Description

Book Synopsis

Many wetlands around the world act as sinks for pollutants, in particular for trace elements. In comparison to terrestrial environments, wetlands are still far less studied. A collaborative effort among world experts, this book brings the current knowledge concerning trace elements in temporary waterlogged soils and sediments together. It discusses factors controlling the dynamics and release kinetics of trace elements and their underlying biogeochemical processes. It also discusses current technologies for remediating sites contaminated with trace metals, and the role of bioavailability in risk assessment and regulatory decision making. This book is intended for professionals around the world in disciplines related to contaminant bioavailability in aquatic organisms, contaminant fate and transport, remediation technologies, and risk assessment of aquatic and wetland ecosystems.



Trade Review

"This book not only fills an important gap in advancing our understanding of the environmental behavior of trace elements in waterlogged soils and sediments, but also gives valuable advice for those applying this knowledge in risk assessment, remediation and management of contaminated wetlands and aquatic environments."
— Rainer Schulin, ETH Zürich, Switzerland

"In Trace Elements in Waterlogged Soils and Sediments, a recent offering from CRC Press, editors Rinklebe, Knox and Paller have assembled contributions from an impressive list of accomplished researchers actively working in the field of trace element biogeochemistry as it pertains to waterlogged environmental systems. The book is composed of eighteen chapters roughly divided into three sections focused on fundamental processes, bioavailability, and remediation options. While providing some specific case studies related to a diverse range of contaminated systems, the chapters also contain significant fundamental material that make it equally beneficial to students and more experienced practitioners with interest in this field of study."
— John C. Seaman, University of Georgia, USA


Wetland and other water-logged soils are of special importance in providing particular ecosystem services such as hydrological buffering, organic carbon storage, habitat and biodiversity source. Sediments play a role of similar importance as components of the aquatic environment at the bottom of water bodies. Both have in common that they also act as sinks for recalcitrant chemicals and as such are increasingly loaded with trace elements of anthropogenic origin. Due to the dominance of anaerobic conditions, the fate of trace elements in water-logged soils and sediments is governed by very different processes and mechanisms in these environments as compared to well-aerated soils. Against this backdrop, it is all the more remarkable how little we still know about these processes and the factors driving them. This book thus is very timely. It is also very comprehensive. In eighteen chapters written by experts in the respective fields, it gives the latest findings and insights into physicochemical factors and reactions controlling the speciation and binding of heavy metals and metalloids in water-logged soils and sediments, their bioavailability and the assessment of associated risks for humans and other recipients, and also on established remediation technology. Several chapters have a focus on redox-sensitive metals and metalloids such as arsenic, selenium, chromium and uranium. Some deal with new contaminants such as rare earth elements, others with ‘usual suspects’ such as cadmium and zinc. While various contributions are devoted to more fundamental aspects such as the kinetics of sorption and desorption processes or the mechanisms governing the retention and mobility of nanoparticles in aquatic environments, others provide insight into the role of particular environments such as paddies and other temporary flooded soils for trace element behavior or present specific case studies, e.g. on the fate of subsurface chromium on the Hanford site. In summary, this book not only fills an important gap in advancing our understanding of the environmental behavior of trace elements in waterlogged soils and sediments, but also gives valuable advice for those applying this knowledge in risk assessment, remediation and management of contaminated wetlands and aquatic environments.

--- Rainer Schulin, Professor for Soil Protection, ETH Zürich, Institute of Terrestrial Ecosystems, Switzerland

In Trace Elements in Waterlogged Soils and Sediment, editors Rinklebe, Knox and Paller have assembled contributions from an impressive list of accomplished researchers actively working in the field of trace element biogeochemistry as it pertains to waterlogged environmental systems. The book is composed of eighteen chapters roughly divided into three sections focused on fundamental processes, bioavailability, and remediation options. While providing some specific case studies related to a diverse range of contaminated systems, the chapters also contain significant fundamental material that make it equally beneficial to students and more experienced practitioners with interest in this field of study.

---- John C. Seaman - Savannah River Ecology Laboratory, The University of Georgia.



Table of Contents

Understanding and Processes. Release Kinetics of Metals in Floodplain Soils. Physicochemical Factors Controlling Stability of Heavy Metal and Metalloids in Wetland Soils and Sediments. Adsorption-Desorption Of Metals in Waterlogged Soils and Sediments. Nanomaterials in Estuarine and Riverine Floodplain Soils and Sediments. Fate of Mercury in Sediments after In Situ Treatment or Capping. Rare Earth Elements in Waterlogged Soils and Sediments. Concomitant Reduction and Immobilization of Chromium In Relation To Its Bioavailability in Soils. Geochemical Controls of Uranium in Sediments. Examination of U Interactions with Co-Contaminants in Subsurface Sediments from Rifle, CO. Bioavailability & Remediation. Bioavailability of Metals in Dredge Sediments. Understanding the Relationship Between Metal Bioavailability In Contaminated Sediments And Biological Receptors. The Application Of Passive Sampler (DGT) Technology For Improved Understanding Of Metal Behavior And Contaminant Management At Marine Disposal Sites In The UK. Soil-Plant-Interactions Of Metals In Temporary Waterlogged Soils. Phytoremediation Of Trace Elements Of Waterlogged Soils And Sediments. Active Media For In-Situ Remediation Of Contaminated Sediments. Remediation And Management Of Contaminated Sediments.

Trace Elements in Waterlogged Soils and Sediments

Product form

£156.75

Includes FREE delivery

RRP £165.00 – you save £8.25 (5%)

Order before 4pm today for delivery by Thu 18 Dec 2025.

