Information visualization Books

60 products


  • Mathematical Foundations for Data Analysis

    Springer Nature Switzerland AG Mathematical Foundations for Data Analysis

    Out of stock

    Book SynopsisThis textbook, suitable for an early undergraduate up to a graduate course, provides an overview of many basic principles and techniques needed for modern data analysis. In particular, this book was designed and written as preparation for students planning to take rigorous Machine Learning and Data Mining courses. It introduces key conceptual tools necessary for data analysis, including concentration of measure and PAC bounds, cross validation, gradient descent, and principal component analysis. It also surveys basic techniques in supervised (regression and classification) and unsupervised learning (dimensionality reduction and clustering) through an accessible, simplified presentation. Students are recommended to have some background in calculus, probability, and linear algebra. Some familiarity with programming and algorithms is useful to understand advanced topics on computational techniques.Trade Review“This is certainly a timely book with large potential impact and appeal. … the book is therewith accessible to a broad scientific audience including undergraduate students. … Mathematical Foundations for Data Analysis provides a comprehensive exploration of the mathematics relevant to modern data science topics, with a target audience that is looking for an intuitive and accessible presentation rather than a deep dive into mathematical intricacies.” (Aretha L. Teckentrup, SIAM Review, Vol. 65 (1), March, 2023)“The book is fairly compact, but a lot of information is presented in those pages. … the book is pretty much self-contained, but prior knowledge of linear algebra and python programming would benefit anyone. The clear writing is backed in many instances by helpful illustrations. Color is used judiciously throughout the text to help differentiate between objects and highlight items of interest. … Phillips’ book is much more concise, but still discusses many different mathematical aspects of data science.” (David R. Gurney, MAA Reviews, September 5, 2021)Table of Contents

    Out of stock

    £44.99

  • Interactive GPU-based Visualization of Large Dynamic Particle Data

    Springer International Publishing AG Interactive GPU-based Visualization of Large Dynamic Particle Data

    1 in stock

    Book SynopsisPrevalent types of data in scientific visualization are volumetric data, vector field data, and particle-based data. Particle data typically originates from measurements and simulations in various fields, such as life sciences or physics. The particles are often visualized directly, that is, by simple representants like spheres. Interactive rendering facilitates the exploration and visual analysis of the data. With increasing data set sizes in terms of particle numbers, interactive high-quality visualization is a challenging task. This is especially true for dynamic data or abstract representations that are based on the raw particle data. This book covers direct particle visualization using simple glyphs as well as abstractions that are application-driven such as clustering and aggregation. It targets visualization researchers and developers who are interested in visualization techniques for large, dynamic particle-based data. Its explanations focus on GPU-accelerated algorithms for high-performance rendering and data processing that run in real-time on modern desktop hardware. Consequently, the implementation of said algorithms and the required data structures to make use of the capabilities of modern graphics APIs are discussed in detail. Furthermore, it covers GPU-accelerated methods for the generation of application-dependent abstract representations. This includes various representations commonly used in application areas such as structural biology, systems biology, thermodynamics, and astrophysics.Table of ContentsAcknowledgments.- Figure Credits.- Introduction.- History.- GPU-based Glyph Ray Casting.- Acceleration Strategies.- Data Structures.- Efficient Nearest Neighbor Search on the GPU.- Improved Visual Quality.- Application-driven Abstractions.- Summary and Outlook.- Bibliography.- Authors' Biographies.

