Laser technology and holography Books
NY Research Press Current Research in Holography: Imaging and Metrology
£89.96
NY Research Press Principles of Free Electron Lasers
£75.99
Clanrye International Semiconductor Laser Diodes Handbook
£89.99
Nova Science Publishers Inc Optical Spectroscopy: Technology, Properties and
Book SynopsisOptical Spectroscopy is an interdisciplinary science dedicated to generating and building knowledge in the field of spectroscopy and as a tool for practical investigations. This book has been elaborated for the use of specialists, students and young scientists interested in material characterization and direct investigation of various technological processes. As the title shows, the project of this book is ambitious and challenging. The topics have been selected to supply the physical background needed to understand the main spectroscopic principles and, at the same time, to reveal new potentiality for applications. Subjects like Reflectance Spectroscopy, Infrared Attenuated Total Reflection or Photoreflectance Spectroscopy provide an overview of classical methods in spectroscopy in contexts of new applications and reveal possibilities in new domains such as medicine, environmental investigations, etc. Various spectroscopic measurement methods embedded in characterization of materials, devices or technological processes are extensively presented.
£159.74
Nova Science Publishers Inc Digital Signal Processing (DSP): Fundamentals,
Book SynopsisThe processing of signals or data is one of the cores of the information chain from production to application. More and more signals should be processed digitally in the big data era. Rapid and massive advances in digital signal processing (DSP) technology have been achieved over the past several decades. DSP technology revolutionized the electronics and opto-electronics industries. DSP technology is almost an all-embracing field and is advancing with each passing day. The classical application areas of DSP such as telecommunications, speech and image processing continue to be the main contributor to its growth. This book compiles cutting-edge research in several elementary and advanced topics in DSP, focusing on areas such as filter design algorithms, hardware/software techniques, and their applications. This book has a special emphasis on the modeling and design of optical communication filters. Use of well-developed DSP techniques and algorithms to design the wavelength division multiplexing (WDM) devices is a wise use of existing technology. The authors also share several of their thoughts concerning the practical DSP systems. The DSP theory and hardware for obscured object identification, and its applications in the intelligent baggage scanners are introduced systematically. This book will be helpful for students, researchers and engineers in the DSP fields to understand the basic knowledge and techniques of software, hardware, devices, and systems.
£113.59
Willford Press Principles of Lasers: Engineering Fundamentals
Book Synopsis
£89.25
ISTE Ltd and John Wiley & Sons Inc Laser Metrology in Fluid Mechanics: Granulometry,
Book SynopsisIn fluid mechanics, non-intrusive measurements are fundamental in order to improve knowledge of the behavior and main physical phenomena of flows in order to further validate codes.The principles and characteristics of the different techniques available in laser metrology are described in detail in this book.Velocity, temperature and concentration measurements by spectroscopic techniques based on light scattered by molecules are achieved by different techniques: laser-induced fluorescence, coherent anti-Stokes Raman scattering using lasers and parametric sources, and absorption spectroscopy by tunable laser diodes, which are generally better suited for high velocity flows. The size determination of particles by optical means, a technique mainly applied in two-phase flows, is the subject of another chapter, along with a description of the principles of light scattering.For each technique the basic principles are given, as well as optical devices and data processing. A final chapter reminds the reader of the main safety precautions to be taken when using powerful lasers.Table of ContentsPreface xi Introduction xiii Alain BOUTIER Chapter 1. Basics on Light Scattering by Particles 1 Fabrice ONOFRI and Séverine BARBOSA 1.1. Introduction 1 1.2. A brief synopsis of electromagnetic theory 2 1.2.1. Maxwell’s equations 2 1.2.2. Harmonic electromagnetic plane waves 4 1.2.3. Optical constants 9 1.2.4. Light scattering by a single particle 11 1.3. Methods using separation of variables 16 1.3.1. Lorenz–Mie (or Mie) theory 16 1.3.2. Debye and complex angular momentum theories 26 1.4. Rayleigh theory and the discrete dipole approximation 29 1.4.1. Rayleigh theory 29 1.4.2. Discrete dipole approximation 31 1.5. The T-matrix method 32 1.6. Physical (or wave) optics models 34 1.6.1. Huygens–Fresnel integral 35 1.6.2. Fraunhofer diffraction theory for a particle with a circular cross section 37 1.6.3. Airy theory of the rainbow 40 1.6.4. Marston’s physical-optics approximation 44 1.7. Geometrical optics 47 1.7.1. Calculation of the scattering angle 48 1.7.2. Calculation of the intensity of rays 48 1.7.3. Calculation of the phase and amplitude of rays 49 1.8. Multiple scattering and Monte Carlo models 50 1.8.1. Scattering by an optically diluted particle system 50 1.8.2. Multiple scattering 51 1.8.3. Monte Carlo method 52 1.9. Conclusion 57 1.10. Bibliography 57 Chapter 