A Hardback by Jörg Rinklebe, Anna Sophia Knox, Michael Paller

1 in stock


    View other formats and editions of Trace Elements in Waterlogged Soils and Sediments by Jörg Rinklebe

    Publisher: Taylor & Francis Inc
    Publication Date: 18/07/2016
    ISBN13: 9781482240511, 978-1482240511
    ISBN10: 1482240513

    Description

    Book Synopsis

    Many wetlands around the world act as sinks for pollutants, in particular for trace elements. In comparison to terrestrial environments, wetlands are still far less studied. A collaborative effort among world experts, this book brings the current knowledge concerning trace elements in temporary waterlogged soils and sediments together. It discusses factors controlling the dynamics and release kinetics of trace elements and their underlying biogeochemical processes. It also discusses current technologies for remediating sites contaminated with trace metals, and the role of bioavailability in risk assessment and regulatory decision making. This book is intended for professionals around the world in disciplines related to contaminant bioavailability in aquatic organisms, contaminant fate and transport, remediation technologies, and risk assessment of aquatic and wetland ecosystems.



    Trade Review

    "This book not only fills an important gap in advancing our understanding of the environmental behavior of trace elements in waterlogged soils and sediments, but also gives valuable advice for those applying this knowledge in risk assessment, remediation and management of contaminated wetlands and aquatic environments."
    — Rainer Schulin, ETH Zürich, Switzerland

    "In Trace Elements in Waterlogged Soils and Sediments, a recent offering from CRC Press, editors Rinklebe, Knox and Paller have assembled contributions from an impressive list of accomplished researchers actively working in the field of trace element biogeochemistry as it pertains to waterlogged environmental systems. The book is composed of eighteen chapters roughly divided into three sections focused on fundamental processes, bioavailability, and remediation options. While providing some specific case studies related to a diverse range of contaminated systems, the chapters also contain significant fundamental material that make it equally beneficial to students and more experienced practitioners with interest in this field of study."
    — John C. Seaman, University of Georgia, USA


    Wetland and other water-logged soils are of special importance in providing particular ecosystem services such as hydrological buffering, organic carbon storage, habitat and biodiversity source. Sediments play a role of similar importance as components of the aquatic environment at the bottom of water bodies. Both have in common that they also act as sinks for recalcitrant chemicals and as such are increasingly loaded with trace elements of anthropogenic origin. Due to the dominance of anaerobic conditions, the fate of trace elements in water-logged soils and sediments is governed by very different processes and mechanisms in these environments as compared to well-aerated soils. Against this backdrop, it is all the more remarkable how little we still know about these processes and the factors driving them. This book thus is very timely. It is also very comprehensive. In eighteen chapters written by experts in the respective fields, it gives the latest findings and insights into physicochemical factors and reactions controlling the speciation and binding of heavy metals and metalloids in water-logged soils and sediments, their bioavailability and the assessment of associated risks for humans and other recipients, and also on established remediation technology. Several chapters have a focus on redox-sensitive metals and metalloids such as arsenic, selenium, chromium and uranium. Some deal with new contaminants such as rare earth elements, others with ‘usual suspects’ such as cadmium and zinc. While various contributions are devoted to more fundamental aspects such as the kinetics of sorption and desorption processes or the mechanisms governing the retention and mobility of nanoparticles in aquatic environments, others provide insight into the role of particular environments such as paddies and other temporary flooded soils for trace element behavior or present specific case studies, e.g. on the fate of subsurface chromium on the Hanford site. In summary, this book not only fills an important gap in advancing our understanding of the environmental behavior of trace elements in waterlogged soils and sediments, but also gives valuable advice for those applying this knowledge in risk assessment, remediation and management of contaminated wetlands and aquatic environments.

    --- Rainer Schulin, Professor for Soil Protection, ETH Zürich, Institute of Terrestrial Ecosystems, Switzerland

    In Trace Elements in Waterlogged Soils and Sediment, editors Rinklebe, Knox and Paller have assembled contributions from an impressive list of accomplished researchers actively working in the field of trace element biogeochemistry as it pertains to waterlogged environmental systems. The book is composed of eighteen chapters roughly divided into three sections focused on fundamental processes, bioavailability, and remediation options. While providing some specific case studies related to a diverse range of contaminated systems, the chapters also contain significant fundamental material that make it equally beneficial to students and more experienced practitioners with interest in this field of study.

    ---- John C. Seaman - Savannah River Ecology Laboratory, The University of Georgia.



    Table of Contents

    Understanding and Processes. Release Kinetics of Metals in Floodplain Soils. Physicochemical Factors Controlling Stability of Heavy Metal and Metalloids in Wetland Soils and Sediments. Adsorption-Desorption Of Metals in Waterlogged Soils and Sediments. Nanomaterials in Estuarine and Riverine Floodplain Soils and Sediments. Fate of Mercury in Sediments after In Situ Treatment or Capping. Rare Earth Elements in Waterlogged Soils and Sediments. Concomitant Reduction and Immobilization of Chromium In Relation To Its Bioavailability in Soils. Geochemical Controls of Uranium in Sediments. Examination of U Interactions with Co-Contaminants in Subsurface Sediments from Rifle, CO. Bioavailability & Remediation. Bioavailability of Metals in Dredge Sediments. Understanding the Relationship Between Metal Bioavailability In Contaminated Sediments And Biological Receptors. The Application Of Passive Sampler (DGT) Technology For Improved Understanding Of Metal Behavior And Contaminant Management At Marine Disposal Sites In The UK. Soil-Plant-Interactions Of Metals In Temporary Waterlogged Soils. Phytoremediation Of Trace Elements Of Waterlogged Soils And Sediments. Active Media For In-Situ Remediation Of Contaminated Sediments. Remediation And Management Of Contaminated Sediments.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account