Mathematical logic Books
Springer International Publishing AG Don Pigozzi on Abstract Algebraic Logic,
Book SynopsisThis book celebrates the work of Don Pigozzi on the occasion of his 80th birthday. In addition to articles written by leading specialists and his disciples, it presents Pigozzi’s scientific output and discusses his impact on the development of science. The book both catalogues his works and offers an extensive profile of Pigozzi as a person, sketching the most important events, not only related to his scientific activity, but also from his personal life. It reflects Pigozzi's contribution to the rise and development of areas such as abstract algebraic logic (AAL), universal algebra and computer science, and introduces new scientific results. Some of the papers also present chronologically ordered facts relating to the development of the disciplines he contributed to, especially abstract algebraic logic. The book offers valuable source material for historians of science, especially those interested in history of mathematics and logic.Table of ContentsA Mathematical Life; Pigozzi, Don.- Assertional logics, truth-equational logics, and the hierarchiesof abstract algebraic logic; Albuquerque, Hugo, Font, Josep Maria, Jansana, Ramon, and Moraschini, Tommaso.- Deduction-Detachment Theorem and Gentzen-Style Deductive Systems; Babenyshev, Sergey.- Introducing Boolean Semilattices; Bergman, Clifford.- The Equationally-Defined Commutator in Quasivarieties Generated by Two-Element Algebras; Czelakowski, Janusz.- A short overview of Hidden Logic; Ferreirim, Isabel and Martins, Manuel A.- Absorption and directed J´onsson terms; Kazda, Alexandr, Kozik, Marcin, McKenzie, Ralph and Moore, Matthew.- Relatively congruence modular quasivarieties of modules; Kearnes, Keith A. - The computational complexity of deciding whether a finite algebra generates a minimal variety; McNulty, George F.- Characterization of protoalgebraic k-deductive systems; Palasinska; Katarzyna.- Diagrammatic duality; Romanowska, Anna B. and Smith, Jonathan D.H.- Boolean product representations of algebras via binary polynomials; Salibra, Antonino, Ledda, Antonio, and Paoli, Francesco.- Paraconsistent constructive logic with strong negation as a contraction-free relevant logic; Spinks, Matthew and Veroff, Robert.- Possible classification of finite-dimensional compact Hausdorfftopological algebras; Taylor, Walter.- Categorical Abstract Algebraic Logic: Compatibility Operators and Correspondence Theorems; Voutsadakis; George.
£82.49
Springer International Publishing AG Martin Davis on Computability, Computational
Book SynopsisThis book presents a set of historical recollections on the work of Martin Davis and his role in advancing our understanding of the connections between logic, computing, and unsolvability. The individual contributions touch on most of the core aspects of Davis’ work and set it in a contemporary context. They analyse, discuss and develop many of the ideas and concepts that Davis put forward, including such issues as contemporary satisfiability solvers, essential unification, quantum computing and generalisations of Hilbert’s tenth problem. The book starts out with a scientific autobiography by Davis, and ends with his responses to comments included in the contributions. In addition, it includes two previously unpublished original historical papers in which Davis and Putnam investigate the decidable and the undecidable side of Logic, as well as a full bibliography of Davis’ work. As a whole, this book shows how Davis’ scientific work lies at the intersection of computability, theoretical computer science, foundations of mathematics, and philosophy, and draws its unifying vision from his deep involvement in Logic.Trade Review“It is welcome indeed to have the book under review on my desk and in my possession, particularly given that it’s something of a Festschrift, sporting all sorts of goodies. … To real logicians or even to folks like me … this is a wonderful book to have.” (Michael Berg, MAA Reviews, January 2018)Table of ContentsChapter 1. My Life as a Logician (Martin Davis).- Chapter 2. Martin Davis and Hilbert’s Tenth Problem (Yuri Matiyasevich).- Chapter 3. Extensions of Hilbert’s Tenth Problem: Definability and Decidability in Number Theory (Alexandra Shlapentokh).- Chapter 4. A Story of Hilbert’s Tenth Problem (Laura Elena Morales Guerrero).- Chapter 5. Hyperarithmetical Sets (Yiannis N. Moschovakis).- Chapter 6. Honest Computability and Complexity (Udi Boker and Nachum Dershowitz).- Chapter 7. Why Post Did [Not] Have Turing’s Thesis (Wilfried Sieg).- Chapter 8. On Quantum Computation, Anyons, and Categories (Andreas Blass).
£85.49
Springer Fachmedien Wiesbaden Einführung in die klassische und intensionale
Book SynopsisDas Buch setzt sich zum Ziel, auch mathematisch wenig vorgebildete Leser in die klassische zweiwertige Logik und ihre intensionalen Erweiterungen wie Modal-Logik, Zeit-Logik und dynamische Logik einzuführen. Die hier näher betrachteten intensionalen Systeme hängen zusammen mit Fragen aus der Beweistheorie der Peano-Arithmetik, Korrektheitsfragen in der Theorie der Programmiersprachen und mit Problemen, die die Semantik natürlicher Sprachen betreffen.Table of ContentsAussagenlogik - modale Aussagenlogik und Varianten - Grundbegriffe der Prädikatenlogik - Herbrandscher Satz - Gödelscher Vollständigkeitssatz - modale Aspekte der Gödelschen Unvollständigkeitssätze - modelltheoretische Begriffe - modale und dynamische Prädikatenlogik - höherstufige Prädikatenlogik und Typentheorie.
£49.49
Springer Fachmedien Wiesbaden Mengenlehre und ihre Logik
Book SynopsisTable of ContentsEinführung.- Erster Teil: Die Elemente.- I. Logik.- 1. Quantifizierung und Identität.- 2. Virtuelle Klassen.- 3. Virtuelle Relationen.- II. Reale Klassen.- 4. Realität, Extensionalität und Individuen.- 5. Das Virtuelle unter dem Realen.- 6. Identität und Einsetzung.- III. Klassen von Klassen.- 7. Einerklassen.- 8. Vereinigungen, Durchschnitte, Kennzeichnungen.- 9. Relationen als Klassen von Klassen.- 10. Funktionen.- IV. Natürliche Zahlen.- 11. Zahlen — naiv.- 12. Zahlen — konstituiert.- 13. Induktion.- V. Iteration und Arithmetik.- 14. Folgen und Iterierte.- 15. Die Vorfahrenrelation.- 16. Summe, Produkt, Potenz.- Zweiter Teil: Höhere Zahlformen.- VI. Reelle Zahlen.- 17. Programm; Zahlenpaare.- 18. Rationale und reelle Zahlen — konstituiert.- 19. Existenzforderungen. Operationen und Erweiterungen.- VII. Ordnung und Ordinalzahlen.- 20. Transfinite Induktion.- 21. Ordnung.- 22. Ordinalzahlen.- 23. Sätze über Ordinalzahlen.- 24. Die Ordnung der Ordinalzahlen.- VIII. Transfinite Rekursion.- 25. Transfinite Rekursion.- 26. Sätze über transfinite Rekursion.- 27. Aufzählung.- IX. Kardinalzahlen.- 28. Relative Größe von Klassen.- 29. Das Schröder-Bernsteinsche Theorem.- 30. Unendliche Kardinalzahlen.- X. Das Auswahlaxiom.- 31. Selektionen und Selektoren.- 32. Weitere äquivalente Formulierungen des Axioms.- 33. Die Stellung des Axioms.- Dritter Teil: Axiomensysteme.- XI. Die Russellsche Typentheorie.- 34. Der konstruktive Teil.- 35. Klassen und das Reduzibilitätsaxiom.- 36. Die moderne Typentheorie.- XII. Universelle Variablen und Zermelo.- 37. Die Typentheorie mit universellen Variablen.- 38. Kumulative Typen und Zermelo.- 39. Unendlichkeitsaxiome und andere.- XIII. Stratifizierung und äußerste Klassen.- 40. New foundations.- 41. Nicht-Cantorsche Klassen. Noch einmal Induktion.- 42. Hinzufügen äußerster Klassen.- XIV. Das System von von Neumann und andere Systeme.- 43. Das System von von Neumann-Bernays.- 44. Abweichungen und Vergleiche.- 45. Die Stärke der verschiedenen Systeme.- Vierter Teil: Anhang.- I. Zusammenstellung von fünf Axiomensystemen.- II. Liste durchnumerierter Formeln.- III. Bibliographie.- Sachwortverzeichnis.