    1 in stock

    £26.99

  • Visualising Safety, an Exploration: Drawings,

    Springer International Publishing AG Visualising Safety, an Exploration: Drawings,

    1 in stock

    Book SynopsisThis open access book explores the role visual tools and graphical models play in safety management. It explains the importance of visualising safety, for teaching concepts, communicating ideas to peers, and raising awareness of potential threats through posters. Visualising Safety, an Exploration introduces graphical models which have been influential in promoting ideas of safety, and impacting the organisational design of safety mechanisms, including the Heinreich ‘safety pyramid’ and Reason’s ‘Swiss Cheese’. It analyses these models, as well as other forms of visualization, presenting viewpoints from academics and practitioners in the fields of safety science, history, ethnography and interface design.This brief will be of interest to anyone working in the field of safety management and design, including researchers, managers and students.Table of Contents1. Introduction.- 2. Screening Workplace Injury and Fatality: The Case of Only the Brave (2017).- 3. Anticipating Risk (and Opportunity): A Control Theoretic Perspective on Visualization and Safety.- 4. Visualization for the Safe Occupation of Workspaces.- 5. Visualizations, Metaphors and Slogans: Representations from Organizational Safety to Societal Resilience.- 6. Visualizing for Safety of Visualization of Safety?.- 7. Educating Nuclear Workers Through Images: the Work of Jacques Castan, Illustrator of Radiation Protection in the 1960s.- 8. Visualizing Complex Industrial Operations Through the Lens of Functional Signatures.- 9. Occupational Safety in Revamping Operations: Visualizing Spaces to Monitor Uncertainty.- 10. Drawings, Posters, Photos, and Metaphors in Safety and Safety Science, Some Historical Remarks.- 11. Network Visualization in Supply Chain Safety Culture Assurance of a Nuclear Power Plant Construction Project.- 12. Ways of Seeing (And Not Seeing) Safety.- 13. Conclusion.

    1 in stock

    £23.74

  • Computer Vision: Three-dimensional Reconstruction

    Springer International Publishing AG Computer Vision: Three-dimensional Reconstruction

