Description

Book Synopsis
Designed for pharmacy students

Now updated for its Second Edition, Thermodynamics of Pharmaceutical Systems provides pharmacy students with a much-needed introduction to the mathematical intricacies of thermodynamics in relation to practical laboratory applications. Designed to meet the needs of the contemporary curriculum in pharmacy schools, the text makes these connections clear, emphasizing specific applications to pharmaceutical systems including dosage forms and newer drug delivery systems.

Students and practitioners involved in drug discovery, drug delivery, and drug action will benefit from Connors'' and Mecozzi''s authoritative treatment of the fundamentals of thermodynamics as well as their attention to drug molecules and experimental considerations. They will appreciate, as well, the significant revisions to the Second Edition. Expanding the book''s scope and usefulness, the new edition:

  • Explores in greater depth topics most relevant

    Table of Contents
    PREFACE.

    PREFACE TO THE FIRST EDITION.

    0. Review of Mathematics.

    0.1. Introduction.

    0.2. Dimensions and Units.

    0.3. Logarithms and Exponents.

    0.4. Algebraic and Graphical Analysis.

    0.5. Dealing with Change.

    0.6. Statistical Treatment of Data.

    Problems.

    I BASIC THERMODYNAMICS.

    1. Energy and the First Law of Thermodynamics.

    1.1. Fundamental Concepts.

    1.2. The First Law of Thermodynamics.

    1.3. The Enthalpy.

    Problems.

    2. The Entropy Concept.

    2.1. The Entropy Defined.

    2.2. The Second Law of Thermodynamics.

    2.3. Applications of the Entropy Concept.

    Problems.

    3. The Free Energy.

    3.1. Properties of the Free Energy.

    3.2. The Chemical Potential.

    Problems.

    4. Equilibrium.

    4.1. Conditions for Equilibrium.

    4.2. Physical Processes.

    4.3. Chemical Equilibrium.

    Problems.

    II THERMODYNAMICS OF PHYSICAL PROCESSES.

    5. Introduction to Physical Processes.

    5.1. Scope.

    5.2. Concentration Scales.

    5.3. Standard States.

    Problems.

    6. Phase Transformations.

    6.1. Pure Substances.

    6.2. Multicomponent Systems.

    Problems.

    7. Solutions of Nonelectrolytes.

    7.1. Ideal Solutions.

    7.2. Nonideal Solutions.

    7.3. Partitioning Between Liquid Phases.

    Problems.

    8. Solutions of Electrolytes.

    8.1. Coulombic Interaction and Ionic Dissociation.

    8.2. Mean Ionic Activity and Activity Coefficient.

    8.3. The Debye–Hückel Theory.

    Problems.

    9. Colligative Properties.

    9.1. Boiling Point Elevation.

    9.2. Freezing Point Depression.

    9.3. Osmotic Pressure.

    9.4. Isotonicity Calculations.

    Problems.

    10. Solubility.

    10.1. Solubility as an Equilibrium Constant.

    10.2. The Ideal Solubility.

    10.3. Temperature Dependence of the Solubility.

    10.4. Solubility of Slightly Soluble Salts.

    10.5. Solubilities of Nonelectrolytes: Further Issues.

    Problems.

    11. Surfaces and Interfaces.

    11.1. Thermodynamic Properties.

    11.2. Adsorption.

    Problems.

    III THERMODYNAMICS OF CHEMICAL PROCESSES.

    12. Acid–Base Equilibria.

    12.1. Acid–Base Theory.

    12.2. pH Dependence of Acid–Base Equilibria.

    12.3. Calculation of Solution pH.

    12.4. Acid–Base Titrations.

    12.5. Aqueous Solubility of Weak Acids and Bases.

    12.6. Nonaqueous Acid–Base Behavior.

    12.7. Acid–Base Structure and Strength.

    Problems.

    13. Electrical Work.

    13.1. Introduction.

    13.2. Oxidation–Reduction Reactions.

    13.3. Electrochemical Cells.

    13.4. pH Measurement.

    13.5. Ion-Selective Membrane Electrodes.

    Problems.

    14. Noncovalent Binding Equilibria.

    14.1. Introduction.

    14.2. The Noncovalent Interactions.

    14.3. Binding Models.

    14.4. Measurement of Binding Constants.

    14.5. Applications.

    Problems.

    APPENDIXES.

    Appendix A Physical Constants.

    Appendix B Kinetic Theory of Gases.

    Appendix C Extrathermodynamic Relationships.

    ANSWERS TO PROBLEMS.

    BIBLIOGRAPHY.

    INDEX.

Thermodynamics of Pharmaceutical Systems

Product form

£83.66

Includes FREE delivery

RRP £92.95 – you save £9.29 (9%)

Order before 4pm today for delivery by Tue 23 Dec 2025.