£34.19
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG The Syntax and Semantics of Infinitary Languages
Table of ContentsImplicit definability and compactness in infinitary languages.- Some remarks on the model theory of infinitary languages.- Remarks on the theory of geometrical constructions.- Note on admissible ordinals.- An algebraic proof of the barwise compactness theorem.- Formulas with linearly ordered quantifiers.- Some problems in group theory.- Choice of infinitary languages by means of definability criteria; Generalized recursion theory.- Definability, automorphisms, and infinitary languages.- The hanf number for complete sentences.- Quantified algebras.- Normal derivability in classical logic.- A determinate logic.- (?1, ?) properties of unions of models.
£38.94
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies
Table of ContentsInductive definitions and subsystems of analysis.- Proof theoretic equivalences between classical and constructive theories for analysis.- Inductive definitions, constructive ordinals, and normal derivations.- The ??+1-Rule.- Ordinal analysis of ID?.- Proof-theoretical analysis of ID? by the method of local predicativity.
£27.00
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Theory of Sets
Book SynopsisThis is a softcover reprint of the English translation of 1968 of N. Bourbaki's, Theorie des Ensembles (1970).Table of ContentsI. Description of Formal Mathematics.- § 1. Terms and relations.- 1. Signs and assemblies.- 2. Criteria of substitution.- 3. Formative constructions.- 4. Formative criteria.- § 2. Theorems.- 1. The axioms.- 2. Proofs.- 3. Substitutions in a theory.- 4. Comparison of theories.- § 3. Logical theories.- 1. Axioms.- 2. First consequences.- 3. Methods of proof.- 4. Conjunction.- 5. Equivalence.- § 4. Quantified theories.- 1. Definition of quantifiers.- 2. Axioms of quantified theories.- 3. Properties of quantifiers.- 4. Typical quantifiers.- § 5. Equalitarian theories.- 1. The axioms.- 2. Properties of equality.- 3. Functional relations.- Appendix. Characterization of terms and relations.- 1. Signs and words.- 2. Significant words.- 3. Characterization of significant words.- 4. Application to assemblies in a mathematical theory.- Exercises for § 1.- Exercises for § 2.- Exercises for § 3.- Exercises for § 4.- Exercises for § 5.- Exercises for the Appendix.- II. Theory of Sets.- § 1. Collectivizing relations.- 1. The theory of sets.- 2. Inclusion.- 3. The axiom of extent.- 4. Collectivizing relations.- 5. The axiom of the set of two elements.- 6. The scheme of selection and union.- 7. Complement of a set. The empty set.- § 2. Ordered pairs.- 1. The axiom of the ordered pair.- 2. Product of two sets.- § 3. Correspondences.- 1. Graphs and correspondences.- 2. Inverse of a correspondence.- 3. Composition of two correspondences.- 4. Functions.- 5. Restrictions and extensions of functions.- 6. Definition of a function by means of a term.- 7. Composition of two functions. Inverse function.- 8. Retractions and sections.- 9. Functions of two arguments.- § 4. Union and intersection of a family of sets.- 1. Definition of the union and the intersection of a family of sets.- 2. Properties of union and intersection.- 3. Images of a union and an intersection.- 4. Complements of unions and intersections.- 5. Union and intersection of two sets.- 6. Coverings.- 7. Partitions.- 8. Sum of a family of sets.- § 5. Product of a family of sets.- 1. The axiom of the set of subsets.- 2. Set of mappings of one set into another.- 3. Definitions of the product of a family of sets.- 4. Partial products.- 5. Associativity of products of sets.- 6. Distributivity formulae.- 7. Extension of mappings to products.- § 6. Equivalence relations.- 1. Definition of an equivalence relation.- 2. Equivalence classes; quotient set.- 3. Relations compatible with an equivalence relation.- 4. Saturated subsets.- 5. Mappings compatible with equivalence relations.- 6. Inverse image of an equivalence relation; induced equivalence relation.- 7. Quotients of equivalence relations.- 8. Product of two equivalence relations.- 9. Classes of equivalent objects.- Exercises for § 1.- Exercises for § 2.- Exercises for § 3.- Exercises for § 4.- Exercises for § 5.- Exercises for § 6.- III. Ordered Sets, Cardinals, Integers.- § 1. Order relations. Ordered sets.- 1. Definition of an order relation.- 2. Preorder relations.- 3. Notation and terminology.- 4. Ordered subsets. Product of ordered sets.- 5. Increasing mappings.- 6. Maximal and minimal elements.- 7. Greatest element and least element.- 8. Upper and lower bounds.- 9. Least upper bound and greatest lower bound.- 10. Directed sets.- 11. Lattices.- 12. Totally ordered sets.- 13. Intervals.- § 2. Well-ordered sets.- 1. Segments of a well-ordered set.- 2. The principle of transfinite induction.- 3. Zermelo’s theorem.- 4. Inductive sets.- 5. Isomorphisms of well-ordered sets.- 6. Lexicographic products.- § 3. Equipotent sets. Cardinals.- 1. The cardinal of a set.- 2. Order relation between cardinals.- 3. Operations on cardinals.- 4. Properties of the cardinals 0 and 1.- 5. Exponentiation of cardinals.- 6. Order relation and operations on cardinals.- § 4. Natural integers. Finite sets.- 1. Definition of integers.- 2. Inequalities between integers.- 3. The principle of induction.- 4. Finite subsets of ordered sets.- 5. Properties of finite character.- § 5. Properties of integers.- 1. Operations on integers and finite sets.- 2. Strict inequalities between integers.- 3. Intervals in sets of integers.- 4. Finite sequences.- 5. Characteristic functions of sets.- 6. Euclidean division.- 7. Expansion to base b.- 8. Combinatorial analysis.- § 6. Infinite sets.- 1. The set of natural integers.- 2. Definition of mappings by induction.- 3. Properties of infinite cardinals.- 4. Countable sets.- 5. Stationary sequences.- § 7. Inverse limits and direct limits.- 1. Inverse limits.- 2. Inverse systems of mappings.- 3. Double inverse limit.- 4. Conditions for an inverse limit to be non-empty.- 5. Direct limits.- 6. Direct systems of mappings.- 7. Double direct limit. Product of direct limits.- Exercises for § 1.- Exercises for § 2.- Exercises for § 3.- Exercises for § 4.- Exercises for § 5.- Exercises for § 6.- Exercises for § 7.- Historical Note on § 5.- IV. Structures.- § 1. Structures and isomorphisms.- 1. Echelons.- 2. Canonical extensions of mappings.- 3. Transportable relations.- 4. Species of structures.- 5. Isomorphisms and transport of structures.- 6. Deduction of structures.- 7. Equivalent species of structures.- § 2. Morphisms and derived structures.- 1. Morphisms.- 2. Finer structures.- 3. Initial structures.- 4. Examples of initial structures.- 5. Final structures.- 6. Examples of final structures.- § 3. Universal mappings.- 1. Universal sets and mappings.- 2. Existence of universal mappings.- 3. Examples of universal mappings.- Exercises for § 1.- Exercises for § 2.- Exercises for § 3.- Historical Note on Chapters I-IV.- Summary of Results.- § 1. Elements and subsets of a set.- § 2. Functions.- § 3. Products of sets.- § 4. Union, intersection, product of a family of sets.- § 5. Equivalence relations and quotient sets.- § 6. Ordered sets.- § 7. Powers. Countable sets.- § 8. Scales of sets. Structures.- Index of notation.- Index of terminology.- Axioms and schemes of the theory of sets.