    1 in stock

    Book SynopsisFrom facial recognition to self-driving cars, the applications of computer vision are vast and ever-expanding. Geometry plays a fundamental role in this discipline, providing the necessary mathematical framework to understand the underlying principles of how we perceive and interpret visual information in the world around us. This text explores the theories and computational techniques used to determine the geometric properties of solid objects through images. It covers the basic concepts and provides the necessary mathematical background for more advanced studies. The book is divided into clear and concise chapters covering a wide range of topics including image formation, camera models, feature detection and 3D reconstruction. Each chapter includes detailed explanations of the theory as well as practical examples to help the reader understand and apply the concepts presented. The book has been written with the intention of being used as a primary resource for students on university courses in computer vision, particularly final year undergraduate or postgraduate computer science or engineering courses. It is also useful for self-study and for those who, outside the academic field, find themselves applying computer vision to solve practical problems. The aim of the book is to strike a balance between the complexity of the theory and its practical applicability in terms of implementation. Rather than providing a comprehensive overview of the current state of the art, it offers a selection of specific methods with enough detail to enable the reader to implement them. Table of Contents1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 The Prodigy of vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Low-level Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Overview of the Boook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Fundamentals of Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Digital Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Thin Lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4.1 Telecentric Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 Radiometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 The Pinhole Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 Pinhole camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 Simplified Pinhole Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4 General Pinhole Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4.1 Intrinsic Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4.1.1 Field of View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4.2 Extrinsic Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.5 Dissection of the Perspective Projection Matrix . . . . . . . . . . . . . . . . . 26 3.5.1 Collinearity Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.6 Radial Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 The Direct Linear Transform Method . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.3 Factorization of the Perspective Projection Matrix . . . . . . . . . . . . . . . 37 4.4 Calibrating Radial Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.5 The Sturm-Maybank-Zhang Calibration Algorithm . . . . . . . . . . . . . . 39 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5 Absolute and Exterior Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.2 Absolute Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.2.1 Orthogonal Procrustes Analysis . . . . . . . . . . . . . . . . . . . . . . . . 46 5.3 Exterior orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.3.1 Fiore’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.3.2 Procrustean Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.3.3 Direct Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6 Two-view Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.2 Epipolar Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.3 Fundamental Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.4 Computing the Fundamental Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.4.1 The 7-points Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.4.2 Preconditioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.5 Planar Homography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.5.1 Computing the Homography . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.6 Planar Parallax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7 Relative Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 7.2 The Essential Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 7.2.1 Geometric Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 7.2.2 Computing the Essential Matrix . . . . . . . . . . . . . . . . . . . . . . . 74 7.3 Relative Orientation from the Essential Matrix . . . . . . . . . . . . . . . . . . 75 7.3.1 Closed Form Factorization of the Essential Matrix . . . . . . . . 77 7.4 Relative Orientation from the Calibrated Homography . . . . . . . . . . . . 79 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Contents xv 8 Reconstruction from Two Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 8.2 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 8.3 Ambiguity of Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 8.4 Euclidean Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 8.5 Projective Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 8.6 Euclidean Upgrade from Known Intrinsic Parameters . . . . . . . . . . . . 89 8.7 Stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 9 Nonlinear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 9.2 Algebraic vs Geometric distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 9.3 Nonlinear Regression of the PPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 9.3.1 Residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 9.3.2 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 9.3.3 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 9.3.4 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 9.4 Nonlinear Regression of Exterior Orientation . . . . . . . . . . . . . . . . . . . 100 9.5 Nonlinear Regression of a Point in Space . . . . . . . . . . . . . . . . . . . . . . . 100 9.5.1 Residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 9.5.2 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 9.5.3 Radial Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 9.6 Regression in the Joint Image Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 9.7 Nonlinear Regression of the Homography . . . . . . . . . . . . . . . . . . . . . . 104 9.7.1 Residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 9.7.2 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 9.7.3 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 9.8 Nonlinear Regression of the Fundamental Matrix . . . . . . . . . . . . . . . . 107 9.8.1 Residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 9.8.2 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 9.8.3 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 9.9 Nonlinear Regression of Relative Orientation . . . . . . . . . . . . . . . . . . . 112 9.9.1 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 9.9.2 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 9.10 Robust Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 10 Stereopsis: geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 10.2 Triangulation in the Normal Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 10.3 Epipolar Rectification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 10.3.1 Calibrated Rectification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 10.3.2 Uncalibrated Rectification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 11 Features points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 11.2 Filtering Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 11.2.1 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 11.2.1.1 Non-linear Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 11.2.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 11.3 LoG Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 11.4 Harris-Stephens Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 11.4.1 Matching and tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 11.4.2 Kanade-Lucas-Tomasi Algorithm . . . . . . . . . . . . . . . . . . . . . . 146 11.4.3 Predictive Tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 11.5 Scale Invariant Feature Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 11.5.1 Space-Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 11.5.2 SIFT Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 11.5.3 SIFT descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 11.5.4 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 12 Stereopsis: matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 12.2 Constraints and Ambiguities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 12.3 Local Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 12.3.1 Matching Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 12.3.2 Census Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 12.4 Adaptive Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 12.4.1 Multiresolution Stereo Matching . . . . . . . . . . . . . . . . . . . . . . . 