principles of PRO Process 172 5.4.2 Membranes for PRO Process 175 5.4.3 Pros and Cons of PRO Process 176 5.5 Conclusions 176 References 176 6 Applications of Membrane Contactor Technology in Wastewater Treatment 185 Ayesha Rehman, Xianhui Li, Sarah Farrukh, Mohammad Younas, and Mashallah Rezakazemi 6.1 Introduction 185 6.2 Common Toxic Substances in Wastewater 187 6.2.1 Phenols 187 6.2.2 Heavy Metals 188 6.2.3 Ammonia 188 6.2.4 Hydrogen Sulfide 188 6.2.5 Carbon Dioxide 188 6.2.6 Petroleum Hydrocarbons 188 6.2.7 Polycyclic Aromatic Hydrocarbons 189 6.2.8 Nitrobenzene 189 6.3 Environmental Risks of Wastewater 189 6.4 Membrane Technology for Wastewater Treatment 190 6.5 Membrane Contactor Technology for Removal of Organic Contaminants from Wastewater 193 6.6 Removal of Inorganic Contaminants from Wastewater 200 6.7 Polymer-Based Adsorption Membranes 202 6.8 Ion-Exchange Nanoporous Membrane 204 6.9 Micellar-Enhanced Ultrafiltration Membrane 204 6.10 Membrane Materials for Water Treatment 205 6.11 Membrane Materials for Microfiltration (MF) and Ultrafiltration (UF) 206 6.12 Membrane Materials for Nanofiltration (NF) 206 6.13 Membrane Materials for Reverse Osmosis (RO) 207 6.14 Membrane Materials for Forward Osmosis (FO) 207 6.15 Challenges in Membrane Materials to Prevent Fouling 208 6.16 Conclusions and Perspectives 209 References 210 7 Applications of Membrane Contactors in Food Industry 219 Waheed Ur Rehman, Bazla Sarwar, Sidra Saqib, Ahmad Mukhtar, Mohammad Younas, and Mashallah Rezakazemi 7.1 Introduction 219 7.2 Membrane Distillation (MD) Applications in Food Industry 219 7.2.1 MD in the Concentration of Apple Juice 221 7.2.2 MD in the Concentration of Orange Juice 222 7.2.3 MD in the Concentration of Milk 222 7.2.4 MD in the Treatment of Saline Dairy Waste Water 223 7.2.5 MD in the Concentration of Muscadine Grape Pomace 224 7.2.6 MD in the Recovery of Phenols from Olive Mill Wastewater 225 7.2.7 MD in the Concentration of Sucrose Solution 225 7.2.8 Effect of Operating Parameters on MD Flux 225 7.3 Application of Osmotic Membrane Distillation (OMD) in Food Industry 227 7.3.1 Effect of Operating Conditions on OMD Water Flux 228 7.3.2 OMD in the Concentration of Apple Juice 231 7.3.3 OMD in the Concentration of Grape Juice 232 7.3.4 OMD in the Concentration of Pomegranate Juice 233 7.3.5 OMD in the Concentration of Orange Juice 235 7.3.6 OMD in the Concentration of Cranberry and Noni Juices 235 7.3.7 OMD in the Concentration of Kiwi and Pineapple Juices 236 7.3.8 OMD in the Concentration of Tea Extracts 236 7.3.9 Dealcoholization of Beer and Wine 237 7.4 Coupled Operation of Osmotic Distillation and Membrane Distillation 238 7.5 Conclusions 239 7.6 Future Perspectives 239 References 240 8 Applications of Membrane Contactor Technology for Pre-combustion Carbon Dioxide (CO2) Capture 247 Zarrar Salahuddin, Sarah Farrukh, Mohammad Younas, and Mashallah Rezakazemi 8.1 Introduction 247 8.2 Why Pre-combustion Carbon Capture? 