£51.29
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Finite Model Theory: Second Edition
Book SynopsisThis is a thoroughly revised and enlarged second edition that presents the main results of descriptive complexity theory, that is, the connections between axiomatizability of classes of finite structures and their complexity with respect to time and space bounds. The logics that are important in this context include fixed-point logics, transitive closure logics, and also certain infinitary languages; their model theory is studied in full detail. The book is written in such a way that the respective parts on model theory and descriptive complexity theory may be read independently.Table of ContentsPreliminaries.- The Ehrenfeucht-Fraïssé Method.- More on Games.- 0-1 Laws.- Satisfiability in the Finite.- Finite Automata and Logic: A Microcosm of Finite Model Theory.- Descriptive Complexity Theory.- Logics with Fixed-Point Operators.- Logic Programs.- Optimization Problems.- Logics for PTIME.- Quantifiers and Logical Reductions.
£142.49
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Théorie des ensembles
Book SynopsisLe Livre de Théorie des ensembles qui vient en tête du traité présente les fondements axiomatiques de la théorie des ensembles. Il comprend les chapitres : 1. Description de la mathématique formelle ; 1. Théorie des ensembles ; 2. Ensembles ordonnés. Cardinaux. 3. nombres entiers ; 4. Structures.Table of ContentsDescription de la mathématique formelle.- Théorie des ensembles.- Ensembles ordonnés, cardinaux, nombres entiers.- Structures.
£52.24
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Set Theory: The Third Millennium Edition, revised
Book SynopsisThis monograph covers the recent major advances in various areas of set theory. From the reviews: "One of the classical textbooks and reference books in set theory....The present ‘Third Millennium’ edition...is a whole new book. In three parts the author offers us what in his view every young set theorist should learn and master....This well-written book promises to influence the next generation of set theorists, much as its predecessor has done." --MATHEMATICAL REVIEWSTrade ReviewFrom the reviews of the third edition: "Thomas Jech’s text has long been considered a classic survey of the state of the set theory … . As every logician will know, this is a work of extraordinary scholarship, essential for any graduate logician who needs to know where the current boundaries of research are situated. Each chapter ends with a valuable historical survey and there is an extensive bibliography. This will continue to be the bible for set theorists in the new century." (Gerry Leversha, The Mathematical Gazette, March, 2005) "The book does masterly what it is supposed to do. … every mathematician who wishes to refresh his knowledge of set theory will read it with pleasure. … They will also find historical notes, and precise references … . A very comprehensive bibliography, and detailed indexes complete the work. This book fills a serious gap in the literature and there is no doubt that it will become a standard reference … . One can strongly recommend its acquisition for any mathematical library." (Jean-Roger Roisin, Bulletin of the Belgian Mathematical Society, Vol. 11 (3), 2004) "One of the classical textbooks and reference books in set theory is Jech’s Set Theory. … The present ‘Third Millennium’ edition … is a whole new book. In three parts the author offers us what in his view every young set theorist should learn and master. … This well-written book promises to influence the next generation of set theorists, much as its predecessor has done over the last quarter of a century." (Eva Coplakova, Mathematical Reviews, 2004 g) "Jech’s book, ‘Set Theory’ has been a standard reference for over 25 years. This ‘Third Millennium Edition’, not only includes all the materials in the first two editions, but also covers recent developments of set theory during the last 25 years. We believe that this new version will become a standard reference on set theory for the next few years." (Guohua Wu, New Zealand Mathematical Society Newsletter, April, 2004) "Jech’s classic monograph has been a standard reference for a generation of set theorists. Though … labeled ‘The Third Millennium Edition’, the present work is in fact a new book. ... Even sections presenting older results have been rewritten and modernized. Exercises have been moved to the end of each section. The bibliography, the section on notation, and the index have been considerably expanded as well. This new edition will certainly become a standard reference on set theory for years to come." (Jörg D. Brendle, Zentralblatt MATH, Vol. 1007, 2003) "Thomas Jech’s Set Theory contains the most comprehensive treatment of the subject in any one volume. The present third edition is a revised and expanded version … . The third edition has three parts. The first, Jech says, every student of set theory should learn, the second every set theorist should master and the third consists of various results reflecting ‘the state of the art of set theory at the turn of the new millennium’. This last part especially contains a lot of new material." (Martin Bunder, The Australian Mathematical Society Gazette, Vol. 30 (2), 2003)Table of ContentsBasic Set Theory.- Axioms of Set Theory.- Ordinal Numbers.- Cardinal Numbers.- Real Numbers.- The Axiom of Choice and Cardinal Arithmetic.- The Axiom of Regularity.- Filters, Ultrafilters and Boolean Algebras.- Stationary Sets.- Combinatorial Set Theory.- Measurable Cardinals.- Borel and Analytic Sets.- Models of Set Theory.- Advanced Set Theory.- Constructible Sets.- Forcing.- Applications of Forcing.- Iterated Forcing and Martin’s Axiom.- Large Cardinals.- Large Cardinals and L.- Iterated Ultrapowers and L[U].- Very Large Cardinals.- Large Cardinals and Forcing.- Saturated Ideals.- The Nonstationary Ideal.- The Singular Cardinal Problem.- Descriptive Set Theory.- The Real Line.- Selected Topics.- Combinatorial Principles in L.- More Applications of Forcing.- More Combinatorial Set Theory.- Complete Boolean Algebras.- Proper Forcing.- More Descriptive Set Theory.- Determinacy.- Supercompact Cardinals and the Real Line.- Inner Models for Large Cardinals.- Forcing and Large Cardinals.- Martin’s Maximum.- More on Stationary Sets.