166 12.4.2 Adaptive Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 12.5 Global Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 12.6 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 12.6.1 Reliability Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 12.6.2 Occlusions Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 13 Range sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 13.2 Structured Lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 13.2.1 Active Stereopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 13.2.2 Active Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 13.2.3 Ray-Plane Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 13.2.4 Scanning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 13.2.5 Coded Light Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 13.3 Time-of-Flight Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 13.4 Photometric Stereo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 13.4.1 From Normals to Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 188 13.5 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 14 Multiview Euclidean Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 14.1.1 Epipolar Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 14.1.2 The Case of Three Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 14.1.3 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 14.2 Points-based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 14.2.1 Adjustment of Independent Models . . . . . . . . . . . . . . . . . . . . . 199 14.2.2 Incremental Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 14.2.3 Hierarchical Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 14.3 Frames-based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 14.3.1 Synchronization of Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . 203 14.3.2 Synchronization of Translations . . . . . . . . . . . . . . . . . . . . . . . . 205 14.3.3 Localization from Bearings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 14.4 Bundle Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 14.4.1 Jacobian of Bundle Adjustment . . . . . . . . . . . . . . . . . . . . . . . . 210 14.4.2 Reduced System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 15 3D Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 15.1.1 Generalised Procrustean Analysis . . . . . . . . . . . . . . . . . . . . . . . 218 15.2 Correspondence-less Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 15.2.1 Registration of Two Point-clouds . . . . . . . . . . . . . . . . . . . . . . . 220 15.2.2 Iterative Closest Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 15.2.3 Registration of Many Point-clouds . . . . . . . . . . . . . . . . . . . . . . 223 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 16 Multiview Projective Reconstruction and Autocalibration. . . . . . . . . . . 227 16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 16.1.1 Sturm-Triggs Factorization Method . . . . . . . . . . . . . . . . . . . . . 227 16.2 Autocalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 16.2.1 Absolute Quadric Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . 231 16.2.1.1 Solution Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 Linear Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 Constant Intrinsic Parameters . . . . . . . . . . . . . . . . . . 233 16.2.2 Mendonça-Cipolla Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 16.3 Autocalibration via 퐻∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 16.4 Tomasi-Kanade’s Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 16.4.1 Affine Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 16.4.2 The Factorization Method for Affine Camera . . . . . . . . . . . . . 239 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 17 Multi-View Stereo Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 17.2 Volumetric Stereo in Object-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 17.2.1 Shape from Silhouette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 17.2.2 Szeliski’s Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 17.2.3 Voxel Coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 17.2.4 Space Carving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 17.3 Volumetric Stereo in Image-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 Alignment of Epipolar Lines . . . . . . . . . . . . . . . . . . . 253 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 Surface Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 17.4 Marching Cubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 18 Image-based Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 18.2 Parametric Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 18.2.1 Mosaics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 18.2.1.1 Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 Synchronization of Homographies . . . . . . . . . . . . . . 261 18.2.1.2 Blending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 18.2.2 Image Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 18.2.3 Perspective Rectification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 18.3 Non-parametric Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 18.3.1 Transfer with Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 18.3.2 Transfer with Disparity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 18.3.3 Epipolar Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 18.3.4 Transfer with Parallax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 18.3.5 Ortho-projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 18.4 Geometric Image Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 Bilinear Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 274 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 A Notions of linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 A.2 Scalar Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 A.3 Matrix Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 A.4 Inverse Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 A.5 Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 A.6 Orthogonal Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 A.7 Linear and Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 A.8 Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 A.9 QR Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 A.10 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 A.11 Singular Values Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 A.12 Pseudoinverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 A.13 Cross Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 A.14 Kronecker’s Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 A.15 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 A.16 Matrices Associated with Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 B Matrix Differential Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 B.1 Derivatives of Vector and Matrix Functions . . . . . . . . . . . . . . . . . . . . . 299 B.2 Derivative of Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 Axis/Angle Representation.. . . . . . . . . . . . . . . . . . . . 303 Euler Representation. . . . . . . . . . . . . . . . . . . . . . . . . . 303 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 C Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 C.2 Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 C.2.1 Linear Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 C.2.2 Nonlinear Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 C.2.2.1 Gauss-Newton Method . . . . . . . . . . . . . . . . . . . . . . . 307 C.2.3 The Levenberg-Marquardt Method . . . . . . . . . . . . . . . . . . . . . . 308 C.3 Robust Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 C.3.1 Outliers and Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 C.3.2 M-estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 C.3.3 Least Median of Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 C.3.4 RANSAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 C.4 Propagation of Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 Propagation of Covariance in Least Squares. . . . . . 317 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 D Notions of Projective Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 D.2 Perspective Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 D.3 Homogeneous Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 D.4 Equation of the Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 D.5 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 E Matlab Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

