Description

Book Synopsis
This book reviews recent experimental and theoretical evidence that the physical and structural properties of transition metal oxides may decisively be influenced by strong spin-orbit interactions that compete with comparable Coulomb, magnetic exchange, and crystalline electric field interactions.

Trade Review
A valuable resource on very important materials that is likely to be widely used. * David J. Singh, University of Missouri *
Exactly what is missing at present. It cannot be any more timely. * Mike Whangbo, North Carolina State University *

Table of Contents
Preface I. Fundamental Principles 1: Introduction 1.1. Overview 1.2. Outline of the Book 1.3. Fundamental Characteristics of 4d- and 5d-Transition Metal Oxides 1.4. Crystal Fields and Chemical Aspects 1.5. Electron-Lattice Coupling 1.6. Spin-Orbit Interactions 1.7. The Dzyaloshinsky-Moriya Interaction 1.8. Phase Diagram of Correlated, Spin-Orbit-Coupled Matter 1.9. Absence of Topological States in 4d- and 5d-Transition Metal Oxides Further Reading References II. Phenomena in 4d- and 5d-Transition Metal Oxides 2: Spin-Orbit Interactions in Ruddlesden-Popper Phases Srn+1IrnO3n+1 (n = 1, 2 and ?) 2.1. Overview 2.2. Novel Mott Insulator: Sr2IrO4 2.3. Borderline Insulator: Sr3Ir2O7 2.4. Metallic SrIrO3 and its Derivatives Further Reading References 3: Magnetic Frustration 3.1. Overview 3.2. Two-Dimensional Honeycomb Lattices: Na2IrO3 and Li2IrO3 3.3. Ruthenate Honeycomb Lattices: Na2RuO3 and Li2RuO3 3.4. Three-Dimensional Honeycomb Lattices: b-Li2IrO3 and g-Li2IrO3 and Hyperkagome Na4Ir3O8 3.5. Pyrochlore Iridates 3.6. Double-Perovskite Iridates with Ir5+(5d4) Ions: Absence of Nonmagnetic Singlet Jeff = 0 State 3.7. Quantum Liquid in Unfrustrated Lattice Ba4Ir3O10 Further Reading References 4: Lattice-Driven Ruthenates 4.1 Overview 4.2. Orbital and Magnetic Order in Doped Ca2RuO4 4.3. Unconventional Magneto-Transport Properties of Ca3Ru2O7 4.4. Pressure-Induced Transition from Interlayer Ferromagnetism to Intralayer Antiferromagnetism in Sr4Ru3O10 4.5. General Remarks Further Reading References 5: Electric-Current-Control via Strong Spin-Orbit-Coupling 5.1. Overview 5.2. Ca2RuO4 5.3. Sr2IrO4 5.4. General Remarks Further Reading References III. Materials Synthesis 6: Single-Crystal Synthesis 6.1. Overview 6.2. Flux Technique 6.3. Optical Floating-Zone Technique 6.4. Field-Altering Technology Further Reading References Appendix: Synopses of Selected Experimental Techniques Subject Index Compound Index

Physics of SpinOrbitCoupled Oxides

Product form

£86.98

Includes FREE delivery

Order before 4pm today for delivery by Wed 31 Dec 2025.

A Hardback by Gang Cao, Lance DeLong

Out of stock


    View other formats and editions of Physics of SpinOrbitCoupled Oxides by Gang Cao

    Publisher: Oxford University Press
    Publication Date: 14/06/2021
    ISBN13: 9780199602025, 978-0199602025
    ISBN10: 0199602026

    Description

    Book Synopsis
    This book reviews recent experimental and theoretical evidence that the physical and structural properties of transition metal oxides may decisively be influenced by strong spin-orbit interactions that compete with comparable Coulomb, magnetic exchange, and crystalline electric field interactions.

    Trade Review
    A valuable resource on very important materials that is likely to be widely used. * David J. Singh, University of Missouri *
    Exactly what is missing at present. It cannot be any more timely. * Mike Whangbo, North Carolina State University *

    Table of Contents
    Preface I. Fundamental Principles 1: Introduction 1.1. Overview 1.2. Outline of the Book 1.3. Fundamental Characteristics of 4d- and 5d-Transition Metal Oxides 1.4. Crystal Fields and Chemical Aspects 1.5. Electron-Lattice Coupling 1.6. Spin-Orbit Interactions 1.7. The Dzyaloshinsky-Moriya Interaction 1.8. Phase Diagram of Correlated, Spin-Orbit-Coupled Matter 1.9. Absence of Topological States in 4d- and 5d-Transition Metal Oxides Further Reading References II. Phenomena in 4d- and 5d-Transition Metal Oxides 2: Spin-Orbit Interactions in Ruddlesden-Popper Phases Srn+1IrnO3n+1 (n = 1, 2 and ?) 2.1. Overview 2.2. Novel Mott Insulator: Sr2IrO4 2.3. Borderline Insulator: Sr3Ir2O7 2.4. Metallic SrIrO3 and its Derivatives Further Reading References 3: Magnetic Frustration 3.1. Overview 3.2. Two-Dimensional Honeycomb Lattices: Na2IrO3 and Li2IrO3 3.3. Ruthenate Honeycomb Lattices: Na2RuO3 and Li2RuO3 3.4. Three-Dimensional Honeycomb Lattices: b-Li2IrO3 and g-Li2IrO3 and Hyperkagome Na4Ir3O8 3.5. Pyrochlore Iridates 3.6. Double-Perovskite Iridates with Ir5+(5d4) Ions: Absence of Nonmagnetic Singlet Jeff = 0 State 3.7. Quantum Liquid in Unfrustrated Lattice Ba4Ir3O10 Further Reading References 4: Lattice-Driven Ruthenates 4.1 Overview 4.2. Orbital and Magnetic Order in Doped Ca2RuO4 4.3. Unconventional Magneto-Transport Properties of Ca3Ru2O7 4.4. Pressure-Induced Transition from Interlayer Ferromagnetism to Intralayer Antiferromagnetism in Sr4Ru3O10 4.5. General Remarks Further Reading References 5: Electric-Current-Control via Strong Spin-Orbit-Coupling 5.1. Overview 5.2. Ca2RuO4 5.3. Sr2IrO4 5.4. General Remarks Further Reading References III. Materials Synthesis 6: Single-Crystal Synthesis 6.1. Overview 6.2. Flux Technique 6.3. Optical Floating-Zone Technique 6.4. Field-Altering Technology Further Reading References Appendix: Synopses of Selected Experimental Techniques Subject Index Compound Index

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account