2. Optical Particle Characterization 67 Fabrice ONOFRI and Séverine BARBOSA 2.1. Introduction 67 2.2. Particles in flows 69 2.2.1. Diameter, shape and concentration 69 2.2.2. Statistical representation of particle size data 70 2.2.3. Concentrations and fluxes 74 2.3. An attempt to classify OPC techniques 75 2.3.1. Physical principles and measured quantities 75 2.3.2. Nature and procedure to achieve statistics 76 2.4. Phase Doppler interferometry (or anemometry) 77 2.4.1. Principle 77 2.4.2. Modeling the phase–diameter relationship 81 2.4.3. Experimental setup and typical results 87 2.4.4. Conclusion 90 2.5. Ellipsometry 91 2.6. Forward (or “laser”) diffraction 93 2.6.1. Principle 93 2.6.2. Modeling and inversion of diffraction patterns 95 2.6.3. Typical experimental setup and results 98 2.6.4. Conclusion 100 2.7. Rainbow and near-critical-angle diffractometry techniques 101 2.7.1. Similarities to forward diffraction 101 2.7.2. Rainbow diffractometry 102 2.7.3. Near-critical-angle diffractometry 107 2.8. Classical shadowgraph imaging 112 2.8.1. Principle and classical setup 112 2.8.2. One-dimensional shadow Doppler technique 114 2.8.3. Calculation of particle images using the point spread function 115 2.8.4. Conclusion 118 2.9. Out-of-focus interferometric imaging 119 2.9.1. Principle 119 2.9.2. Modeling the diameter–angular frequency relationship 120 2.9.3. Conclusion 126 2.10. Holography of particles 128 2.10.1. Gabor holography for holographic films 128 2.10.2. Inline digital holography 129 2.10.3. Conclusion 131 2.11. Light extinction spectrometry 132 2.11.1. Principle 132 2.11.2. Algebraic inverse method 134 2.11.3. Experimental setup and conclusion 136 2.12. Photon correlation spectroscopy 139 2.13. Laser-induced fluorescence and elastic-scattering imaging ratio 141 2.13.1. Principle 142 2.13.2. Experimental setup and results 143 2.13.3. Conclusion 144 2.14. Laser-induced incandescence 144 2.15. General conclusions 145 2.16. Bibliography 146 Chapter 3. Laser-Induced Fluorescence 159 Fabrice LEMOINE and Frédéric GRISCH 3.1. Recall on energy quantification of molecules 159 3.1.1. Radiative transitions 162 3.1.2. Energy level thermo-statistics 164 3.1.3. Franck–Condon principle 164 3.1.4. Non-radiative transitions 164 3.1.5. Line width 165 3.2. Laser-induced fluorescence principles 168 3.2.1. Absorption kinetics 169 3.2.2. Fluorescence signal 170 3.2.3. Fluorescence detection 173 3.2.4. Absorption along optical path 174 3.2.5. Fluorescence measurement device 175 3.3. Applications of laser-induced fluorescence in gases 177 3.3.1. Generalities 177 3.3.2. Diatomic molecules 178 3.3.3. Poly-Atomic molecular tracers 186 3.4. Laser-induced fluorescence in liquids 202 3.4.1. Principles and modeling 202 3.4.2. Fluorescence reabsorption 205 3.4.3. Applications to concentration measurement 205 3.4.4. Application to temperature measurement 210 3.5. Bibliography 218 Chapter 4. Diode Laser Absorption Spectroscopy Techniques 223 Ajmal MOHAMED 4.1. High spectral resolution absorption spectroscopy in fluid mechanics 223 4.2. Recap on molecular absorption 226 4.2.1. Line profile 226 4.2.2. Line strength 228 4.3. Absorption spectroscopy bench 229 4.3.1. Emitting optics 230 4.3.2. Optical detection 234 4.3.3. Spectra processing 237 4.4. Applications in hypersonic 245 4.4.1. F4 characteristics 246 4.4.2. Setup installed at F4 248 4.4.3. Results obtained at F4 and HEG 249 4.5. Other applications of diode laser absorption spectroscopy 250 4.5.1. Combustion applications 250 4.5.2. Applications to atmospheric probing 253 4.6. Other devices for diode laser absorption spectroscopy 254 4.6.1. Multipass spectrometry 254 4.6.2. Spectrometry in a resonant cavity 257 4.7. Perspectives and conclusion on diode laser absorption spectroscopy 261 4.7.1. Laser source: use of non-cryogenic diodes 262 4.7.2. Spatial resolution: use of probe in flow 262 4.7.3. Use of frequency combs 264 4.8. Bibliography 264 Chapter 5. Nonlinear Optical Sources and Techniques for Optical Diagnostic 271 Michel LEFEBVRE 5.1. Introduction to nonlinear optics 271 5.2. Main processes in nonlinear optics 272 5.2.1. Propagation effects 273 5.2.2. Second- and third-order nonlinearities 276 5.2.3. Phase matching notion 280 5.3. Nonlinear sources for optical metrology 282 5.3.1. Sum frequency generation and frequency doubling 283 5.3.2. Raman converters 285 5.3.3. Optical parametric generators and oscillators 289 5.4. Nonlinear techniques for optical diagnostic 296 5.4.1. Introduction to four-wave mixing techniques 296 5.4.2. Temperature and concentration measurements in four-wave mixing 299 5.4.3. Velocity measurements in four-wave mixing 301 5.5. Bibliography 305 Chapter 6. Laser Safety 307 Jean-Michel MOST 6.1. Generalities on laser safety 307 6.2. Laser type and classification 308 6.3. Laser risks: nature and effects 310 6.3.1. Biological risks 310 6.3.2. Risks to the eye 312 6.3.3. Risks to the skin 314 6.3.4. Risk to hearing 315 6.3.5. Other biological risks 315 6.4. Protections 316 6.4.1. Accident prevention 316 6.4.2. Collective protection 316 6.4.3. Individual protection 318 6.5. Safety advice 319 6.6. Human behavior 320 Conclusion 321 Alain BOUTIER Nomenclature 323 List of Authors 329 Index 331
£154.80
ISTE Ltd and John Wiley & Sons Inc New Techniques in Digital Holography