    1 in stock

    £62.99

  • Visualizing Complexity: Handbuch modulares

    Birkhauser Visualizing Complexity: Handbuch modulares

    1 in stock

    Book SynopsisDesign system for information design explained step by step How can you turn dry statistics into attractive and informative graphs? How can you present complex data sets in an easily understandable way? How can you create narrative diagrams from unstructured data? This handbook of information design answers these questions. Nicole Lachenmeier and Darjan Hil condense their extensive professional experience into an illustrated guide that offers a modular design system comprised of 80 elements. Their systematic design methodology makes it possible for anyone to visualize complex data attractively and using different perspectives. At the intersection of design, journalism, communication and data science, Visualizing Complexity opens up new ways of working with abstract data and invites readers to try their hands at information design New standard work for information design - Joseph Binder Award 2022, Winner Gold in the category "Information Design" Attractively designed and illustrated manual Innovative presentation solutions for analog and digital media Available in German and English (ISBN 9783035625042)

    1 in stock

    £34.67

  • Convex Analysis and Monotone Operator Theory in

    Springer International Publishing AG Convex Analysis and Monotone Operator Theory in

    Out of stock

    Book SynopsisThis reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, machine learning, physics, decision sciences, economics, and inverse problems. The second edition of Convex Analysis and Monotone Operator Theory in Hilbert Spaces greatly expands on the first edition, containing over 140 pages of new material, over 270 new results, and more than 100 new exercises. It features a new chapter on proximity operators including two sections on proximity operators of matrix functions, in addition to several new sections distributed throughout the original chapters. Many existing results have been improved, and the list of references has been updated.Heinz H. Bauschke is a Full Professor of Mathematics at the Kelowna campus of the University of British Columbia, Canada.Patrick L. Combettes, IEEE Fellow, was on the faculty of the City University of New York and of Université Pierre et Marie Curie – Paris 6 before joining North Carolina State University as a Distinguished Professor of Mathematics in 2016.Table of Contents

    Out of stock

    £93.60

  • Learn ggplot2 Using Shiny App

    Springer International Publishing AG Learn ggplot2 Using Shiny App

    Out of stock

    Book SynopsisThis book and app is for practitioners, professionals, researchers, and students who want to learn how to make a plot within the R environment using ggplot2, step-by-step without coding.In widespread use in the statistical communities, R is a free software language and environment for statistical programming and graphics. Many users find R to have a steep learning curve but to be extremely useful once overcome. ggplot2 is an extremely popular package tailored for producing graphics within R but which requires coding and has a steep learning curve itself, and Shiny is an open source R package that provides a web framework for building web applications using R without requiring HTML, CSS, or JavaScript. This manual—"integrating" R, ggplot2, and Shiny—introduces a new Shiny app, Learn ggplot2, that allows users to make plots easily without coding. With the Learn ggplot2 Shiny app, users can make plots using ggplot2 without having to code each step, reducing typos and error messages and allowing users to become familiar with ggplot2 code. The app makes it easy to apply themes, make multiplots (combining several plots into one plot), and download plots as PNG, PDF, or PowerPoint files with editable vector graphics. Users can also make plots on any computer or smart phone.Learn ggplot2 Using Shiny App allows users to Make publication-ready plots in minutes without coding Download plots with desired width, height, and resolution Plot and download plots in png, pdf, and PowerPoint formats, with or without R code and with editable vector graphics Table of Contents

    Out of stock

    £56.24

  • Big Data and Visual Analytics

    Springer International Publishing AG Big Data and Visual Analytics

    1 in stock

    Book SynopsisThis book provides users with cutting edge methods and technologies in the area of big data and visual analytics, as well as an insight to the big data and data analytics research conducted by world-renowned researchers in this field. The authors present comprehensive educational resources on big data and visual analytics covering state-of-the art techniques on data analytics, data and information visualization, and visual analytics. Each chapter covers specific topics related to big data and data analytics as virtual data machine, security of big data, big data applications, high performance computing cluster, and big data implementation techniques. Every chapter includes a description of an unique contribution to the area of big data and visual analytics. This book is a valuable resource for researchers and professionals working in the area of big data, data analytics, and information visualization. Advanced-level students studying computer science will also find this book helpful as a secondary textbook or reference.Table of ContentsInformation visualization.- Data analytics.- Visual analytics.- Intelligent information systems.- Business analytics,- Virtual data machine.- Big data architecture.- Security of big data.- Big data applications.- Tensor-based computation and modeling.- High performance computing cluster.- Big data technologies.