£151.99
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG The Higher Infinite: Large Cardinals in Set Theory from Their Beginnings
Book SynopsisOver the years, this book has become a standard reference and guide in the set theory community. It provides a comprehensive account of the theory of large cardinals from its beginnings and some of the direct outgrowths leading to the frontiers of contemporary research, with open questions and speculations throughout.Table of ContentsPreliminaries.- Beginnings.- Partition Properties.- Forcing and Sets of Reals.- Aspects of Measurability.- Strong Hypotheses.- Determinacy.
£104.49
AV Akademikerverlag Drayage Operations at Seaports
£34.57
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Algebraic Complexity Theory
Book SynopsisThe algorithmic solution of problems has always been one of the major concerns of mathematics. For a long time such solutions were based on an intuitive notion of algorithm. It is only in this century that metamathematical problems have led to the intensive search for a precise and sufficiently general formalization of the notions of computability and algorithm. In the 1930s, a number of quite different concepts for this purpose were pro posed, such as Turing machines, WHILE-programs, recursive functions, Markov algorithms, and Thue systems. All these concepts turned out to be equivalent, a fact summarized in Church's thesis, which says that the resulting definitions form an adequate formalization of the intuitive notion of computability. This had and continues to have an enormous effect. First of all, with these notions it has been possible to prove that various problems are algorithmically unsolvable. Among of group these undecidable problems are the halting problem, the word problem theory, the Post correspondence problem, and Hilbert's tenth problem. Secondly, concepts like Turing machines and WHILE-programs had a strong influence on the development of the first computers and programming languages. In the era of digital computers, the question of finding efficient solutions to algorithmically solvable problems has become increasingly important. In addition, the fact that some problems can be solved very efficiently, while others seem to defy all attempts to find an efficient solution, has called for a deeper under standing of the intrinsic computational difficulty of problems.Trade ReviewP. Bürgisser, M. Clausen, M.A. Shokrollahi, and T. Lickteig Algebraic Complexity Theory "The book contains interesting exercises and useful bibliographical notes. In short, this is a nice book."—MATHEMATICAL REVIEWS From the reviews: "This book is certainly the most complete reference on algebraic complexity theory that is available hitherto. … superb bibliographical and historical notes are given at the end of each chapter. … this book would most certainly make a great textbook for a graduate course on algebraic complexity theory. … In conclusion, any researchers already working in the area should own a copy of this book. … beginners at the graduate level who have been exposed to undergraduate pure mathematics would find this book accessible." (Anthony Widjaja, SIGACT News, Vol. 37 (2), 2006)Table of Contents1. Introduction.- I. Fundamental Algorithms.- 2. Efficient Polynomial Arithmetic.- 3. Efficient Algorithms with Branching.- II. Elementary Lower Bounds.- 4. Models of Computation.- 5. Preconditioning and Transcendence Degree.- 6. The Substitution Method.- 7. Differential Methods.- III. High Degree.- 8. The Degree Bound.- 9. Specific Polynomials which Are Hard to Compute.- 10. Branching and Degree.- 11. Branching and Connectivity.- 12. Additive Complexity.- IV. Low Degree.- 13. Linear Complexity.- 14. Multiplicative and Bilinear Complexity.- 15. Asymptotic Complexity of Matrix Multiplication.- 16. Problems Related to Matrix Multiplication.- 17. Lower Bounds for the Complexity of Algebras.- 18. Rank over Finite Fields and Codes.- 19. Rank of 2-Slice and 3-Slice Tensors.- 20. Typical Tensorial Rank.- V. Complete Problems.- 21. P Versus NP: A Nonuniform Algebraic Analogue.- List of Notation.
£104.49
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Felix Hausdorff - Gesammelte Werke Band IA:
Book SynopsisDer Band 1A beginnt mit einem Vorwort zur Gesamtedition. Den Hauptteil des Bandes bilden Hausdorffs Arbeiten über geordnete Mengen aus den Jahren 1901-1909. Diese haben der Entwicklung der Mengenlehre nachhaltige Impulse verliehen. Sie enthalten zahlreiche für die Untersuchung geordneter Mengen grundlegende neue Begriffe sowie tiefliegendere Resultate. Alle diese Arbeiten sind sorgfältig kommentiert. Die Kommentare zeigen, dass einige von Hausdorff's Ideen und Resultaten für die moderne Grundlagenforschung hochaktuell sind. Ferner enthält der Band Hausdorff's kritische Besprechung von Russells "The Principles of Mathematics", aus dem Nachlass seine Vorlesung "Mengenlehre" von 1901 (eine der ersten Vorlesungen über dieses Gebiet überhaupt) sowie einen Essay "Hausdorff als akademischer Lehrer". Table of ContentsTeil I. Arbeiten über geordnete Mengen.– Über eine gewisse Art geordneter Mengen.- Kommentar.- Der Potenzbegriff in der Mengenlehre.- Kommentar.- Untersuchungen über Ordnungstypen I, II, III.- Untersuchungen über Ordnungstypen IV, V.- Kommentar.- Über dichte Ordnungstypen.- Kommentar.- Grundzüge einer Theorie der geordneten Mengen.- Kommentar.- Die Graduierung nach dem Endverlauf.- Comments.- Summe von N1 Mengen.- Comments.- Gaps in partially ordered sets and related problems.- Teil II. Aus dem Nachlaß zur Mengenlehre.- Mengenlehre. Vorlesung der Universität Leipzig, Sommersemester 1901.- Kommentar.- Alefsätze.- Anhänge.- Bertrand Russell, The Principles of Mathematics (Besprechung).- Kommentar.- Hausdorff als akademischer Lehrer.- Entstehung der Hausdorff-Edition.- Personenregister.- Sachregister.
£125.99
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Handbook of Weighted Automata
Book SynopsisThe purpose of this Handbook is to highlight both theory and applications of weighted automata. Weighted finite automata are classical nondeterministic finite automata in which the transitions carry weights. These weights may model, e. g. , the cost involved when executing a transition, the amount of resources or time needed for this,or the probability or reliability of its successful execution. The behavior of weighted finite automata can then be considered as the function (suitably defined) associating with each word the weight of its execution. Clearly, weights can also be added to classical automata with infinite state sets like pushdown automata; this extension constitutes the general concept of weighted automata. To illustrate the diversity of weighted automata, let us consider the following scenarios. Assume that a quantitative system is modeled by a classical automaton in which the transitions carry as weights the amount of resources needed for their execution. Then the amount of resources needed for a path in this weighted automaton is obtained simply as the sum of the weights of its transitions. Given a word, we might be interested in the minimal amount of resources needed for its execution, i. e. , for the successful paths realizing the given word. In this example, we could also replace the “resources” by “profit” and then be interested in the maximal profit realized, correspondingly, by a given word.Trade ReviewFrom the reviews:"This book is an excellent reference for researchers in the field, as well as students interested in this research area. The presentation of applications makes it interesting to researchers from other fields to study weighted automata. ... One of the main arguments in favor of this handbook is the completeness of its index table — usually a faulty section in such volumes. The chapters are globally well-written and self-contained, thus pleasant to read, and the efforts put to maintain consistency in vocabulary thorough the book are very appreciable." (Michaël Cadilhac, The Book Review Column 43-3, 2012)“The book presents a broad survey, theory and applications, of weighted automata, classical nondeterministic automata in which transitions carry weights. … The individual articles are written by well-known researchers in the field: they include extensive lists of references and many open problems. The book is valuable for both computer scientists and mathematicians (being interested in discrete structures).” (Cristian S. Calude, Zentralblatt MATH, Vol. 1200, 2011)Table of ContentsFoundations.- Semirings and Formal Power Series.- Fixed Point Theory.- Concepts of Weighted Recognizability.- Finite Automata.- Rational and Recognisable Power Series.- Weighted Automata and Weighted Logics.- Weighted Automata Algorithms.- Weighted Discrete Structures.- Algebraic Systems and Pushdown Automata.- Lindenmayer Systems.- Weighted Tree Automata and Tree Transducers.- Traces, Series-Parallel Posets, and Pictures: A Weighted Study.- Applications.- Digital Image Compression.- Fuzzy Languages.- Model Checking Linear-Time Properties of Probabilistic Systems.- Applications of Weighted Automata in Natural Language Processing.