Book SynopsisA state of the art presentation of important advances in the field of digital holography, detailing advances related to fundamentals of digital holography, in-line holography applied to fluid mechanics, digital color holography, digital holographic microscopy, infrared holography, special techniques in full field vibrometry and inverse problems in digital holographyTable of ContentsINTRODUCTION xiPasscal PICART CHAPTER 1. BASIC FUNDAMENTALS OF DIGITAL HOLOGRAPHY 1Pascal PICART, Michel GROSS and Pierre MARQUET 1.1. Digital holograms 2 1.1.1. Interferences between the object and reference waves 2 1.1.2. Role of the image sensor 5 1.1.3. Demodulation of digital holograms 9 1.2. Back-propagation to the object plane 16 1.2.1. Monochromatic spherical and plane waves 17 1.2.2. Propagation equation 18 1.2.3. Angular spectrum transfer function 19 1.2.4. Kirchhoff and Rayleigh–Sommerfeld formulas 21 1.2.5. Fresnel approximation and Fresnel diffraction integral 22 1.3. Numerical reconstruction of digital holograms 24 1.3.1. Discrete Fresnel transform 24 1.3.2. Reconstruction with convolution 30 1.4. Holographic setups 37 1.4.1. Fresnel holography 37 1.4.2. Fresnel holography with spatial spectrum reduction 38 1.4.3. Fourier holography 38 1.4.4. Lensless Fourier holography 39 1.4.5. Image-plane holography 40 1.4.6. Holographic microscopy 41 1.4.7. In-line Gabor holography 43 1.5. Digital holographic interferometry 45 1.5.1. Reconstruction of the phase of the object 45 1.5.2. Optical phase variations and the sensitivity vector 46 1.5.3. Phase difference method 47 1.5.4. Phase unwrapping 49 1.6. Quantitative phase tomography 49 1.7. Conclusion 53 1.8. Bibliography 54 CHAPTER 2. DIGITAL IN-LINE HOLOGRAPHY APPLIED TO FLUID FLOWS 67Sébastien COËTMELLEC, Denis LEBRUN and Marc BRUNEL 2.1. Examples of measurements in flows 68 2.1.1. Increasing NA with a divergent wave 68 2.1.2. Choice of the magnification 70 2.1.3. 3D velocity measurements in a turbulent boundary layer 70 2.1.4. Cavitation bubbles measurements 77 2.2. The fractional-order Fourier transform 81 2.3. Digital in-line holography with a sub-picosecond laser beam 82 2.4. Spatially partially coherent source applied to the digital in-line holography 89 2.5. Digital in-line holography for phase objects metrology 94 2.5.1. In-line holograms of transparent phase objects 94 2.5.2. Reconstruction 97 2.5.3. Experimental results 98 2.6. Bibliography 101 CHAPTER 3. DIGITAL COLOR HOLOGRAPHY FOR ANALYZING UNSTEADY WAKE FLOWS 107JEAN MICHEL DESSE AND PASCAL PICART 3.1. Advantage of using multiple wavelengths 109 3.2. Analysis of subsonic wake flows 112 3.2.1. Description of the digital color holographic interferometer 112 3.2.2. Results obtained with subsonic wake flows 114 3.2.3. Comparison between holographic plate and digital holograms 116 3.3. Analysis of a supersonic jet with high-density gradients 117 3.3.1. Definition of an optical setup 118 3.3.2. Results obtained with a supersonic jet 122 3.4. Analysis of a hydrogen jet in a hypersonic flow 125 3.4.1. Experimental setup 126 3.4.2. Experimental results 128 3.4.3. Comparisons with numerical simulations 130 3.5. Conclusion 132 3.6. Acknowledgment 133 3.7. Bibliography 134 CHAPTER 4. AUTOMATION OF DIGITAL HOLOGRAPHIC DETECTION PROCEDURES FOR LIFE SCIENCES APPLICATIONS 137Ahmed EL MALLAHI, Christophe MINETTI and Frank DUBOIS 4.1. Introduction 137 4.2. Experimental protocol 139 4.2.1. Optical setup 139 4.2.2. Dynamic monitoring 140 4.3. General tools 140 4.3.1. Extraction of the full interferometric information 140 4.3.2. Compensation of the phase 141 4.3.3. Border processing 143 4.3.4. Best focus determination 144 4.4. Automated 3D detection 145 4.4.1. Introduction 145 4.4.2. Description of the testing samples 146 4.4.3. In-plane detection 147 4.4.4. In-depth detection 158 4.4.5. Discussion 160 4.5. Application 162 4.6. Conclusions 164 4.7. Bibliography 165 CHAPTER 5. QUANTITATIVE PHASE-DIGITAL HOLOGRAPHIC MICROSCOPY: A NEW MODALITY FOR LIVE CELL IMAGING 169Pierre MARQUET, Benjamin RAPPAZ and Nicolas PAVILLON 5.1. Introduction 170 5.2. Cell imaging with quantitative phase DHM 172 5.2.1. The origin and content of the quantitative phase signal 172 5.2.2. Cell counting and classification analysis 174 5.2.3. Exploration of cell movements and dynamics 175 5.2.4. Dry mass, cell growth and cell cycle 175 5.2.5. Cell membrane fluctuations and biomechanical properties 176 5.2.6. Dynamics of absolute cell volume and transmembrane water movements 177 5.3. High-content phenotypic screening based on QP-DHM 179 5.4. Multimodal QP-DHM 182 5.4.1. Multimodal fluorescence QP-DHM 182 5.4.2. Multimodal Raman-QP-DHM 183 5.4.3. Multimodal electrophysiology QP-DHM 186 5.5. Resolving neuronal network activity and visualizing spine dynamics 190 5.5.1. Background 190 5.5.2. Imaging neuronal activity by measuring transmembrane water movements with QP-DHM 193 5.5.3. 3D Visualization of dendritic spine dynamics with quantitative phase tomographic microscopy (QP-TM) 197 5.6. Perspectives 198 5.7. Acknowledgments 201 5.8. Bibliography 201 CHAPTER 6. LONG-WAVE INFRARED DIGITAL HOLOGRAPHY 219Marc GEORGES 6.1. Introduction 219 6.2. Analog hologram recording in LWIR 221 6.3. Digital hologram recording in LWIR 222 6.3.1. Hardware components 222 6.3.2. Specific features of the LWIR domain 229 6.4. Typical applications of LWIR digital holography 235 6.4.1. Recording holograms of large objects in LWIR and display in visible 235 6.4.2. Reconstruction of images through smoke and flames 237 6.4.3. Large deformations of specular aspheric reflectors 240 6.4.4. Combined holography and thermography for thermomechanical analysis and non-destructive testing 243 6.5. Conclusions: future prospects 246 6.6. Bibliography 247 CHAPTER 7. FULL FIELD HOLOGRAPHIC VIBROMETRY AT ULTIMATE LIMITS 255Nicolas VERRIER, Michael ATLAN and Michel GROSS 7.1. Introduction 255 7.2. Heterodyne holography 257 7.2.1. Accurate phase shift and holographic detection bandwidth 260 7.2.2. Shot noise holographic detection 264 7.3. Holographic vibrometry 268 7.3.1. Optical signal scattered by a vibrating object 268 7.3.2. Selective detection of the sideband components Em: sideband holography 270 7.3.3. Sideband holography for large amplitude of vibration 273 7.3.4. Sideband holography with strobe illumination 277 7.3.5. Sideband holography for small amplitude of vibration 280 7.4. Conclusion 290 7.5. Bibliography 290 LIST OF AUTHORS 295 INDEX 297