    1 in stock

    £98.99

  • Convex Analysis and Monotone Operator Theory in

    Springer International Publishing AG Convex Analysis and Monotone Operator Theory in

    Out of stock

    Book SynopsisThis reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, machine learning, physics, decision sciences, economics, and inverse problems. The second edition of Convex Analysis and Monotone Operator Theory in Hilbert Spaces greatly expands on the first edition, containing over 140 pages of new material, over 270 new results, and more than 100 new exercises. It features a new chapter on proximity operators including two sections on proximity operators of matrix functions, in addition to several new sections distributed throughout the original chapters. Many existing results have been improved, and the list of references has been updated.Heinz H. Bauschke is a Full Professor of Mathematics at the Kelowna campus of the University of British Columbia, Canada.Patrick L. Combettes, IEEE Fellow, was on the faculty of the City University of New York and of Université Pierre et Marie Curie – Paris 6 before joining North Carolina State University as a Distinguished Professor of Mathematics in 2016.Table of Contents

    Out of stock

    £93.60

  • Shape Interrogation for Computer Aided Design and

    Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Shape Interrogation for Computer Aided Design and

    1 in stock

    Book SynopsisShape interrogation is the process of extraction of information from a geometric model. It is a fundamental component of Computer Aided Design and Manufacturing (CAD/CAM) systems. This book provides a bridge between the areas geometric modeling and solid modeling. Apart from the differential geometry topics covered, the entire book is based on the unifying concept of recasting all shape interrogation problems to the solution of a nonlinear system. It provides the mathematical fundamentals as well as algorithms for various shape interrogation methods including nonlinear polynomial solvers, intersection problems, differential geometry of intersection curves, distance functions, curve and surface interrogation, umbilics and lines of curvature, and geodesics.Trade ReviewFrom the reviews: "... Currently there are several excellent books in the area of geometric modeling and in the area of solid modeling. The major contribution of this book lies in its skilful manner of providing a bridge between these two areas that is guaranteed to make the target audience cry out aloud with delight. Apart from the differential geometry topics covered, the entire book is based on the unifying concept of recasting all shape interrogation problems to the solution of a nonlinear system. Indeed the book is quite compulsive; No study of shape interrogation can ignore Patrikalakis and Maekawa's. Nearly 460 references to the literature make the book widely welcomed. ..." Current Engineering Practice 2002-2003, Vol. 45, Issue 3-4 "... It provides a comprehensive coverage of the fundamental concepts that shape interrogation techniques rely on as well as of the various techniques and algorithms for interrogation of shape features. ... Containing 408 pages, the book can be an indispensable reference for anybody with interest in this field of computer aided geometric design and software development. Nick Patrikalakis and Takashi Maekawa, researchers at MIT, managed to presnet all related concepts in an insightful way. The careful arrangement of the topics and the endeavor of the authors to recast all shape interrogation problem to the numerical solution of a nonlinear system of equations impressed the reviewer. ..." I. Horváth, Structural and Multidisciplinary Optimization 2003, Vol. 24, Issue 6 "…this is a very detailed and complete book on topics that are important in both the theory and practice of geometric modeling. It is a welcome addition to the literature. Reading it and experimenting with the techniques it describes should be a rewarding experience." Luiz Henrique de Figueiredo, MATHEMATICAL REVIEWS "... This book by Patrikalakis and Maekawa is the first thorough, long overdue, look at this curicial area. The book presents an original and inclusive summary of advanced computational topics that relate to the geometry of freeform shapes. Research in these computational areas has matured to a point where such a compendium is no longer nice to have on one's shelf, but a necessity for the serious investigator. The book handles computational problems that represent