250 8.3 Membranes for Pre-combustion Carbon Capture 250 8.3.1 Hydrogen (H2)-Selective Membranes 250 8.3.2 CO2 -Selective Membranes 255 8.4 Advantages and Limitations of Pre-combustion Carbon Capture Using Membrane Technology 262 8.5 Applications of Pre-combustion Carbon Capture 263 8.6 Current Trends and Future Prospects 263 8.7 Concluding and Future Directions 269 References 269 9 Application of Membrane Contactor Technology for Post-combustion Carbon Dioxide (CO2) Capture 281 Muhammad B. Wazir, Muhammad Daud, Mohammad Younas, and Mashallah Rezakazemi 9.1 Introduction 281 9.2 Membranes for Post-combustion CO2 Capture 282 9.2.1 Membrane Types 282 9.2.2 Membrane Modules 285 9.3 Experimental Membrane Materials for Post-combustion CO2 Sequestration 285 9.4 Commercial Membranes for Post-combustion CO2 Separation 288 9.5 Cost of Post-combustion CO2 Capture in Membrane Contactors 289 9.6 Absorbents for Post-combustion CO2 Separation 291 9.6.1 Amine-Based Absorbents 291 9.6.2 Ammonia 293 9.6.3 Salt Solutions 294 9.6.4 Ionic Liquids 295 9.7 Conclusion and Future Perspective 295 References 296 10 Market Prospects of Membrane Contactors 305 Zahra Pezeshki, Mohammad Younas, and Mashallah Rezakazemi 10.1 Membrane Contactor Market Dynamics 305 10.2 Market Overview 306 10.3 Membrane Contactor Market by Application 313 10.3.1 Water and Wastewater Treatment Market 313 10.3.2 Food Processing Market 315 10.3.3 Gas Separation Market 318 10.3.4 Carbon Capture Market 321 10.4 Membrane Contactor Market, by Membrane 321 10.5 Membrane Contactor Market, by Region 325 10.6 Recent Developments of Membrane Contactor Companies 328 10.6.1 3M Company 328 10.6.2 Cobetter Filtration Equipment Pvt. Ltd. 329 10.6.3 Eurowater 329 10.6.4 JU.CLA.S Srl 329 10.6.5 Veolia Environnement SA 329 10.6.6 PTI Pacific Pty. Ltd. 330 10.6.7 Kværner ASA 330 10.6.8 Lenntech B.V. 330 10.6.9 Pure Water Group 330 10.6.10 TNO Company 330 10.6.11 Euwa H. H. Eumann GmbH (Euwa) 330 10.6.12 Hydro-Elektrik GmbH 331 10.6.13 KH TEC GmbH 331 10.6.14 Romfil GmbH 331 10.7 Future Directions 331 10.8 Conclusion 332 References 332 11 Conclusions and Perspective 337 Mohammad Younas and Mashallah Rezakazemi 11.1 Future Directions 340 Index 342
£95.21
Wiley-VCH Verlag GmbH Taschenatlas der Lebensmittelchemie
Book SynopsisTaschenatlas der Lebensmittelchemie Der Taschenatlas bietet eine kompakte Einführung und Übersicht zu Grundlagen und Einsatzgebieten der Lebensmittelchemie. Dabei sind jeweils erläuternder Text und eine Farbtafel auf einer Doppelseite gegenübergestellt. Das Buch enthält insgesamt 128 Farbtafeln, die die gesamte Breite der modernen Lebensmittelchemie abdecken, von Inhaltsstoffen und Schadstoffen in Lebensmitteln über deren Verarbeitung bis hin zu Risiken und rechtlichen Grundlagen der Lebensmittelproduktion. Für die dritte Auflage wurde der Taschenatlas deutlich erweitert und durchgehend aktualisiert. Er enthält zahlreiche neue Farbtafeln zu aktuellen Themen wie Nahrungsergänzungsmittel, Fleischersatz, Nanotechnologie und den Auswirkungen der Lebensmittelproduktion auf das Klima. Mit diesem Atlas sind die Grundlagen der Lebensmittelchemie und ihrer Verfahren immer griffbereit – ideal zum raschen Nachlesen und für die Prüfungsvorbereitung.Table of ContentsVorwort zur 3. Auflage vii Vorwort zur 2. Auflage viii Vorwort zur 1. Auflage ix Einleitung 1 1 Lebensmittel und ihre Inhaltsstoffe 2 1.1 Lebensmitteltexturen und deren zelluläre Grundlagen 2 1.1.1 Strukturelemente der pflanzlichen Zellwand 2 1.1.2 Strukturelemente des Fleisches 4 1.1.3 Strukturen im Mehl 8 1.1.4 Disperse Systeme 10 1.1.5 Lebensmittelchemische Beispiele für disperse Systeme 12 1.2 Lebensmittelchemische Grundprozesse 16 1.2.1 Natürliche Prozesse 16 1.2.2 Verarbeitung von Lebensmitteln 20 1.2.3 Verarbeitung zur Haltbarmachung 30 1.3 Einteilung von Lebensmitteln 32 1.4 Lebensmittelrecht in der BRD und der EU 38 1.4.1 Rechtlicher Rahmen 