Description

Book Synopsis
RANDOM DATA

A TIMELY UPDATE OF THE CLASSIC BOOK ON THE THEORY AND APPLICATION OF RANDOM DATA ANALYSIS

First published in 1971, Random Data served as an authoritative book on the analysis of experimental physical data for engineering and scientific applications. This Fourth Edition features coverage of new developments in random data management and analysis procedures that are applicable to a broad range of applied fields, from the aerospace and automotive industries to oceanographic and biomedical research.

This new edition continues to maintain a balance of classic theory and novel techniques. The authors expand on the treatment of random data analysis theory, including derivations of key relationships in probability and random process theory. The book remains unique in its practical treatment of nonstationary data analysis and nonlinear system analysis, presenting the latest techniques on modern data acquisition, storage, conversion, and qualifi

Table of Contents

Preface xv

Preface to the Third Edition xvii

Glossary of Symbols xix

1. Basic Descriptions and Properties 1

1.1. Deterministic Versus Random Data 1

1.2. Classifications of Deterministic Data 3

1.2.1. Sinusoidal Periodic Data 3

1.2.2. Complex Periodic Data 4

1.2.3. Almost-Periodic Data 6

1.2.4. Transient Nonperiodic Data 7

1.3. Classifications of Random Data 8

1.3.1. Stationary Random Data 9

1.3.2. Ergodic Random Data 11

1.3.3. Nonstationary Random Data 12

1.3.4. Stationary Sample Records 12

1.4. Analysis of Random Data 13

1.4.1. Basic Descriptive Properties 13

1.4.2. Input/Output Relations 19

1.4.3. Error Analysis Criteria 21

1.4.4. Data Analysis Procedures 23

2. Linear Physical Systems 25

2.1. Constant-Parameter Linear Systems 25

2.2. Basic Dynamic Characteristics 26

2.3. Frequency Response Functions 28

2.4. Illustrations of Frequency Response Functions 30

2.4.1. Mechanical Systems 30

2.4.2. Electrical Systems 39

2.4.3. Other Systems 41

2.5. Practical Considerations 41

3. Probability Fundamentals 45

3.1. One Random Variable 45

3.1.1. Probability Density and Distribution Functions 46

3.1.2. Expected Values 49

3.1.3. Change of Variables 50

3.1.4. Moment-Generating and Characteristic Functions 52

3.1.5. Chebyshev’s Inequality 53

3.2. Two Random Variables 54

3.2.1. Expected Values and Correlation Coefficient 55

3.2.2. Distribution for Sum of Two Random Variables 56

3.2.3. Joint Moment-Generating and Characteristic Functions 57

3.3. Gaussian (Normal) Distribution 59

3.3.1. Central Limit Theorem 60

3.3.2. Joint Gaussian (Normal) Distribution 62

3.3.3. Moment-Generating and Characteristic Functions 63

3.3.4. N-Dimensional Gaussian (Normal) Distribution 64

3.4. Rayleigh Distribution 67

3.4.1. Distribution of Envelope and Phase for Narrow Bandwidth Data 67

3.4.2. Distribution of Output Record for Narrow Bandwidth Data 71

3.5. Higher Order Changes of Variables 72

4. Statistical Principles 79

4.1. Sample Values and Parameter Estimation 79

4.2. Important Probability Distribution Functions 82

4.2.1. Gaussian (Normal) Distribution 82

4.2.2. Chi-Square Distribution 83

4.2.3. The t Distribution 84

4.2.4. The F Distribution 84

4.3. Sampling Distributions and Illustrations 85

4.3.1. Distribution of Sample Mean with Known Variance 85

4.3.2. Distribution of Sample Variance 86

4.3.3. Distribution of Sample Mean with Unknown Variance 87

4.3.4. Distribution of Ratio of Two Sample Variances 87

4.4. Confidence Intervals 88

4.5. Hypothesis Tests 91

4.5.1. Chi-Square Goodness-of-Fit Test 94

4.5.2. Nonparametric Trend Test 96

4.6. Correlation and Regression Procedures 99

4.6.1. Linear Correlation Analysis 99

4.6.2. Linear Regression Analysis 102

5. Stationary Random Processes 109

5.1. Basic Concepts 109

5.1.1. Correlation (Covariance) Functions 111

5.1.2. Examples of Autocorrelation Functions 113

5.1.3. Correlation Coefficient Functions 115

5.1.4. Cross-Correlation Function for Time Delay 116

5.2. Spectral Density Functions 118

5.2.1. Spectra via Correlation Functions 118