fundamental components in any solid modeling environment, filling a vacuum in the literature. It will serve well any researcher, either in academia or industry, working in the area of freeform design or manusfacturing. This work continues from the point where the traditional geometric design and solid modeling books stop. ... Shape interrogation and computational geometry of freeform shapes have been a part of the geometric design and manufacturing community for a long time. This book makes efforts and is likely to become the 'Bible' for this area. As a high-quality produced book, it is a must reference for any advanced researcher or developer who works with splines and freeform representations. If you consider yourself one, this book should probably be on your bookshelf. I eagerly await what the first revision of this book may yield." Gershon Elber, Computer-Aided Design 35 (2003) 1053 "‘Shape Interrogation’ in general means the process of extracting information from a geometric model. … The aim of this text is to provide an exhaustive list of tools and algorithms useful for shape interrogation of freeform curves and surfaces. Their effectivity depends on the end user’s capability of solving systems of nonlinear equations, which is one reason for the author’s focus on robust polynomial solvers." (Johannes Wallner, Zentralblatt MATH, Vol. 1035, 2004) "‘Shape Interrogation’ is the process of extracting information from a geometric model. … This book provides a bridge between the areas of geometric modeling and solid modeling. Apart from the differential geometry topics covered, the entire book is based on the unifying concept of recasting all shape interrogations problems to the solution of a nonlinear system. … The book can serve as a textbook for teaching advanced topics of geometric modeling for graduate students as well as professionals in industry." (deslab. mit.edu, October, 2003) "This book gives a detailed description of algorithms and computational methods for shape interrogation … . The book can be used in a course for advanced graduate students and also as a reference text for researchers and practitioners in CAD/CAM. … is a very detailed and complete book on topics that are important in both the theory and the practice of geometric modeling. It is a welcome addition to the literature. Reading it and experimenting with the techniques it describes should be a rewarding experience." (Luiz Henrique de Figueiredo, Mathematical Reviews, 2003 a) "Shape interrogation and computational geometry of free-form shapes have been a part of the geometric design and manufacturing community for a long time. This book makes a first triumphant attempt at summarizing these research efforts and is likely to become the ‘Bible’ for this area. As a high-quality produced book, it is a must reference for any advanced researcher or developer who works with splines and freeform representations. If you consider yourself one, this book should probably be on your bookshelf." (Gershon Elber, Computer Aided Design, Vol. 35, 2003) "The book focuses on the topic of getting shape information from the geometric models of sculptured objects. … Containing 408 pages, the book can be an indispensable reference for anybody with interest in this field of computer aided geometric design and software development. … the text is sufficiently illustrated with figures and the production of the book is of good quality. … The book can be offered as a textbook for teaching advanced topics of geometric modeling for graduate students." (I. Horváth, Structural and Multidisciplinary Optimization, Vol. 24 (6), 2003) "This book provides the mathematical fundamentals as well as algorithms for various shape interrogation methods including nonlinear polynomial solvers, intersection problems, differential geometry of intersection curves, distance functions, curve and surface interrogation, umbilics and lines of curvature, geodesics, and offset curves and surfaces. … The book will inform and enlighten professionals in industry and therefore remains essential reading for them too." (Current Engineering Practice, Vol. 45 (3-4), 2002-03)Table of ContentsRepresentation of Curves and Surfaces.- Differential Geometry of Curves.- Differential Geometry of Surfaces.- Nonlinear Polynomial Solvers and Robustness Issues.- Intersection Problems.- Differential Geometry of Intersection Curves.- Distance Functions.- Curve and Surface Interrogation.- Umbilics and Lines of Curvature.- Geodesics.- Offset Curves and Surfaces.