38 1.4.2 Lebensmittelkennzeichnung 40 1.5 Lebensmittelsicherheit 44 2 Natürliche Lebensmittelinhaltsstoffe 48 2.1 Kohlenhydrate 48 2.1.1 Monosaccharide 48 2.1.2 Oligosaccharide 52 2.1.3 Polysaccharide 54 2.2 Eiweißstoffe 56 2.2.1 Aminosäuren 56 2.2.2 Proteine 60 2.3 Lipide 64 2.4 Wasser 70 2.5 Mineralstoffe und Spurenelemente 72 2.5.1 Essenzielle Mengenelemente 74 2.5.2 Essenzielle Spurenelemente 74 2.5.3 Weitere essenzielle Spurenelemente 76 2.6 Vitamine 78 2.6.1 Niacin, Pantothensäure, Thiamin 82 2.7 Enzyme 84 2.8 Natürliche Farbstoffe 88 2.9 Aromastoffe 92 3 Lebensmittelzusatzstoffe 98 3.1 Farbstoffe 98 3.2 Konservierungsstoffe 100 3.3 Antioxidationsmittel 104 3.4 Verdickungs- und Geliermittel 108 3.5 Emulgatoren 116 3.6 Säuerungsmittel und Säureregulatoren 120 3.7 Süßstoffe und Geschmacksverstärker 122 3.8 Spezielle Zusatzstoffe 126 4 Schadstoffe 130 4.1 Grundlagen der Lebensmitteltoxikologie 130 4.2 Natürliche Inhaltsstoffe als Schadstoffe 134 4.3 Schadstoffe in verdorbenen Lebensmitteln 140 4.4 Bei der Zubereitung gebildete Schadstoffe 144 4.5 Rückstände aus der landwirtschaftlichen Produktion 146 4.6 Rückstände aus der Tiermast 150 4.7 Umweltkontaminanten 154 4.7.1 Endokrine Disruptoren 158 5 Lebensmittelproduktgruppen: Chemie und Technologie 160 5.1 Lebensmittelkonsum 160 5.2 Fleisch und Wurstwaren 162 5.3 Fisch 170 5.4 Eier, Milch und andere Milchprodukte 174 5.5 Getreideprodukte 184 5.6 Speisefette und -öle 196 5.7 Gemüse, Hülsenfrüchte, Obst und Pilze 198 5.8 Gewürze 212 5.9 Zucker und Süßwaren 214 5.10 Nicht alkoholische und alkoholische Getränke 220 5.11 Nahrungsergänzungsmittel 230 6 Neuartige Lebensmittel und Technologien 234 6.1 Neuartige Lebensmittel (Novel Foods) 234 6.2 Neue Technologien 242 7 Risiken der Lebensmittelproduktion 250 7.1 Lebensmittelproduktion und Klima 250 7.2 Gesundheitsrisiken 254 Weiterführende Literatur 257 Abbildungsnachweis 273 Sachverzeichnis 275
£37.95
Wiley-VCH Verlag GmbH Natural Materials for Food Packaging Application
Book SynopsisNatural Materials for Food Packaging Application Analyze the future of biodegradable food packaging with this cutting-edge overview Packaging plays an essential role in the production of food and its movement through the global supply chain. Food packaging has been a significant site of innovation recently, allowing consumers better access to natural and organic foods, extended shelf lives, and more. However, food packaging has become an increasingly serious environmental hazard, with the result that biodegradable food packaging has become a vital and growing area of research. Natural Materials for Food Packaging Application provides a thorough and detailed introduction to natural packaging and its applications in food transportation. Treating both recent innovations and prospective future developments, it provides readers with extensive insights into the current state of research in this field. The result is a volume designed to meet the aspirational needs of a sustainable food industry. Natural Materials for Food Packaging Application readers will also find: Detailed treatment of biodegradable packaging materials including thermo-plastic starch, polybutylene succinate, and more Discussion of subjects including chitosan-based food packaging films, clay-based packaging films, and more An authorial team with vast expertise in the field of biological polymer production Natural Materials for Food Packaging Applications