5.2.2. Spectra via Finite Fourier Transforms 126

5.2.3. Spectra via Filtering–Squaring–Averaging 129

5.2.4. Wavenumber Spectra 132

5.2.5. Coherence Functions 134

5.2.6. Cross-Spectrum for Time Delay 135

5.2.7. Location of Peak Value 137

5.2.8. Uncertainty Relation 138

5.2.9. Uncertainty Principle and Schwartz Inequality 140

5.3. Ergodic and Gaussian Random Processes 142

5.3.1. Ergodic Random Processes 142

5.3.2. Sufficient Condition for Ergodicity 145

5.3.3. Gaussian Random Processes 147

5.3.4. Linear Transformations of Random Processes 149

5.4. Derivative Random Processes 151

5.4.1. Correlation Functions 151

5.4.2. Spectral Density Functions 154

5.5. Level Crossings and Peak Values 155

5.5.1. Expected Number of Level Crossings per Unit Time 155

5.5.2. Peak Probability Functions for Narrow Bandwidth Data 159

5.5.3. Expected Number and Spacing of Positive Peaks 161

5.5.4. Peak Probability Functions for Wide Bandwidth Data 162

5.5.5. Derivations 164

6. Single-Input/Output Relationships 173

6.1. Single-Input/Single-Output Models 173

6.1.1. Correlation and Spectral Relations 173

6.1.2. Ordinary Coherence Functions 180

6.1.3. Models with Extraneous Noise 183

6.1.4. Optimum Frequency Response Functions 187

6.2. Single-Input/Multiple-Output Models 190

6.2.1. Single-Input/Two-Output Model 191

6.2.2. Single-Input/Multiple-Output Model 192

6.2.3. Removal of Extraneous Noise 194

7. Multiple-Input/Output Relationships 201

7.1. Multiple-Input/Single-Output Models 201

7.1.1. General Relationships 202

7.1.2. General Case of Arbitrary Inputs 205

7.1.3. Special Case of Mutually Uncorrelated Inputs 206

7.2. Two-Input/One-Output Models 207

7.2.1. Basic Relationships 207

7.2.2. Optimum Frequency Response Functions 210

7.2.3. Ordinary and Multiple Coherence Functions 212

7.2.4. Conditioned Spectral Density Functions 213

7.2.5. Partial Coherence Functions 219

7.3. General and Conditioned Multiple-Input Models 221

7.3.1. Conditioned Fourier Transforms 223

7.3.2. Conditioned Spectral Density Functions 224

7.3.3. Optimum Systems for Conditioned Inputs 225

7.3.4. Algorithm for Conditioned Spectra 226

7.3.5. Optimum Systems for Original Inputs 229

7.3.6. Partial and Multiple Coherence Functions 231

7.4. Modified Procedure to Solve Multiple-Input/Single-Output Models 232

7.4.1. Three-Input/Single-Output Models 234

7.4.2. Formulas for Three-Input/Single-Output Models 235

7.5. Matrix Formulas for Multiple-Input/Multiple-Output Models 237

7.5.1. Multiple-Input/Multiple-Output Model 238

7.5.2. Multiple-Input/Single-Output Model 241

7.5.3. Model with Output Noise 243

7.5.4. Single-Input/Single-Output Model 245

8. Statistical Errors in Basic Estimates 249

8.1. Definition of Errors 249

8.2. Mean and Mean Square Value Estimates 252

8.2.1. Mean Value Estimates 252

8.2.2. Mean Square Value Estimates 256

8.2.3. Variance Estimates 260

8.3. Probability Density Function Estimates 261

8.3.1. Bias of the Estimate 263

8.3.2. Variance of the Estimate 264

8.3.3. Normalized rms Error 265

8.3.4. Joint Probability Density Function Estimates 265

8.4. Correlation Function Estimates 266

8.4.1. Bandwidth-Limited Gaussian White Noise 269

8.4.2. Noise-to-Signal Considerations 270

8.4.3. Location Estimates of Peak Correlation Values 271

8.5. Autospectral Density Function Estimates 273

8.5.1. Bias of the Estimate 274

8.5.2. Variance of the Estimate 278

8.5.3. Normalized rms Error 278

8.5.4. Estimates from Finite Fourier Transforms 280

8.5.5. Test for Equivalence of Autospectra 282

8.6. Record Length Requirements 284

9. Statistical Errors in Advanced Estimates 289

9.1. Cross-Spectral Density Function Estimates 289

9.1.1. Variance Formulas 292

9.1.2. Covariance Formulas 293

9.1.3. Phase Angle Estimates 297

9.2. Single-Input/Output Model Estimates 298

9.2.1. Bias in Frequency Response Function Estimates 300

9.2.2. Coherent Output Spectrum Estimates 303

9.2.3. Coherence Function Estimates 305

9.2.4. Gain Factor Estimates 308

9.2.5. Phase Factor Estimates 310