£132.99
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Stochastic Calculus with Infinitesimals
Book SynopsisStochastic analysis is not only a thriving area of pure mathematics with intriguing connections to partial differential equations and differential geometry. It also has numerous applications in the natural and social sciences (for instance in financial mathematics or theoretical quantum mechanics) and therefore appears in physics and economics curricula as well. However, existing approaches to stochastic analysis either presuppose various concepts from measure theory and functional analysis or lack full mathematical rigour. This short book proposes to solve the dilemma: By adopting E. Nelson's "radically elementary" theory of continuous-time stochastic processes, it is based on a demonstrably consistent use of infinitesimals and thus permits a radically simplified, yet perfectly rigorous approach to stochastic calculus and its fascinating applications, some of which (notably the Black-Scholes theory of option pricing and the Feynman path integral) are also discussed in the book.Table of Contents1 Infinitesimal calculus, consistently and accessibly.- 2 Radically elementary probability theory.- 3 Radically elementary stochastic integrals.- 4 The radically elementary Girsanov theorem and the diffusion invariance principle.- 5 Excursion to nancial economics: A radically elementary approach to the fundamental theorems of asset pricing.- 6 Excursion to financial engineering: Volatility invariance in the Black-Scholes model.- 7 A radically elementary theory of Itô diffusions and associated partial differential equations.- 8 Excursion to mathematical physics: A radically elementary definition of Feynman path integrals.- 9 A radically elementary theory of Lévy processes.- 10 Final remarks.
£31.99
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Personelle und Statistische Wahrscheinlichkeit
Book SynopsisTable of ContentsEinleitung: Überblick über den Inhalt des zweiten Halbbandes.- III. Die logischen Grundlagen des statistischen Schließens.- 1. ,Jenseits von Popper und Carnap‘.- 1.a Programm und Abgrenzung vom Projekt einer induktiven Logik.- 1.b Die relative Häufigkeit auf lange Sicht und die Häufigkeitsdefinition der statistischen Wahrscheinlichkeit.- 1.c Der Vorschlag von Braithwaite, die statistische Wahrscheinlichkeit als theoretischen Begriff einzuführen.- 1.d Vorbereitende Betrachtungen zur Testproblematik statistischer Hypothesen.- 1.e Zusammenfassung und Ausblick.- 2. Präludium: Der intuitive Hintergrund.- 3. Die Grundaxiome. Statistische Unabhängigkeit.- 3.a Die Kolmogoroff-Axiome.- 3.b Unabhängigkeit im statistischen Sinn.- 3.c Hypothesen und Oberhypothesen.- 4. Die komparative Stützungslogik.- 4.a Vorbetrachtungen.- 4.b Einige zusätzliche Zwischenbetrachtungen.- 4.c Die Axiome der Stützungslogik.- 5. Die Likelihood-Regel.- 5.a Kombinierte statistische Aussagen.- 5.b Likelihood und Likelihood-Regel.- 6. Die Leistungsfähigkeit der Likelihood-Regel.- 6.a Die Einzelfall-Regel und ihre Begründung.- 6.b Der statistische Stützungsschluß im diskreten Fall und seine Rechtfertigung.- 6.c Übergang zum stetigen Fall.- 6.d Wahrscheinlichkeitsverteilung und Likelihoodfunktion (,Plausibilitätsverteilung‘).- 6.e Denken in Likelihoods und Bayesianismus.- 7. Vorläufiges Postludium: Ergänzende Betrachtungen zu den statistischen Grundbegriffen.- 7.a Der Begriff des statistischen Datums.- 7.b Chance und Häufigkeit auf lange Sicht.- 7.c Versuchstypen.- 8. Zufall, Grundgesamtheit und Stichprobenauswahl.- 9. Die Problematik der statistischen Testtheorie, erläutert am Beispiel zweier konkurrierender Testtheorien.- 9.a Vorbetrachtungen. Ein warnendes historisches Beispiel.- 9.b Macht und Umfang eines Tests. Die Testtheorie von Neyman-Pearson.- 9.c Die Mehrdeutigkeit der Begriffe „Annahme“ und „Verwerfung“ 159 9.d Einige kritische Bemerkungen zu den Begriffen Umfang und Macht 160 9.e Die Likelihood-Testtheorie.- 10. Probleme der Schätzungstheorie.- 10.a Vorbemerkungen.- 10.b Was ist Schätzung? Klassifikation von Schätzungen.- 10.c Einige spezielle Begriffe der statistischen Schätzungstheorie.- 10.d Die Doppeldeutigkeit von „Schätzung“ und die Mehrdeutigkeit von „Güte einer Schätzung“.- 10.e Theoretische Schätzungen und Schätzhandlungen.- 10.f Das Skalendilemma. Zwecke von Schätzungen.- 10.g Schätzungen im engeren und Schätzungen im weiteren Sinn.- 10.h Kritisches zu den Optimalitätsmerkmalen auf lange Sicht, zur Minimax-Theorie und zur Intervallschätzung.- 10.i Ein Präzisierungsversuch des Begriffes der besser gestützten Schätzung.- 10.j Ist die Schätzungstheorie von Savage das Analogon zur Testtheorie von Neyman-Pearson?.- 11. Kritische Betrachtungen zur Likelihood-Stützungs-und-Testtheorie.- 11.a Ist der Likelihood-Test schlechter als nutzlos ?.- 11.b Das Karten-Paradoxon von Kerridge.- 11.c Die logische Struktur des Stützungsbegriffs.- 12. Subjektivismus oder Objektivismus ?.- 12.a Die subjektivistische (personalistische) Kritik: de Finetti und Savage kontra Objektivismus.- 12.b Die Propensity-Interpretation der statistischen Wahrscheinlichkeit: Popper, Giere und Suppes.- 13. Versuch einer Skizze der logischen Struktur des Fiduzial-Argumentes von R. A. Fisher.- Bibliographie.- IV. ,Statistisches Schließen — Statistische Begründung — Statistische Analyse‘statt,Statistische Erklärung‘.- 1. Elf Paradoxien und Dilemmas.- (I) Die Paradoxie der Erklärung des Unwahrscheinlichen.- (II) Das Paradoxon der irrelevanten Gesetzesspezialisierung.- (III) Das Informationsdilemma.- (IV) Das Erklärungs-Bestätigungs-Dilemma.- (V) Das Paradoxon der reinen ex post facto Kausalerklärung.