is a useful reference for chemists, materials scientists, and food scientists, as well as for any industry professionals working in food distribution and the food supply chain.Table of ContentsPreface xiii About the Editors xv 1 Introduction to Natural Materials for Food Packaging 1 Manickam Ramesh, Lakshminarasimhan Rajeshkumar, Venkateswaran Bhuvaneswari, and Devarajan Balaji 1.1 Introduction 1 1.2 Natural Biodegradable Polymers 4 1.2.1 Starch-Based Natural Materials 4 1.2.2 Poly-Lactic Acid-Based Natural Materials 5 1.2.3 Poly-Caprolactone (PCL)-Based Natural Materials 5 1.2.4 Poly-Hydroxy Alkanoate-Based Natural Materials 6 1.2.5 Polyglycolide-Based Natural Materials 6 1.2.6 Polycarbonate-Based Natural Materials 7 1.2.7 Soy-Based Bio-degradable Polymers 7 1.2.8 Polyurethanes 7 1.2.9 Polyanhydrides 7 1.3 Biodegradable Polymer Blends and Composites 8 1.3.1 Polylactic Acid and Polyethylene Blends 8 1.3.2 PLA and Acrylobutadiene Styrene (ABS) Blends 8 1.3.3 PCL and Polyethylene Blends 8 1.3.4 PCL and Polyvinyl Chloride Blends 9 1.3.5 TPS and Polypropylene Blends 9 1.3.6 TPS/PE Blends 9 1.3.7 Poly(Butylene Succinate) Blends 10 1.4 Properties of Natural Materials for Food Packaging 10 1.4.1 Barrier Properties 10 1.4.2 Biodegradation Properties 11 1.4.3 Consequences of Storage Time 12 1.5 Environmental Impact of Food Packaging Materials 14 1.6 Conclusion 14 References 15 2 Plant Extracts-Based Food Packaging Films 23 Aris E. Giannakas 2.1 Introduction 23 2.2 Extraction Methods for Plant Extracts 24 2.3 Research Investigation of Bibliographic Data 25 2.4 Chitosan Plant Extract-Based Food Packaging Films 27 2.5 Starch/Extract-Based Food Packaging Films 30 2.6 Cellulose and Cellulosic Derivatives-Based Food Packaging Films Modified with Plant Extract 32 2.7 Gelatin and Alginate/Plant Extract-Based Food Packaging Films 34 2.8 Composites/Plant Extract-Based Food Packaging Films 35 2.8.1 Chitosan Composites/Plant Extract-Based Food Packaging Films 36 2.8.2 Starch Composites/Extract-Based Food Packaging Films 38 2.8.3 Other Composites Plant Extract-Based Food Packaging Films 39 2.9 Conclusion 41 Acknowledgment 41 References 42 3 Essential Oils in Food Packaging Applications 51 Madhushree Hegde, Akshatha Chandrashekar, Mouna Nataraja, Niranjana Prabhu, Jineesh A. Gopi, and Jyotishkumar Parameswaranpillai 3.1 Introduction 51 3.2 Chemistry and Classification of Essential Oils 52 3.3 Essential Oils in Food Packaging Applications 55 3.3.1 Effect of Essential Oil on the Mechanical, Barrier, and Other Physical Properties of Food Packaging Materials 55 3.3.1.1 Tensile Properties 55 3.3.1.2 Barrier Properties 56 3.3.1.3 Other Physical Properties 56 3.3.2 Antioxidant Properties of Essential Oil Incorporated Food Packaging Materials 58 3.3.3 Antibacterial Properties of Essential Oil Incorporated Food Packaging Materials 61 3.4 Challenges and Future Trends Associated with the Use of Essential Oil in Food Packaging Applications and Future Trends 65 3.5 Conclusions 65 References 66 4 Agro-Waste Residue-Based Food Packaging Films 75 Rajarathinam Nithya and Arunachalam Thirunavukkarasu 4.1 Introduction 75 4.2 Agro-Waste-Based Biopolymers 76 4.2.1 Cellulose 76 4.2.2 Hemicellulose 77 4.2.3 Lignin 77 4.2.4 Starch 78 4.2.5 Pectin 79 4.3 Edible Coatings and Films – Classification and Properties 80 4.4 Conclusion and Future Prospects 83 References 83 5 Hydrogel-Based Food Packaging Films 89 Kunal Singha and