F
Trade Review
"In this work, Owens (Institute of Experimental and Applied Physics, Czech Republic) offers an up-to-date, encyclopedic assessment of modern radiation detection. Following a succinct historical retelling of the discovery of radiation and radiation detectors in chapter 1, chapters 2 and 3 present an exhaustive review of solid state physics at the upper-division undergraduate level, similar to material encountered in a one-semester course using C. Kittel’s Introduction to Solid State Physics (8th ed., 2005). However, Owens prefers to use the relevant quantum mechanical results (e.g., Bloch functions) rather than their derivations.
The core of this volume discusses in detail the materials, fabrication, and characterization of semiconductor devices, including growth techniques and contact characteristics (electrode deposition), going far beyond the typical silicon and gallium arsenide examples. The final chapter explores the future of detector materials including nanoscintillators and biological detectors, as well as radiation detection using spintronics.
The addition of extensive references after each chapter and a useful set of appendixes (including calibration sources and a handy table of radionuclides) assures that this volume is well suited for senior engineering and physics students and researchers alike.
Summing Up: Recommended. Upper-division undergraduates through faculty and professionals.
—J. F. Burkhart, emeritus, University of Colorado at Colorado Springs"
Table of Contents
1. Introduction to Radiation and Its Detection: An Historical Perspective 2. Semiconductors 3. Crystal Structure 4. Growth Techniques 5. Contacting Systems 6. Detector Fabrication 7. Detector Characterization 8. Radiation Detection and Measurement 9. Materials Used for General Radiation Detection 10. Current Materials Used for Neutron Detection 11. Performance Limiting Factors 12. Improving Performance 13. Future Directions in Radiation Detection Appendix A: Supplementary Reference Material and Further Reading List Appendix B: Table of Physical Constants Appendix C: Units and Conversions Appendix D: Periodic Table of the Elements Appendix E: Properties of the Elements Appendix F: General Properties of Semiconducting Materials Appendix G: Radiation Environments Appendix H: Table of Radioactive Calibration Sources