£125.06
Whittles Publishing Airborne and Terrestrial Laser Scanning
Book SynopsisWritten by a team of international experts, this book provides a comprehensive overview of the major applications of airborne and terrestrial laser scanning. The book focuses on principles and methods and presents an integrated treatment of airborne and terrestrial laser scanning technology. Laser scanning is a relatively young 3D measurement technique offering much potential in the acquisition of precise and reliable 3D geodata and object geometries. However, there are many terrestrial and airborne scanners on the market, accompanied by numerous software packages that handle data acquisition, processing and visualization, yet existing knowledge is fragmented over a wide variety of publications, whether printed or electronic. This book brings together the various facets of the subject in a coherent text that will be relevant for advanced students, academics and practitioners. After consideration of the technology and processing methods, the book turns to applications.The primary use thus far has been the extraction of digital terrain models from airborne laser scanning data, but many other applications are considered including engineering, forestry, cultural heritage, extraction of 3D building models and mobile mapping.Trade Review'The authors and editors are to be congratulated for this effort at bringning together the knowledge of the technology, data handling and applications of laser scanning in a comprehensive book for the first time. I would recommend it as essential reading for any student or professional in the fieldof geospatial technology and its applications.' GIS DEVELOPMENT '...the editors ... did a tremendous job and provided a comprehensive and coherent textbook... The book ... is a must-have textbook for students which are interested in the large field of airborne and terrestrial LiDAR and will surely become an important reference for practitioners involved in the acquisition and use of laser scanning data.' Photogrammetrie Fernerkundung Geoinformation '...a comprehensive work... This text provides a comprehensive account of airborne and terrestrial laser scanning. ... This will likely become a core textfor undergraduate students, but will doubtlessly also appeal to a broader range of readers, including those engaged in academic research and commercial practice.' Geomatics World '...this book will form a useful reference work... ...an excellent basic text... ...will serve as a reference book for the many users who need to understand the technology and principles of airborna and terrestrial laser scanning. There is no better alternative today.' International Journal of Digital Earth 'A valuable addition to laser scanning literature... For advanced undergraduates or postgrads, Chapters 1 to 3 are an excellent introduction to the technology, and for practitioners, the applications chapters show how laser scanning data is processd to produce the products they use in many, diverse disciplines. An excellent purchase for either group.' GEOconnexion InternationalTable of ContentsIntroduction. Laser Scanning Technology (J.-Angelo Beraldin, National Research Council Canada, Francois Blais, National Research Council Canada and Uwe Lohr, Lohr Consulting Germany). Visualisation and Structuring of Point Clouds (George Vosselman and Reinhard Klein). Registration and Calibration (Derek Lichti, University of Calgary, Canada and Jan Skaloud, Swiss Federal Institute of Technology [EPFL]). Extraction of Digital Terrain Models (Christian Briese, Vienna University of Technology, Austria). Building Extraction (Claus Brenner, Leibnitz Universitat Hannover, Germany). Forestry Applications (Hans-Gerd Maas). Engineering Applications (Roderick Lindenbergh, Technical University of Delft, Netherlands). Cultural Heritage Applications (Pierre Grussenmeyer, INSA Strasbourg, Graduate School of Science and Technology, France and Klaus Hanke, University of Innsbruck, Austria). Mobile Mapping (Hansjorg Kutterer, Leibniz Universitat Hannover, Germany). Index
£72.00
Wiley-VCH Verlag GmbH Optics, Light and Lasers: The Practical Approach