Kumar Rohit 5.1 Introduction 89 5.2 Hydrogel Nature, Definition 91 5.2.1 Hydrogel Types and Features 91 5.2.1.1 Classification According to Polymeric Composition 91 5.2.1.2 Classification Based on Configuration: Classification is Done Based on the Setting 91 5.2.1.3 Classification Based on the Type of Cross-Linking 91 5.2.1.4 Classification Based on Physical Appearance 92 5.2.1.5 Classification According to Network Electrical Charge 92 5.3 Preparation of Hydrogel Film 92 5.4 Hydrogel as Food Packaging Material 92 5.4.1 Hydrogels Functional Properties 93 5.5 Classification of Hydrogel 93 5.6 Hydrogels Functional Properties 93 5.7 Potential Application of Hydrogel in Food Packaging Systems 95 5.7.1 Applications of Hydrogels in Vitro and Food Matrices 96 5.7.2 Biodegradable Packaging 96 5.7.3 Biodegradability 97 5.7.4 Other Potential Applications in the Food Industry 98 5.8 Latest Development in the Hydrogel in the Field of Food Packaging 98 5.9 Futuristic Uses of Hydrogel in Miscellaneous Process 99 5.10 Conclusions 100 References 101 6 Natural Fiber-Based Food Packaging Films 105 G. Rajeshkumar, M. Karthick, A.K. Aseel Ahmed, T. Vikram Raj, V. Abinaya, K. Madhu Mitha, and R. Ronia Richelle 6.1 Introduction 105 6.2 Manufacturing of Fiber-Reinforced Biofilms 107 6.3 Rice Straw-Based Films 109 6.4 Wheat Straw-Based Films 109 6.5 Jute-Based Films 111 6.6 Pineapple-Based Films 112 6.7 Flax-Based Films 113 6.8 Kenaf-Based Films 114 6.9 Hemp-Based Films 115 6.10 Conclusions 115 References 116 7 Natural Clay-Based Food Packaging Films 121 Ram Kumar Deshmukh, Dakuri Ramakanth, Konala Akhila, and Kirtiraj K. Gaikwad 7.1 Introduction 121 7.2 Clay Materials Classification 127 7.2.1 TO or 1:1 Type (One‐One Tetra‐octahedral Layer) 127 7.2.2 TOT or 2:1 Type (One‐Octahedral in Between Two Tetrahedral Layers) 128 7.2.3 2:1:1 or TOTO Type (Two Tetrahedral with Two Octahedral) 128 7.3 Preparation of Natural Clay Nanocomposites 128 7.3.1 In situ Polymerization Method 130 7.3.2 Solution‐Induced Intercalation 130 7.3.3 Melt Processing 130 7.4 Properties of Natural Clay‐Based Nanocomposite Polymer 130 7.4.1 Mechanical Properties 131 7.4.2 Barrier Properties 132 7.4.3 Thermal Stability of Clay‐Based Polymer Composites 133 7.4.4 Oxygen and Ethylene Scavenging Activity of Nano‐Clay Polymer Composite 133 7.5 Application of Natural Clay in Food Packaging Film 135 7.5.1 Montmorillonite (MMT)‐Based Nanocomposite 139 7.5.2 Laponite‐Reinforced Polymer Nanocomposite 141 7.5.3 Sepiolite‐Reinforced PNC 141 7.5.4 Bentonite‐Reinforced Polymer Nanocomposite 142 7.5.5 Hectorite‐Reinforced Polymer Nanocomposite 143 7.5.6 Rectorite‐Reinforced Polymer Nanocomposite 144 7.5.7 Other Nanoclay Materials‐Based Nanocomposites 145 7.6 Challenges of Using Clay in Food Packaging Applications 145 7.6.1 Migration and Exposure of Nanoclay Materials to Humans and the Environment 146 7.6.2 Toxicity of Nanoclay 148 7.7 Future Outlook and Conclusion 149 References 150 8 Curcumin-Based Food Packaging Material 165 Leidy T. Sanchez, Andres F. Cañon-Ibarra, J. Alejandro Arboleda-Murillo, and Cristian C. Villa 8.1 Structural Characteristics of Curcumin 165 8.2 Antimicrobial, Antifungal, and Antioxidant Properties of Curcumin 166 8.3 Nanoencapsulation of Curcumin 167 8.4 Curcumin-Based Food Packaging 168 8.5 Curcumin-Based Nanocomposite Food Packaging 169 8.6 Curcumin-Based Active Food Packaging 169 8.7 Curcumin-Based Intelligent Food Packaging 