    1 in stock

    £40.49

  • Mathematics and Culture III

    Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Mathematics and Culture III

    1 in stock

    Book SynopsisThis work contains the proceedings of the "Mathematics and Culture" conference held in Venice in March 2002. The conference aims to act as a bridge across the various aspects of human knowledge. While keeping mathematics as its core, it is aimed at anyone endowed with cultural curiosity and interests, whether within or (even more so) outside mathematics. This volume therefore covers music, cinema, art, theatre and literature, with topics ranging from Tibet to comics.Trade ReviewFrom the reviews:“This is a collection of papers that highlight the relation between mathematics and culture in the broadest sense. … it is an eye-opener to many who might experience mathematics as an invention to terrorise children at school. … It is an excellent tool to raise public awareness of mathematics. It can be easily used by teachers or lecturers as a Trojan horse to conquer the fortress of the less mathematically inclined.” (A. Bultheel, The European Mathematical Society, October, 2012)Table of ContentsI Mathematicians: Open Your Eyes Through Mathematics by Emma Castelnuovo.- The Theory of Motion from Hellenism to the 20th Century by Giovanni Gallavotti.- How Mathematics Helps Us Avoid Biases by Aljoša Volcic.- II Mathematics and Music: Mathematical Modelling of Musical Sounds by Giovanni De Poli.- What Time-Frequency Analysis Can Do to Music Signals (and What It Can’t Do) by Monica Dörfler.- … Listen:… By Laura Tedeschini Lalli.- Being an Artist with Mathematics and a Computer by Stefano Busello.- Escher-Like Perspectives and Music Production by Claudio Ambrosini- III Mathematics and Art: Complexity in Art: Klee, Duchamp and Escher by Roberto Giunti.- Stayin’ Alive (Just Barely): The Fate of the Geometrical Fourth Dimension at Mid-Century by Linda Dalrypmple Henderson.- The pleasure of threads: The Visual Experience of Fred Sandback’s sculptures by Manuel Corrada.- Paladino’s Mathematicians by Enzo di Martino.- IV Mathematics and Cinema: Mathematics in the Movies: A Case Study by Harold W. Kuhn.- V Mathematics and Venice: Luca Pacioli and Venice by Giovanni Fazzini.- A Venetian Comic Book by Luca Boschi, Michele Emmer.- Labyrinths by Michele Emmer, Gian Marco Todesco.- The Romance of Double-Entry Bookkeeping by Anthony Phillips.- VI Peking 2002: Is Chinese Mathematics Chinese? by Jean-Claude Martzloff.- Why Mathematics in Ancient China? by Anjing Qu.- The "Lack of Grounding" of Chinese Astronomy: a Communis Opinio of XVII century Europe by Francesco D’Arelli.- A Mathematician in Lhasa by Michele Emmer.- VII Mathematics and Theatre: Infinity and the Search for Simplicity by Sergio Escobar.- VIII Mathematics and Comic Strips: Digital Character Construction in Walt Disney Pictures' Feature "Dinosaur" by Stewart Dickson.- Comics and MathMagic: Notes on Disney Numerology by Luca Boschi

    1 in stock

    £40.49

  • Information Graphics

    Taschen GmbH Information Graphics

    Out of stock

    Book Synopsis“If you can’t explain it simply, you don’t understand it well enough.” —Albert Einstein Our everyday lives are filled with a massive flow of information that we must interpret in order to understand the world we live in. Considering the complex variety of data floating around us, sometimes the best—or even only—way to communicate is visually. This unique book presents a fascinating perspective on the subject, highlighting the work of the masters of the profession, creators of breakthroughs that have changed the way we communicate. Information Graphics has been conceived and designed not just for graphics professionals, but for anyone interested in the history and practice of communicating visually. The in-depth introductory section, illustrated with over 60 images (each accompanied by an explanatory caption), features essays by Sandra Rendgen, Paolo Ciuccarelli, Richard Saul Wurman, and Simon Rogers. Looking back all the way to primitive cave paintings as a means of communication, this section gives readers an excellent overview of the subject. The second part of the book is entirely dedicated to contemporary works by today’s most renowned professionals, presenting 200 graphics projects, with over 400 examples—each with a fact sheet and an explanation of methods and objectives—divided into chapters by the topics Location, Time, Category, and Hierarchy. Includes: 200 projects and over 400 examples of contemporary information graphics from all over the world—ranging from journalism to art, government, education, business and much more Four essays about the development of information graphics since its beginnings

    Out of stock

    £38.00

© 2025 Book Curl

    • American Express
    • Apple Pay
    • Diners Club
    • Discover
    • Google Pay
    • Maestro
    • Mastercard
    • PayPal
    • Shop Pay
    • Union Pay
    • Visa

    Login

    Forgot your password?

    Don't have an account yet?
    Create account