Book SynopsisThis new, updated and enlarged edition of the successful and exceptionally well-structured textbook features new chapters on such hot topics as optical angular momentum, microscopy beyond the resolution limit, metamaterials, femtocombs, and quantum cascade lasers. It provides comprehensive and coherent coverage of fundamental optics, laser physics, and important modern applications, while equally including some traditional aspects for the first time, such as the Collins integral or solid immersion lenses. Written for newcomers to the topic who will benefit from the author's ability to explain difficult theories and effects in a straightforward and readily comprehensible way.Table of ContentsPreface xix 1 Light Rays 1 1.1 Light Rays in Human Experience 1 1.2 Ray Optics 2 1.3 Reflection 2 1.4 Refraction 3 1.5 Fermat’s Principle: The Optical Path Length 5 1.6 Prisms 8 1.7 Light Rays in Wave Guides 10 1.8 Lenses and Curved Mirrors 15 1.9 Matrix Optics 17 1.10 Ray Optics and Particle Optics 23 Problems 25 2 Wave Optics 29 2.1 Electromagnetic Radiation Fields 29 2.2 Wave Types 37 2.3 Gaussian Beams 40 2.4 Vector Light: Polarization 50 2.5 Optomechanics: Mechanical Action of Light Beams 58 2.6 Diffraction 63 2.7 Fraunhofer Diffraction 67 2.8 Fresnel Diffraction 71 2.9 Beyond Gaussian Beams: Diffraction Integral and ABCD Formalism 77 Problems 77 3 Light Propagation in Matter: Interfaces, Dispersion, and Birefringence 83 3.1 Dielectric Interfaces 83 3.2 Interfaces of Conducting Materials 89 3.3 Light Pulses in Dispersive Materials 94 3.4 Anisotropic Optical Materials 103 3.5 Optical Modulators 110 Problems 119 4 Light Propagation in Structured Matter 121 4.1 Optical Wave Guides and Fibers 122 4.2 Dielectric Photonic Materials 132 4.3 Metamaterials 143 Problems 147 5 Optical Images 149 5.1 Simple Lenses 149 5.2 The Human Eye 151 5.3 Magnifying Glass and Eyepiece 152 5.4 Microscopes 154 5.5 Scanning Microscopy Methods 161 5.6 Telescopes 166 5.7 Lenses: Designs and Aberrations 169 Problems 177 6 Coherence and Interferometry 181 6.1 Young’s Double Slit 181 6.2 Coherence and Correlation 182 6.3 The Double-Slit Experiment 185 6.4 Michelson interferometer: longitudinal coherence 191 6.5 Fabry–Pérot Interferometer 197 6.6 Optical Cavities 202 6.7 Thin Optical Films 208 6.8 Holography 210 6.9 Laser Speckle (Laser Granulation) 214 Problems 216 7 Light and Matter 219 7.1 Classical Radiation Interaction 220 7.2 Two-Level Atoms 229 7.3 Stimulated and Spontaneous Radiation Processes 239 7.4 Inversion and Amplification 242 Problems 246 8 The Laser 249 8.1 The Classic System: The He–Ne Laser 251 8.2 Other Gas Lasers 261 8.3 The Workhorses: Solid-State Lasers 268 8.4 Selected Solid-State Lasers 271 8.5 Tunable Lasers with Vibronic States 279 8.6 Tunable Ring Lasers 281 Problems 283 9 Laser Dynamics 285 9.1 Basic Laser Theory 285 9.2 Laser Rate Equations 291 9.3 Threshold-Less Lasers and Micro-lasers 295 9.4 Laser Noise 298 9.5 Pulsed Lasers 305 Problems 316 10 Semiconductor Lasers 319 10.1 Semiconductors 319 10.2 Optical Properties of Semiconductors 322 10.3 The Heterostructure Laser 330 10.4 Dynamic Properties of Semiconductor Lasers 339 10.5 Laser Diodes, Diode Lasers, and Laser Systems 345 10.6 High-Power Laser Diodes 348 Problems 350 11 Sensors for Light 353 11.1 Characteristics of Optical Detectors 354 11.2 Fluctuating Optoelectronic Quantities 357 11.3 Photon Noise and Detectivity Limits 359 11.4 Thermal Detectors 364 11.5 Quantum Sensors I: Photomultiplier Tubes 366 11.6 Quantum Sensors II: Semiconductor Sensors 370 11.7 Position and Image Sensors 374 Problems 377 12 Laser Spectroscopy and Laser Cooling 379 12.1 Laser-Induced Fluorescence (LIF) 379 12.2 Absorption and Dispersion 380 12.3 The Width of Spectral Lines 382 12.4 Doppler-Free Spectroscopy 388 12.5 Light Forces 394 Problems 404 13 Coherent Light–Matter Interaction 407 13.1 Weak Coupling and Strong Coupling 407 13.2 Transient Phenomena 410 14 Photons: An Introduction to Quantum Optics 417 14.1 Does Light Exhibit Quantum Character? 417 14.2 Quantization of the Electromagnetic Field 418 14.3 Spontaneous Emission 421 14.4 Resonance Fluorescence 427 14.5 Light Fields in Quantum Optics 435 14.6 Two-Photon Optics 444 14.7 Entangled Photons 448 Problems 455 15 Nonlinear Optics I: Optical Mixing Processes 457 15.1 Charged Anharmonic Oscillators 457 15.2 Second-Order Nonlinear Susceptibility 459 15.3 Wave Propagation in Nonlinear Media 464 15.4 Frequency Doubling 466 15.5 Sum and Difference Frequency 477 15.6 Optical Parametric Oscillators 479 Problems 482 16 Nonlinear Optics II: Four-Wave Mixing 485 16.1 Frequency Tripling in Gases 485 16.2 Nonlinear Refraction Coefficient (Optical Kerr Effect) 487 16.3 Self-Phase Modulation 494 Problems 495 A Mathematics for Optics 497 A.1 Spectral Analysis of Fluctuating Measurable Quantities 497 A.2 Time Averaging Formula 502 B.1 Temporal Evolution of a Two-State System 503 B.2 Density Matrix Formalism 504 B.3 Density of States 505 Bibliography 507 Index 519
£66.50
Springer Endoskopische Verfahren in der
Book SynopsisAndreas Neff zeigt die exzellenten diagnostischen und therapeutischen Optionen der Endoskopie, die für den MKG-Chirurgen bei der komplexen Anatomie der Mund-Kiefer-Gesichtsregion, speziell der Kieferhöhlen und der Nasengänge, des Kiefergelenks, aber auch der Speicheldrüsen heute unverzichtbar ist. Minimalinvasive Darstellung und Zugänge gemäß State of the Art erfordern neben chirurgischem Know-how auch ein spezielles technisches Equipment. Während die Endoskopie in der MKG-Chirurgie meist speziellen Indikationen vorbehalten ist, hat sie insbesondere in der HNO inzwischen einen Großteil der traditionellen direkten bzw. invasiv-offenen Verfahren ersetzt. Auch in der MKG-Chirurgie wird es analog zu ihren Nachbardisziplinen zunehmend zu Paradigmenwechseln in der Behandlungsstrategie kommen, denen sich die MKG-Chirurgie stellen muss, um sich auch in Zukunft auf Augenhöhe weiterentwickeln zu können.Table of ContentsArthroskopie des Kiefergelenks und Chirurgie des Sinus maxillaris.- Endoskopische Speicheldrüsenchirurgie und dentoalvelären Chirurgie.- Endoskopie in der Traumatologie und plastisch-ästhetischen Chirurgie.