170 8.8 Perspectives 171 References 171 9 Sustainable Materials from Starch-Based Plastics 179 Asanda Mtibe and Maya J. John 9.1 Introduction 179 9.1.1 Starch 179 9.1.2 Preparation of Thermoplastic Starch (TPS) 180 9.1.3 Plasticization of Starch 180 9.1.4 Processing of TPS 183 9.1.5 Properties of TPS 185 9.1.5.1 Mechanical Properties 185 9.1.5.2 Thermal Properties 186 9.1.5.3 Barrier Properties 186 9.2 TPS-Biopolymer Blends 187 9.3 TPS-Biopolymer Composites 188 9.4 Global Producers, Market Volumes, and Applications of Starch-Based Plastics 191 9.5 Conclusions 193 References 193 10 Main Marine Biopolymers for Food Packaging Film Applications 199 Jesús Rubén Rodríguez-Núñez, Diana Gabriela Montoya-Anaya, Judith Fortiz-Hernández, Yolanda Freile-Pelegrín, and Tomás Jesús Madera-Santana 10.1 Introduction 199 10.2 Polysaccharides from Seaweeds 200 10.2.1 Main Seaweed Polysaccharides 201 10.2.2 Alginate 202 10.2.2.1 Properties and Limitations of Alginate 204 10.2.2.2 Applications of Alginate in Edible Films and Coatings 205 10.2.3 Agar 205 10.2.3.1 Applications of Agar in Edible Films and Coatings 210 10.2.4 Carrageenan 213 10.2.5 Fucoidan 216 10.2.6 Ulvan 218 10.3 Modified Chitosan for Food Film Applications 220 10.3.1 Chemical Modifications of Chitosan for Food Packaging 220 10.3.2 Chitosan Blends/Composites for Films and Coating for Food Applications 222 10.3.3 Nanomaterials of Chitosan for Food Packaging 224 10.4 Conclusions and Future Trends 226 References 227 11 Chitosan-Based Food Packaging Films 241 Kunal Singha and Kumar Rohit 11.1 Introduction 241 11.1.1 A Brief History of Food Packaging Materials Used 241 11.1.2 Characteristics of Typical Food Packaging Materials 242 11.1.3 Need for Biodegradable Food Packaging Materials 242 11.2 Chitin and Chitosan Chemical Structure 243 11.3 Chitosan as a Potential Biodegradable Food Packaging Material 243 11.3.1 Chitosan as Food Packaging Material 244 11.3.2 Chitosan Film in Food Packaging and Their Types 244 11.3.2.1 Chitosan-Based Films 245 11.3.2.2 Flexible Packaging Films 245 11.3.3 Chitosan Film in Food Packaging 245 11.3.4 Films Embedded with Nanomaterials 245 11.3.5 Films Embedded with Clays 246 11.3.6 Films Embedded with Polysaccharide Particles, Fibres, and Whiskers 247 11.3.7 Films Embedded with Natural Oils and Extracts 247 11.4 Future Research Directions and Developments 249 11.4.1 Chitin/Chitosan Derivatives and Their Interactions with Microorganisms: A Comprehensive Review and Future Perspectives 249 11.4.2 A Future Perspective in Crop Protection: Chitosan and its Oligosaccharides 249 11.4.3 Chitosan in Molecularly-Imprinted Polymers: Current and Future Prospects 250 11.4.4 Crosstalk Between Chitosan and Cell Signaling Pathways 250 11.4.5 Resorbable Chitosan Matrix – As a Promising Biomaterial for the Future 250 11.5 Conclusions 251 References 251 12 Effect of Natural Materials on Thermal Properties of Food Packaging Film: An Overview 255 H. M. Prathibhani C. Kumarihami, Nishant Kumar, Pratibha, Anka T. Petkoska, and Neeraj Abbreviations 255 12.1 Introduction 256 12.2 Biodegradable Films: An Alternative for Food Packaging 257 12.2.1 Biodegradable Polymers 258 12.3 Thermal Properties of Food Packaging 259 12.4 Effects of Natural Materials on the Thermal Stability of Food Packaging 260 12.4.1 Effects of Plant Extract 260 12.4.2 Effects of Essential Oils 261 12.4.3 Effects of Color Agent 262 12.4.4 Effects of Nanomaterials 263 12.4.5 