A Hardback by Kenneth A. Connors, Sandro Mecozzi

15 in stock


    View other formats and editions of Thermodynamics of Pharmaceutical Systems by Kenneth A. Connors

    Publisher: John Wiley & Sons Inc
    Publication Date: 28/01/2010
    ISBN13: 9780470425121, 978-0470425121
    ISBN10: 0470425121

    Description

    Book Synopsis
    Designed for pharmacy students

    Now updated for its Second Edition, Thermodynamics of Pharmaceutical Systems provides pharmacy students with a much-needed introduction to the mathematical intricacies of thermodynamics in relation to practical laboratory applications. Designed to meet the needs of the contemporary curriculum in pharmacy schools, the text makes these connections clear, emphasizing specific applications to pharmaceutical systems including dosage forms and newer drug delivery systems.

    Students and practitioners involved in drug discovery, drug delivery, and drug action will benefit from Connors'' and Mecozzi''s authoritative treatment of the fundamentals of thermodynamics as well as their attention to drug molecules and experimental considerations. They will appreciate, as well, the significant revisions to the Second Edition. Expanding the book''s scope and usefulness, the new edition:

    • Explores in greater depth topics most relevant

      Table of Contents
      PREFACE.

      PREFACE TO THE FIRST EDITION.

      0. Review of Mathematics.

      0.1. Introduction.

      0.2. Dimensions and Units.

      0.3. Logarithms and Exponents.

      0.4. Algebraic and Graphical Analysis.

      0.5. Dealing with Change.

      0.6. Statistical Treatment of Data.

      Problems.

      I BASIC THERMODYNAMICS.

      1. Energy and the First Law of Thermodynamics.

      1.1. Fundamental Concepts.

      1.2. The First Law of Thermodynamics.

      1.3. The Enthalpy.

      Problems.

      2. The Entropy Concept.

      2.1. The Entropy Defined.

      2.2. The Second Law of Thermodynamics.

      2.3. Applications of the Entropy Concept.

      Problems.

      3. The Free Energy.

      3.1. Properties of the Free Energy.

      3.2. The Chemical Potential.

      Problems.

      4. Equilibrium.

      4.1. Conditions for Equilibrium.

      4.2. Physical Processes.

      4.3. Chemical Equilibrium.

      Problems.

      II THERMODYNAMICS OF PHYSICAL PROCESSES.

      5. Introduction to Physical Processes.

      5.1. Scope.

      5.2. Concentration Scales.

      5.3. Standard States.

      Problems.

      6. Phase Transformations.

      6.1. Pure Substances.

      6.2. Multicomponent Systems.

      Problems.

      7. Solutions of Nonelectrolytes.

      7.1. Ideal Solutions.

      7.2. Nonideal Solutions.

      7.3. Partitioning Between Liquid Phases.

      Problems.

      8. Solutions of Electrolytes.

      8.1. Coulombic Interaction and Ionic Dissociation.

      8.2. Mean Ionic Activity and Activity Coefficient.

      8.3. The Debye–Hückel Theory.

      Problems.

      9. Colligative Properties.

      9.1. Boiling Point Elevation.

      9.2. Freezing Point Depression.

      9.3. Osmotic Pressure.

      9.4. Isotonicity Calculations.

      Problems.

      10. Solubility.

      10.1. Solubility as an Equilibrium Constant.

      10.2. The Ideal Solubility.

      10.3. Temperature Dependence of the Solubility.

      10.4. Solubility of Slightly Soluble Salts.

      10.5. Solubilities of Nonelectrolytes: Further Issues.

      Problems.

      11. Surfaces and Interfaces.

      11.1. Thermodynamic Properties.

      11.2. Adsorption.

      Problems.

      III THERMODYNAMICS OF CHEMICAL PROCESSES.

      12. Acid–Base Equilibria.

      12.1. Acid–Base Theory.

      12.2. pH Dependence of Acid–Base Equilibria.

      12.3. Calculation of Solution pH.

      12.4. Acid–Base Titrations.

      12.5. Aqueous Solubility of Weak Acids and Bases.

      12.6. Nonaqueous Acid–Base Behavior.

      12.7. Acid–Base Structure and Strength.

      Problems.

      13. Electrical Work.

      13.1. Introduction.

      13.2. Oxidation–Reduction Reactions.

      13.3. Electrochemical Cells.

      13.4. pH Measurement.

      13.5. Ion-Selective Membrane Electrodes.

      Problems.

      14. Noncovalent Binding Equilibria.

      14.1. Introduction.

      14.2. The Noncovalent Interactions.

      14.3. Binding Models.

      14.4. Measurement of Binding Constants.

      14.5. Applications.

      Problems.

      APPENDIXES.

      Appendix A Physical Constants.

      Appendix B Kinetic Theory of Gases.

      Appendix C Extrathermodynamic Relationships.

      ANSWERS TO PROBLEMS.

      BIBLIOGRAPHY.

      INDEX.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account