£9.99
Springer Fachmedien Wiesbaden Additive Fertigung mit Selektivem Lasersintern
Book SynopsisDieses essential stellt das Selektive Lasersintern als Verfahren der additiven Fertigung im Kontext anderer 3D-Druck-Prozesse vor. Manfred Schmid erläutert verschiedene Technologien, die zu den additiven Verfahren gezählt werden, und gibt einen Einblick in die Prozessprinzipien und Werkstoffe. Die grundlegenden Werkstoffvarianten unterschiedlicher Hersteller werden ebenso thematisiert wie die Limitationen des Verfahrens aufgrund reduzierter Bauteildichte und -anisotropie. Das anspruchsvolle Verfahren des Lasersinterns, das die Stufe vom Prototyping zur Produktion überwinden und eine „echte“ Fertigungstechnologie werden kann, wird detailliert, aber dennoch in kompakter Form beschrieben. Ein Ausblick hinsichtlich bereits vorliegender und gewünschter alternativer Materialien rundet das essential ab.Table of ContentsDer aktuelle SLS-Markt und die wichtigsten Prozessschritte.- Bewertung der aktuell verfügbaren Werkstoffe.- Werkstoffeigenschaften und -varianten unterschiedlicher Hersteller.
£9.99
Springer Spektrum Licht in Der Welt Der Nanotechnologie: Ein
Book Synopsis
£9.99
Springer Fachmedien Wiesbaden Development and Characterization of a
Book SynopsisThis Open Access book discusses an extension to low-coherence interferometry by dispersion-encoding. The approach is theoretically designed and implemented for applications such as surface profilometry, polymeric cross-linking estimation and the determination of thin-film layer thicknesses. During a characterization, it was shown that an axial measurement range of 79.91 µm with an axial resolution of 0.1 nm is achievable. Simultaneously, profiles of up to 1.5 mm in length were obtained in a scan-free manner. This marked a significant improvement in relation to the state-of-the-art in terms of dynamic range. Also, the axial and lateral measurement range were decoupled partially while functional parameters such as surface roughness were estimated. The characterization of the degree of polymeric cross-linking was performed as a function of the refractive index. It was acquired in a spatially-resolved manner with a resolution of 3.36 x 10-5. This was achieved by the development of a novel mathematical analysis approach.Table of Contents1 Introduction and motivation.- 2 Related works and basic considerations.- 3 Surface profilometry.- 4 Polymer characterization.- 5 Thin-film characterization.- 6 Conclusion.
£31.49
Springer Fachmedien Wiesbaden Optik: Experimentalphysik – anschaulich erklärt
Book SynopsisDieses Lehrbuch präsentiert den Vorlesungsstoff der Bachelorvorlesung zur Optik modern und anschaulich gestaltet. Die Autoren behandeln die Strahlen- und Wellenoptik sowie die Grundlagen der Laserphysik: Wie berechnet man Beugungsbilder? Was ist der Zusammenhang zwischen Stefan-Boltzmann- und Wien’schem Verschiebungsgesetz? Wie funktioniert ein Laser?Das durchgängig vierfarbige Buch bietet Leserinnen und Lesern eine ausgewogene Mischung aus theoretischen Grundlagen, anschaulichen Experimenten und abgestimmten Aufgaben. Viele vorlesungsrelevante Experimente und Beispiele fördern ein vertieftes Verständnis der behandelten Themen. Übungsaufgaben prüfen das Gelernte ab und bereiten Studierende auf Prüfungen vor. Im Anhang „Mathematische Grundlagen“ sind wichtige mathematische Themen (u.a. Bessel-Funktionen und Fresnel-Integrale) zusammengestellt, die besondere Bedeutung in der Optik haben. Die einzelnen Lernelemente sind farblich hervorgehoben, so dass Leserinnen und Leser die wichtigen Aussagen, Experimente und Aufgaben auf einen Blick zuordnen können.Das Buch richtet sich an Studierende der Physik, des Lehramts Physik und alle, die Experimentalphysik erlernen wollen. Es spiegelt die Begeisterung der Autoren für die Experimentalphysik wider und steckt Leserinnen und Leser damit an.Die AutorenStefan Roth ist Dozent und Studienberater für das Fach Physik an der RWTH Aachen. Er beteiligt sich regelmäßig an den Kursvorlesungen zur experimentellen Physik und hat als Studienberater einen unmittelbaren Kontakt zu den Studierenden. Zu seinen Aufgaben gehört auch die Forschung auf dem Gebiet der Neutrinophysik.Achim Stahl ist Professor für Experimentalphysik an der RWTH Aachen. Er hält regelmäßig den Einführungskurs in experimenteller Physik für Physikstudierende, aus dem dieses Buch entstanden ist. Sein Forschungsgebiet ist die Elementarteilchenphysik am europäischen Forschungszentrum CERN in Genf und an anderen Projekten weltweit. Trade Review“... Das Werk zeichnet sich sowohl durch eine ansprechende Gestaltung als auch eine gelungene didaktische Präsentation aus. Hunderte von Farbabbildungen veranschaulichen die Aussagen und zeigen zahlreiche Geräte. ... Empfehlenswert für Bibliotheken an Hochschulorten mit entsprechendem Leserkreis.” (Michael Mücke, in: ekz-Informationsdienst, Heft 6, 2020)Table of ContentsLichtausbreitung.- Geometrische Optik.- Fotometrie.- Wellenoptik.- Laser.- liste der Symbole.- Lösungen der Aufgabe.- Mathematische Einführung.