Effects of Plasticizers 265 12.4.6 Effects of Emulsifiers 266 12.5 Conclusions 266 References 267 13 Mechanical Properties of Natural Material-Based Packaging Films: Current Scenario 275 Johnsy George, Muhammed Navaf, Aksalamol P. Raju, Ranganathan Kumar, and Kappat V. Sunooj 13.1 Introduction 275 13.2 Mechanical Properties of Packaging Films 276 13.2.1 Tensile Strength (TS) 277 13.2.2 Young’s Modulus (Y) 277 13.2.3 Elongation at Break (EB) 278 13.2.4 Seal Strength 278 13.2.5 Tear Resistance 278 13.2.6 Puncture Resistance 279 13.2.7 Impact Resistance 279 13.2.8 Burst Strength 279 13.3 Mechanical Properties of Natural Polymer-Based Packaging Films 279 13.3.1 Naturally Occurring Polymers 280 13.3.1.1 Starch 280 13.3.1.2 Cellulose 283 13.3.1.3 Chitosan 284 13.3.1.4 Alginates 285 13.3.1.5 Pectin 285 13.3.1.6 Casein 286 13.3.1.7 Whey Protein 287 13.3.1.8 Collagen 287 13.3.1.9 Gelatin 288 13.3.1.10 Zein Protein 289 13.3.1.11 Soy Protein 290 13.3.1.12 Gluten Protein 291 13.3.2 Polymers Synthesized from Natural/Bioderived Monomers 292 13.3.2.1 Polylactic Acid (PLA) 292 13.3.2.2 Polyethylene Furanoate (PEF) 295 13.3.2.3 Polybutylene Succinate (PBS) 295 13.3.2.4 Poly(Butylene Adipate-co-Terephthalate) 296 13.3.2.5 Bio-based Polyethylene 296 13.3.2.6 Bio-Based Polypropylene (Bio-PP) 296 13.4 Mechanical Properties of Natural Polymers Synthesized from Microorganisms-Based Packaging Films 296 13.4.1 Polymer Processed from Microorganisms 296 13.4.1.1 Polyhydroxyalkanoate (PHA) 296 13.4.1.2 Bacterial Cellulose 298 13.4.1.3 Xanthan 299 13.4.1.4 Pullulan 299 13.4.1.5 Gellan 300 13.4.1.6 Levan 300 13.5 Conclusion 300 References 301 14 Effects of Natural Materials on Food Preservation and Storage 313 Subhanki Padhi and Winny Routray 14.1 Introduction 313 14.1.1 Major Objective of Food Preservation and Storage 313 14.1.2 Available Solutions from the Natural Resources and Combination with Technology 314 14.2 Biomolecules Utilized for Preservation,Their Properties, and Uses 315 14.2.1 Polysaccharides 315 14.2.2 Essential Oil 316 14.2.3 Phenolic Compounds 318 14.2.4 Aromatic Compounds 319 14.2.5 Proteins 320 14.2.6 Bacteriocins 320 14.2.7 Other Animal-Based Antimicrobials 321 14.3 Different Extraction Processes Employed for Natural Materials 321 14.4 Effects of Natural Materials on Different Product Quality and Storage 323 14.4.1 Drying Methods and Corresponding Properties 323 14.4.2 Enhancement of Packaging Characteristics 323 14.4.3 Maintenance of Physiochemical Properties of Raw and Processed Products 324 14.5 Conclusion 325 References 326 15 Marketing, Environmental, and Future Perspectives of Natural Materials in Packaging 333 Prakash Binu, Sasi Arun Sasi, Velamparambil Gopalakrishnan Gopikrishna, Abdul Shukkur, Balu Balachandran, and Mahesh Mohan 15.1 Introduction 333 15.2 Biodegradable Food Packaging 334 15.3 Different Bio-Based Packaging Materials 336 15.3.1 Bioplastics 336 15.3.2 Biopolymers 336 15.4 Nano Food Packaging 338 15.5 Natural Antimicrobial Agents in Food Packaging 338 15.6 Edible Films in Food Packaging 339 15.7 Environment and Food Packaging 341 15.8 Sustainable Packaging 342 15.9 Marketing of Natural Materials in Packaging 343 15.10 Future Perspectives of Natural Materials in Packaging 344 15.11 Conclusion 345 References 345 Index 353
£106.25
S Chand & Co Ltd Linear Integrated Circuit
Book Synopsis
£9.59
ListLab Ideas and the Matter: What Will We Be Made Of and
Book Synopsis
£19.00