- (VI) Das Verzahnungsparadoxon.- (VII) Das Erklärungs-Begründungs-Dilemma.- (VIII) Das Dilemma der nomologischen Implikation.- (IX) Das ,Weltanschauungsdilemma‘.- (X) Das Argumentationsdilemma.- (XI) Das Gesetzesparadoxon.- 2. Diskussion.- 2.a Problemreduktionen.- 2.b Das Problem der nomologischen Implikation. Statistisches Schließen und statistische Begründungen.- 2.c Verzahnungen von Erklärungs- und Bestätigungsproblemen.- 2.d Die Leibniz-Bedingung. Unbehebbare intuitive Konflikte.- 3. Statistische Begründungen statt statistische Erklärungen. Der statistische Begründungsbegriff als Explikat der Einzelfall-Regel.- 4. Statistische Analysen.- 4.a Kausale Relevanz und Abschirmung.- 4.b Statistische Oberflächenanalyse und statistisch-kausale Tiefenanalyse von Minimalform.- 4.c Statistische Analyse und statistisches Situationsverständnis.- 4.d Was könnte unter „Statistische Erklärung“ verstanden werden?.- Bibliographie.- Anhang I: Indeterminismus vom zweiten Typ.- Anhang II: Das Repräsentationstheorem von B. de Finetti.- 1. Intuitiver Zugang.- 1.a Bernoulli-Wahrscheinlichkeiten und Mischungen von Bernoulli-Wahrscheinlichkeiten.- 1.b Das Problem des Lernens aus der Erfahrung.- 1.c Die Bedeutung des Begriffs der Vertauschbarkeit.- 2. Formale Skizze. Übergang zum kontinuierlichen Fall.- 2.a Vertauschbarkeit und Symmetrie.- 2.b Mischungen und Lernen aus der Erfahrung: Der Riemannsche Fall..- 2.c Mischungen im abstrakten maßtheoretischen Fall. Das Repräsentationstheorem.- 2.d Diskussion.- Bibliographie.- Anhang III: Metrisierung qualitativer Wahrscheinlichkeitsfelder.- 1. Axiomatische Theorien der Metrisierung. Extensive Größen.- 2. Metrisierung von Wahrscheinlichkeitsfeldern.- 2.a Metrisierung klassischer absoluter Wahrscheinlichkeitsfelder im endlichen und abzählbaren Fall.- 2.b Metrisierung quantenmechanischer Wahrscheinlichkeitsfelder.- 2.c Metrisierung qualitativer bedingter Wahrscheinlichkeitsfelder.- Bibliographie.- Autorenregister.- Verzeichnis der Symbole und Abkürzungen.
£44.64
Springer Fachmedien Wiesbaden Diagonalization in Formal Mathematics
Book SynopsisIn this book, Paulo Guilherme Santos studies diagonalization in formal mathematics from logical aspects to everyday mathematics. He starts with a study of the diagonalization lemma and its relation to the strong diagonalization lemma. After that, Yablo’s paradox is examined, and a self-referential interpretation is given. From that, a general structure of diagonalization with paradoxes is presented. Finally, the author studies a general theory of diagonalization with the help of examples from mathematics.Table of ContentsDiagonalization in Mathematics.- Diagonalization Lemma.- Fixed Point Theorems.- Paradoxes: Liar, Yablo’s Paradox, Curry’s Paradox.
£40.49
Springer Fachmedien Wiesbaden Diskrete Mathematik mit Grundlagen: Lehrbuch für
Book SynopsisDieses Lehrbuch wendet sich an Leser ohne Studienvorkenntnisse, gibt eine elementare Einführung in die Diskrete Mathematik und die Welt des mathematischen Denkens und führt den Leser auf ein solides Hochschulniveau. Im Einzelnen werden elementare Logik, Mengenlehre, Beweiskonzepte und die mathematische Terminologie dafür ausführlich erklärt und durch Anwendungsbeispiele motiviert. Darauf aufbauend werden die wichtigsten Disziplinen der Diskreten Mathematik behandelt in einem Umfang, der für jedes MINT-Studium außer der Mathematik selbst ausreicht. Zahlreiche Übungsaufgaben runden das Angebot ab, die Lösungen dazu werden online zur Verfügung gestellt. Das Buch ist zum Selbststudium, als Vorlesungsbegleitung und zum Nachschlagen geeignet. Die zweite Auflage wurde vollständig überarbeitet. Das Kapitel zur Logik wurde erheblich ausgeweitet, unter anderem durch eine allgemeinverständliche Anleitung mit vielen Beispielen, wie Alltagssprache in logische Sprache übersetzt wird.Table of ContentsLogik.- Mengenlehre.- Beweisverfahren.- Zahlentheorie.- Algebraische Strukturen.- Kombinatorik.- Graphentheorie.
£27.99
Springer Fachmedien Wiesbaden Der Untergang von Mathemagika: Ein Roman über
Book SynopsisWas haben ein König und eine Prinzessin in der Mengenlehre zu suchen? Eine Menge!In dem fantastischen Königreich Mathemagika erleben die Freunde Prof und Dio eine abenteuerliche Geschichte um das rätselhafte Verschwinden eines Ministers, eine bezaubernde Prinzessin – und einen der verrücktesten Sätze der Mathematik: das Banach-Tarski-Paradoxon. Es behauptet zum Beispiel, dass man eine Kugel von Erbsengröße in endlich vielen Teilen zu einer Kugel von Sonnengröße umbauen kann. Unmöglich?Der Untergang von Mathemagika ist eine neuartige Darstellung von Mathematik, die fesselt und hineinzieht. Es ist ein Vergnügen zu lesen, wie sich eins zum anderen fügt und am Ende alles zusammenpasst.Stimme zum Buch:„Dass ein mathematischer Satz in der Hauptrolle ein so herrliches Theater machen kann, begeistert mich: Math Fiction mit Witz, Dramatik und Tiefe.“ Prof. Dr. Thomas Bedürftig, Universität HannoverTrade Review“... in das merkwürdige Mathemagika, eine Welt der Ideen, eine Welt der Mengen, verschlagen hat. ...Damit sind für den Leser die mathematischen Voraussetzungen geschaffen ...wird der mathematische Hintergrund des Paradoxons immer wieder spielerisch aufgegriffen und sehr witzig beschrieben. Das Buch bietet Vergnügen bis zur letzten Seite ...” (Hartmut Weber, in: mathematik.de, 18. Juli. 2016Table of Contents1 Die Tonne des Diogenes.- 2 Die Fütterung der Pinguine.- 3 Der König.- 4 Das Denkmal.- 5 Das Volk der Ausdehnungslosen I.- 6 Die Schlange.- 7 Das Volk der Ausdehnungslosen II.- 8 Die verrückten Schwestern.- 9 Der Krisenstab.- 10 Die Flucht.- 11 Die Prinzessin.- 12 Der Antilogos.- 13 Schluss.