£36.41
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Werkstoff Glas: Alter Werkstoff mit großer Zukunft
Book SynopsisWas ist Glas? Wie wird es hergestellt? Wo wird Glas eingesetzt? Hat Glas eine Zukunft? Die Autoren sind Experten ihres Faches. Trotzdem gelingt es ihnen, informativ und doch unterhaltsam Antworten auf diese Fragen zu geben. An ausgewählten Beispielen erläutern sie die vielfältigen Anwendungen von Glas. Und sie vermitteln, wie die physikalischen und chemischen Eigenschaften dieses Werkstoffes zur Entwicklung technischer, industriell gefertigter Produkte führen. So ermöglicht etwa die bis ins Extrem gesteigerte Lichtdurchlässigkeit einer Glasfaser die heutige Telekommunikation und das Internet. Besonders dünnes Glas, das zusätzlich verfestigt ist, wird für Bildschirme von Fernsehern, Laptops und Mobiltelefonen eingesetzt, Glaswerkstoffe mit thermischer Nullausdehnung sind der Werkstoff der Wahl für Teleskopspiegelträger und Kochflächen.Table of ContentsWas ist Glas ?.- Kurze Geschichte des Glases.- Glasstruktur.- Viskoelastisches Verhalten.- Glaszusammensetzungen und Glaseigenschaften.- Kalknatronsilicat Gläser, Spezialgläser, nicht-silicatische Gläser.- Keimbildung und Kristallisation.- Glas und seine vielfältigen Anwendungen.- Optik.- Architektur und Automobil.- Energie.- Lampen.- Verpackung / Pharma.- Elektronik.- Telekommunikation.- Andere.- Herstellung – Schmelzen von Glas.- Glasrohstoffe, Recyclingscherben.- Glasschmelzöfen.- Energieaufwand.- Umweltschutz.- Funktionsgläser.- Glasspiegel.- Entspiegeltes Glas.- Wärmeschutz- und Sonnenschutzgläser.- Glas mit variabler Lichtdurchlässigkeit.- Selbstreinigendes Glas.- Festigkeitserhöhtes Glas.- Glaslaminate.- Thermisch vorgespanntes Glas.- Chemisch vorgespanntes Glas.- Die Zukunft des Glases.- Dünnstgläser.- Glas von der Rolle.- Glas als Elektrolyt.- Laserglas für die Laserfusion.- Glaskügelchen für den Fusionsreaktor.- Nachwort.- Literaturauswahl.- Quellenverzeichnis.
£17.99
Pan Stanford Publishing Pte Ltd Laser Ablation in Liquids: Principles and
Book SynopsisThis book focuses on the fundamental concepts and physical and chemical aspects of pulsed laser ablation of solid targets in liquid environments and its applications in the preparation of nanomaterials and fabrication of nanostructures. The areas of focus include basic thermodynamic and kinetic processes of laser ablation in liquids, and its applications in metal and metal oxides nanocrystals synthesis and semiconductor nanostructures fabrication. The book comprises theoretical and experimental analysis of laser ablation in liquids, research methods, and preparation techniques.Table of ContentsMechanisms of Laser-Induced Self-Organization of Nano and Micro Structures of Surface Relief in Air and in Liquid Environment. Computer Models of Laser Ablation in Liquids. Thermodynamic and Kinetic Approaches of Diamond and Related Nanomaterials Formed by Laser Ablation in Liquid. Preparation of NPs Using Laser Ablation in Liquids: Fundamental Aspects and Efficient Utilization. Dynamics of Liquid-Phase Laser-Ablation. Emission Spectroscopy of Laser Ablation Plume in Liquid. Formation of Nanoparticles under Laser Ablation of Solids in Liquids. Semiconductor Nanoparticles by Laser Ablation in Liquid: Synthesis Assembly and Properties. Carbon-Based Nano-Materials Obtained by Laser Ablation in Liquids and Other Plasma Processes in High-Density Environments. Fabrication of Inorganic Compound Nanostructures by Laser Irradiation in Liquid: Oxides, Hydroxides, Carbides, etc. Laser Ablation in Flowing Liquid. Nanoparticle Generation by Laser Ablation in Liquid and Supercritical Fluid. Synthesis of Nanostructures via Long-Pulse-Duration Laser Ablation in Liquid Media. Pulsed Laser Ablation Synthesis and Modification of Composite Nanoparticles in Liquids. Complex Nanostructures Growth Based on Laser Ablation in Liquid and Sequential Self-Assembly Process. Nanostructures’ Formation under Laser Ablation of Solids in Liquids. From Nanocrystal Synthesis to Nanomanufacturing: Laser Ablation in Liquid. Laser Induced Breakdown in Liquid and Solid–liquid Interface. Laser-Induced Backside Wet Etching: Processes, Results, and Applications.