£17.09
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Parameterized Complexity in the Polynomial Hierarchy: Extending Parameterized Complexity Theory to Higher Levels of the Hierarchy
Book SynopsisParameterized Complexity in the Polynomial Hierarchy was co-recipient of the E.W. Beth Dissertation Prize 2017 for outstanding dissertations in the fields of logic, language, and information. This work extends the theory of parameterized complexity to higher levels of the Polynomial Hierarchy (PH). For problems at higher levels of the PH, a promising solving approach is to develop fixed-parameter tractable reductions to SAT, and to subsequently use a SAT solving algorithm to solve the problem. In this dissertation, a theoretical toolbox is developed that can be used to classify in which cases this is possible. The use of this toolbox is illustrated by applying it to analyze a wide range of problems from various areas of computer science and artificial intelligence.Table of ContentsComplexity Theory and Non-determinism.- Parameterized Complexity Theory.- Fpt-Reducibility to SAT.- The Need for a New Completeness Theory.- A New Completeness Theory.- Fpt-algorithms with Access to a SAT Oracle.- Problems in Knowledge Representation and Reasoning.- Model Checking for Temporal Logics.- Problems Related to Propositional Satisfiability.- Problems in Judgment Aggregation.- Planning Problems.- Graph Problems.- Relation to Other Topics in Complexity Theory.- Subexponential-Time Reductions.- Non-Uniform Parameterized Complexity.- Open Problems and Future Research Directions.- Conclusion.- Compendium of Parameterized Problems.- Generalization to Higher Levels of the Polynomial Hierarchy.
£62.99
Springer Fachmedien Wiesbaden L. E. J. Brouwer: Intuitionismus
Book SynopsisDer mathematische Intuitionismus war die Schöpfung des niederländischen Mathematikers L. E. J. Brouwer, der damit am Anfang des zwanzigsten Jahrhunderts eine konstruktive Neubegründung der Mathematik anstieß. Dieses Buch enthält drei Arbeiten Brouwers aus den 1920er-Jahren, die seine Ansichten und Methoden in ausgereifter Form wiedergeben, sowie Kommentare dazu. Teil I besteht aus seinen im Jahre 1927 gehaltenen Berliner Gastvorlesungen, die die Ouvertüre zu einem erweiterten und vertieften Intuitionismus darstellen. Teil II entstammt einer geplanten aber unvollendeten Monographie über die Neubegründung der Theorie der reellen Funktionen. Teil III bringt abschließend Brouwers Wiener Vortrag „Mathematik, Wissenschaft und Sprache“, in dem er auf Fragen zur philosophischen Grundlage des Intuitionismus einging. Zusammengenommen geben diese drei Texte ein Gesamtbild von Brouwers intuitionistischen Auffassungen zum Höhepunkt des Grundlagenstreits in der Mathematik.Table of ContentsEinleitung.- BERLINER GASTVORLESUNGEN.- Historische Stellung des Intuitionismus.- Der Gegenstand der intuitionistischen Mathematik: Spezies, Punkte und Räume. Das Kontinuum.- Ordnung.- Analyse des Kontinuums.- Das Haupttheorem der finiten Mengen.- Intuitionistische Kritik an einigen elementaren Theoremen.- Anmerkungen.- THEORIE DER REELLEN FUNKTIONEN.- Grundlagen aus der Theorie der Punktmengen.- Hauptbegriffe über reelle Funktionen einer Veränderlichen.- WIENER VORTRAG: MATHEMATIK, WISSENSCHAFT UND SPRACHE.
£31.34
Springer Fachmedien Wiesbaden Einführung in die Mathematische Logik: Ein
Book SynopsisDieses umfassende Lehrbuch wurde geschrieben für Studenten und Dozenten der Mathematik und Informatik, und wegen der ausführlichen Darstellung der Gödelschen Unvollständigkeitssätze auch für Fachstudenten der Philosophischen Logik. Für diese Neuauflage wurde der Text sachlich und stilistisch vollständig überarbeitet, er enthält verbesserte Beweise und Übungen mit Lösungshinweisen sowie eine historisch orientierte Einleitung. Das Buch kann ganz unabhängig von Vorlesungen aber auch zum Selbststudium genutzt werden. Table of ContentsAussagenlogik - Prädikatenlogik - Syntax und Semantik - Der Gödelsche Vollständigkeitssatz - Nichtstandardmodelle - Logikprogammierung - Resolution und Unifikation - Elemente der Modelltheorie - Ehrenfeucht-Spiele und Ultraprodukte - Entscheidbarkeit, Unentscheidbarkeit und Unvollständigkeit - Lösungshinweise zu den Übungen
£26.59
Springer Verlag Logica: Volume 1 - Dimostrazioni e modelli al
Book SynopsisGli autori, basandosi sulla loro esperienza di ricerca, propongono in due volumi un testo di riferimento per acquisire una solida formazione specialistica nella logica.Nei due volumi vengono presentati in maniera innovativa e rigorosa temi di logica tradizionalmente affrontati nei corsi universitari di secondo livello.Questo primo volume è dedicato ai teoremi fondamentali sulla logica del primo ordine e alle loro principali conseguenze.Il testo è rivolto in particolare agli studenti dei corsi di laurea magistrale.Table of Contents1 Introduzione.- 2 Alcune nozioni preliminari.- 3 Dimostrabilità e soddisfacibilità.- 4 Verso la teoria della dimostrazione: il teorema del taglio per LK.- 5 Verso la teoria dei modelli: alcune conseguenze del teorema di compattezza.
£18.99
Springer Philosophy of Mathematics Today
Book SynopsisMathematics is often considered as a body of knowledge that is essen tially independent of linguistic formulations, in the sense that, once the content of this knowledge has been grasped, there remains only the problem of professional ability, that of clearly formulating and correctly proving it. However, the question is not so simple, and P. Weingartner's paper (Language and Coding-Dependency of Results in Logic and Mathe matics) deals with some results in logic and mathematics which reveal that certain notions are in general not invariant with respect to different choices of language and of coding processes. Five example are given: 1) The validity of axioms and rules of classical propositional logic depend on the interpretation of sentential variables; 2) The language dependency of verisimilitude; 3) The proof of the weak and strong anti inductivist theorems in Popper's theory of inductive support is not invariant with respect to limitative criteria put on classical logic; 4) The language-dependency of the concept of provability; 5) The language dependency of the existence of ungrounded and paradoxical sentences (in the sense of Kripke). The requirements of logical rigour and consistency are not the only criteria for the acceptance and appreciation of mathematical proposi tions and theories.Table of ContentsGeneral Philosophical Perspectives.- Logic, Mathematics, Ontology.- From Certainty to Fallibility in Mathematics?.- Moderate Mathematical Fictionism.- Language and Coding-Dependency of Results in Logic and Mathematics.- What is a Profound Result in Mathematics?.- The Hylemorphic Schema in Mathematics.- Foundational Approaches.- Categorical Foundations of the Protean Character of Mathematics.- Category Theory and Structuralism in Mathematics: Syntactical Considerations.- Reflection in Set Theory. The Bernays-Levy Axiom System.- Structuralism and the Concept of Set.- Aspects of Mathematical Experience.- Logicism Revisited in the Propositional Fragment of Le?niewski’s Ontology.- The Applicability of Mathematics.- The Relation of Mathematics to the Other Sciences.- Mathematics and Physics.- The Mathematical Overdetermination of Physics.- Gödel’s Incompleteness Theorem and Quantum Thermodynamic Limits.- Mathematical Models in Biology.- The Natural Numbers as a Universal Library.- Mathematical Symmetry Principles in the Scientific World View.- Historical Considerations.- Mathematics and Logics. Hungarian Traditions and the Philosophy of Non-Classical Logic.- Umfangslogik, Inhaltslogik, Theorematic Reasoning.
£85.49
Griddlers.Net Griddlers Logic Puzzles - Triddlers Black and
Book Synopsis
£17.17
World Scientific Publishing Co Pte Ltd Relations: Concrete, Abstract, And Applied - An
Book SynopsisThe book is intended as an invitation to the topic of relations on a rather general basis. It fills the gap between the basic knowledge offered in countless introductory papers and books (usually comprising orders and equivalences) and the highly specialized monographs on mainly relation algebras, many-valued (fuzzy) relations, or graphs. This is done not only by presenting theoretical results but also by giving hints to some of the many interesting application areas (also including their respective theoretical basics).This book is a new — and the first of its kind — compilation of known results on binary relations. It offers relational concepts in both reasonable depth and broadness, and also provides insight into the vast diversity of theoretical results as well as application possibilities beyond the commonly known examples.This book is unique by the spectrum of the topics it handles. As indicated in its title these are:
£139.50
World Scientific Publishing Co Pte Ltd Tale Of Discrete Mathematics A A Journey Through
Book SynopsisTopics covered in Discrete Mathematics have become essential tools in many areas of studies in recent years. This is primarily due to the revolution in technology, communications, and cyber security. The book treats major themes in a typical introductory modern Discrete Mathematics course: Propositional and predicate logic, proof techniques, set theory (including Boolean algebra, functions and relations), introduction to number theory, combinatorics and graph theory.An accessible, precise, and comprehensive approach is adopted in the treatment of each topic. The ability of abstract thinking and the art of writing valid arguments are emphasized through detailed proof of (almost) every result. Developing the ability to think abstractly and roguishly is key in any areas of science, information technology and engineering. Every result presented in the book is followed by examples and applications to consolidate its comprehension. The hope is that the reader ends up developing both the abstract reasoning as well as acquiring practical skills.All efforts are made to write the book at a level accessible to first-year students and to present each topic in a way that facilitates self-directed learning. Each chapter starts with basic concepts of the subject at hand and progresses gradually to cover more ground on the subject. Chapters are divided into sections and subsections to facilitate readings. Each section ends with its own carefully chosen set of practice exercises to reenforce comprehension and to challenge and stimulate readers.As an introduction to Discrete Mathematics, the book is written with the smallest set of prerequisites possible. Familiarity with basic mathematical concepts (usually acquired in high school) is sufficient for most chapters. However, some mathematical maturity comes in handy to grasp some harder concepts presented in the book.
£121.50
World Scientific Publishing Co Pte Ltd Mathematical Foundations Of Information Sciences
Book SynopsisThis is a concise book that introduces students to the basics of logical thinking and important mathematical structures that are critical for a solid understanding of logical formalisms themselves as well as for building the necessary background to tackle other fields that are based on these logical principles. Despite its compact and small size, it includes many solved problems and quite a few end-of-section exercises that will help readers consolidate their understanding of the material.This textbook is essential reading for anyone interested in the logical foundations of Informatics, Computer Science, Data Science, Artificial Intelligence, and other related areas. Written with undergraduate students in these disciplines in mind, this book can very well serve the needs of interested and curious readers who wish to get a grasp of the logical principles upon which these fields are built. This book does not require readers to possess math skills beyond those learned in high school.
£33.25
Springer Verlag, Singapore Advances in Mathematical Logic: Dedicated to the
Book SynopsisGaisi Takeuti was one of the most brilliant, genius, and influential logicians of the 20th century. He was a long-time professor and professor emeritus of mathematics at the University of Illinois at Urbana-Champaign, USA, before he passed away on May 10, 2017, at the age of 91. Takeuti was one of the founders of Proof Theory, a branch of mathematical logic that originated from Hilbert's program about the consistency of mathematics. Based on Gentzen's pioneering works of proof theory in the 1930s, he proposed a conjecture in 1953 concerning the essential nature of formal proofs of higher-order logic now known as Takeuti's fundamental conjecture and of which he gave a partial positive solution. His arguments on the conjecture and proof theory in general have had great influence on the later developments of mathematical logic, philosophy of mathematics, and applications of mathematical logic to theoretical computer science. Takeuti's work ranged over the whole spectrum of mathematical logic, including set theory, computability theory, Boolean valued analysis, fuzzy logic, bounded arithmetic, and theoretical computer science. He wrote many monographs and textbooks both in English and in Japanese, and his monumental monograph Proof Theory, published in 1975, has long been a standard reference of proof theory. He had a wide range of interests covering virtually all areas of mathematics and extending to physics. His publications include many Japanese books for students and general readers about mathematical logic, mathematics in general, and connections between mathematics and physics, as well as many essays for Japanese science magazines. This volume is a collection of papers based on the Symposium on Advances in Mathematical Logic 2018. The symposium was held September 18–20, 2018, at Kobe University, Japan, and was dedicated to the memory of Professor Gaisi Takeuti. Table of ContentsS. Fuchino and A. Ottenbreit Ottenbreit Maschio Rodrigues, Reflection principles, generic large cardinals, and the Continuum Problem.- D. Ikegami and N. Trang, On supercompactness of ω1.- S. Iwata, Interpolation properties for Sacchetti’s logics.- T. Kurahashi, Rosser provability and the second incompleteness theorem.- H. Kurokawa, On Takeuti’s early view of the concept of set.- Yo Matsubara and T. Usuba, On Countable Stationary Towers.- M. Ozawa, Reforming Takeuti’s Quantum Set Theory to Satisfy De Morgan’s Laws.- T. Usuba, Choiceless Lowenheim-Skolem property and uniform definability of grounds.- M. Yasugi, Y. Tsujii, T. Mori, Irrational-based computability of functions.- M. Yasugi, “Gaisi Takeuti’s finitist standpoint” and its mathematical embodiment.- Y. Yoshinobu, Properness under closed forcing.
£116.99
Pan Stanford Publishing Pte Ltd Mechanical Logic in Three-Dimensional Space
Book SynopsisThe book explores how build a mechanical inferences by making use of arithmetic operations on a string of numbers representing statements. In this way logic is reduced to a branch of the combinatory calculus. It covers the field of traditional logic by showing that any kind of inference can be mechanically reduced to three-variables and two-premise inferences. Meriological inferences can also be easily treated in this way. The book covers the following subjects: structural description of space; three-variable inferences through products, sums, subtractions, and divisions; generalization to n variables; relations; and applications.Table of ContentsStructural Description. Product Inferences. Sums. Subtractions. Divisions. Assessment of All the Previous Inferences. Generalized Representation and Structural Relations. Generalized Inferences. Applications. Conclusions. Bibliography. Author Index. Subject Index.
£103.50