£342.00
Pan Stanford Publishing Pte Ltd Microrheology with Optical Tweezers: Principles
Book SynopsisThanks to the pioneering works of Ashkin and coworkers, optical tweezers (OTs) have become an invaluable tool for myriad studies throughout the natural sciences. Their success relies on the fact that they can be considered as exceptionally sensitive transducers that are able to resolve pN forces and nm displacements, with high temporal resolution, down to μs. Hence their application to study a wide range of biological phenomena such as measuring the compliance of bacterial tails, the forces exerted by a single motor protein, and the mechanical properties of human red blood cells and of individual biological molecules. The number of articles related to them totals to a whopping 58,000 (source Google Scholar)!Microrheology is a branch of rheology, but it works at micrometer length scales and with microliter sample volumes. Therefore, microrheology techniques have been revealed to be very useful tools for all those rheological/mechanical studies where rare or precious materials are employed, such as in biological and biomedical studies.The aim of this book is to provide a pedagogical introduction to the physics principles governing both the optical tweezers and their application in the field of microrheology of complex materials. This is achieved by following a linear path that starts from a narrative introduction of the "nature of light," followed by a rigorous description of the fundamental equations governing the propagation of light through matter. Moreover, some of the many possible instrumental configurations are presented, especially those that better adapt to perform microrheology measurements. In order to better appreciate the microrheological methods with optical tweezers explored in this book, informative introductions to the basic concepts of linear rheology, statistical mechanics, and the most popular microrheology techniques are also given. Furthermore, an enlightening prologue to the general applications of optical tweezers different from rheological purposes is provided at the end of the book.Table of ContentsForeword. Introduction to "the nature of light". Geometrical optics. Optical forces. Optical tweezer configurations. Introduction to linear rheology. Statistical mechanics. Introduction to the most popular microrheology techniques. Microrheology with optical tweezers. Optical tweezers with microrheology. An appendix on evaluating the Fourier transform.
£89.09
Pan Stanford Publishing Pte Ltd Transformation Wave Physics: Electromagnetics,
Book SynopsisSpace–time transformations as a design tool for a new class of composite materials (metamaterials) have proved successful recently. The concept is based on the fact that metamaterials can mimic a transformed but empty space. Light rays follow trajectories according to Fermat’s principle in this transformed electromagnetic, acoustic, or elastic space instead of laboratory space. This allows one to manipulate wave behaviors with various exotic characteristics such as (but not limited to) invisibility cloaks. This book is a collection of works by leading international experts in the fields of electromagnetics, plasmonics, elastodynamics, and diffusion waves. The experimental and theoretical contributions will revolutionize ways to control the propagation of sound, light, and other waves in macroscopic and microscopic scales. The potential applications range from underwater camouflaging and electromagnetic invisibility to enhanced biosensors and protection from harmful physical waves (e.g., tsunamis and earthquakes). This is the first book that deals with transformation physics for all kinds of waves in one volume, covering the newest results from emerging topical subjects such as transformational plasmonics and thermodynamics.Table of ContentsPart 1: Non-Classical, Non-Linear Transport. Properties of quantum transport. Non-equilibrium transport. Resonant tunneling. Longitudinal transport of superlattices. Mesoscopic transport. Transport in quantum dots. Silicon single electron transistor. Silicon single electron memory. Part 2: Quantum Waveguide Theory. Properties of quantum transport. One-dimensional quantum waveguide theory. Two-dimensional quantum waveguide theory. One-dimensional quantum waveguide theory of Rashba electron. One-dimensional quantum waveguide theory of Rashba electrons in curved circuits. Spin polarization of Rashba electron with mixed state. Two-dimensional quantum waveguide theory of Rashba electrons.
£108.00
Pan Stanford Publishing Pte Ltd Laser Cooling: Fundamental Properties and
Book SynopsisIn the recent decades, laser cooling or optical refrigeration—a physical process by which a system loses its thermal energy as a result of interaction with laser light—has garnered a great deal of scientific interest due to the importance of its applications. Optical solid-state coolers are one such application. They are free from liquids as well as moving parts that generate vibrations and introduce noise to sensors and other devices. They are based on reliable laser diode pump systems. Laser cooling can also be used to mitigate heat generation in high-power lasers.This book compiles and details cutting-edge research in laser cooling done by various scientific teams all over the world that are currently revolutionizing optical refrigerating technology. It includes recent results on laser cooling by redistribution of radiation in dense gas mixtures, three conceptually different approaches to laser cooling of solids such as cooling with anti-Stokes fluorescence, Brillouin cooling, and Raman cooling. It also discusses crystal growth and glass production for laser cooling applications. This book will appeal to anyone involved in laser physics, solid-state physics, low-temperature physics or cryogenics, materials research, development of temperature sensors, or infrared detectors.Trade Review"This book provides a timely and useful collection of articles on optical refrigeration science that complements the earlier books on this subject. It covers a wide range of topics, including laser cooling in dense gases, radiation-balanced lasers, novel cooling methods, and laser cooling in semiconductors. It should serve as a valuable reference for the scientists and graduate students studying this emerging interdisciplinary field."—Prof. Mansoor Sheik-Bahae, The University of New Mexico, USA"This book presents a significant overview of the entire field of laser cooling of bulk matter, with many new results and recent novel directions of investigation. It is written by a large number of well-qualified experts, covering a broad range of ideas, particularly with clear figures and well-organized tables. It would make an excellent reference for spectroscopists, condensed matter physicists, crystallographers, and laser scientists." —Prof. Carl E. Mungan, United States Naval Academy, USATable of ContentsLaser Cooling of Dense Gases by Collisional Redistribution of Radiation. Laser Cooling in Rare Earth Doped Glasses and Crystals. Progress toward Laser Cooling of Thulium-Doped Fibers. Laser Cooling of Solids around 2.07 Microns: A Theoretical Investigation. Optically Cooled Lasers. Methods for Laser Cooling of Solids. Deep Laser Cooling of Rare-Earth Doped Crystals by Stimulated Raman Adiabatic Passage. Bulk Cooling Efficiency Measurements of Yb Doped Fluoride Single Crystals and Energy-Transfer Assisted Anti-Stokes Cooling in Co-doped Fluorides. Interferometric Measurement of Laser Induced Temperature Changes. Fluoride Glasses and Fibers. Crystal Growth of Fluoride Single Crystals for Optical Refrigeration. Microscopic Theory of Optical Refrigeration of Semiconductors. Coulomb-Assisted Laser Cooling of Piezoelectric Semiconductors.
£89.09