9.3. Multiple-Input/Output Model Estimates 312

10. Data Acquisition and Processing 317

10.1. Data Acquisition 318

10.1.1. Transducer and Signal Conditioning 318

10.1.2. Data Transmission 321

10.1.3. Calibration 322

10.1.4. Dynamic Range 324

10.2. Data Conversion 326

10.2.1. Analog-to-Digital Converters 326

10.2.2. Sampling Theorems for Random Records 328

10.2.3. Sampling Rates and Aliasing Errors 330

10.2.4. Quantization and Other Errors 333

10.2.5. Data Storage 335

10.3. Data Qualification 335

10.3.1. Data Classification 336

10.3.2. Data Validation 340

10.3.3. Data Editing 345

10.4. Data Analysis Procedures 349

10.4.1. Procedure for Analyzing Individual Records 349

10.4.2. Procedure for Analyzing Multiple Records 351

11. Data Analysis 359

11.1. Data Preparation 359

11.1.1. Data Standardization 360

11.1.2. Trend Removal 361

11.1.3. Digital Filtering 363

11.2. Fourier Series and Fast Fourier Transforms 366

11.2.1. Standard Fourier Series Procedure 366

11.2.2. Fast Fourier Transforms 368

11.2.3. Cooley–Tukey Procedure 374

11.2.4. Procedures for Real-Valued Records 376

11.2.5. Further Related Formulas 377

11.2.6. Other Algorithms 378

11.3. Probability Density Functions 379

11.4. Autocorrelation Functions 381

11.4.1. Autocorrelation Estimates via Direct Computations 381

11.4.2. Autocorrelation Estimates via FFT Computations 381

11.5. Autospectral Density Functions 386

11.5.1. Autospectra Estimates by Ensemble Averaging 386

11.5.2. Side-Lobe Leakage Suppression Procedures 388

11.5.3. Recommended Computational Steps for Ensemble-Averaged Estimates 395

11.5.4. Zoom Transform Procedures 396

11.5.5. Autospectra Estimates by Frequency Averaging 399

11.5.6. Other Spectral Analysis Procedures 403

11.6. Joint Record Functions 404

11.6.1. Joint Probability Density Functions 404

11.6.2. Cross-Correlation Functions 405

11.6.3. Cross-Spectral Density Functions 406

11.6.4. Frequency Response Functions 407

11.6.5. Unit Impulse Response (Weighting) Functions 408

11.6.6. Ordinary Coherence Functions 408

11.7. Multiple-Input/Output Functions 408

11.7.1. Fourier Transforms and Spectral Functions 409

11.7.2. Conditioned Spectral Density Functions 409

11.7.3. Three-Input/Single-Output Models 411

11.7.4. Functions in Modified Procedure 414

12. Nonstationary Data Analysis 417

12.1. Classes of Nonstationary Data 417

12.2. Probability Structure of Nonstationary Data 419

12.2.1. Higher Order Probability Functions 420

12.2.2. Time-Averaged Probability Functions 421

12.3. Nonstationary Mean Values 422

12.3.1. Independent Samples 424

12.3.2. Correlated Samples 425

12.3.3. Analysis Procedures for Single Records 427

12.4. Nonstationary Mean Square Values 429

12.4.1. Independent Samples 429

12.4.2. Correlated Samples 431

12.4.3. Analysis Procedures for Single Records 432

12.5. Correlation Structure of Nonstationary Data 436

12.5.1. Double-Time Correlation Functions 436

12.5.2. Alternative Double-Time Correlation Functions 437

12.5.3. Analysis Procedures for Single Records 439

12.6. Spectral Structure of Nonstationary Data 442

12.6.1. Double-Frequency Spectral Functions 443

12.6.2. Alternative Double-Frequency Spectral Functions 445

12.6.3. Frequency Time Spectral Functions 449

12.6.4. Analysis Procedures for Single Records 456

12.7. Input/Output Relations for Nonstationary Data 462

12.7.1. Nonstationary Input and Time-Varying Linear System 463

12.7.2. Results for Special Cases 464

12.7.3. Frequency–Time Spectral Input/Output Relations 465

12.7.4. Energy Spectral Input/Output Relations 467

13. The Hilbert Transform 473

13.1. Hilbert Transforms for General Records 473

13.1.1. Computation of Hilbert Transforms 476

13.1.2. Examples of Hilbert Transforms 477

13.1.3. Properties of Hilbert Transforms 478

13.1.4. Relation to Physically Realizable Systems 480

13.2. Hilbert Transforms for Correlation Functions 484

13.2.1. Correlation and Envelope Definitions 484

13.2.2. Hilbert Transform Relations 486

13.2.3. Analytic Signals for Correlation Functions 486

13.2.4. Nondispersive Propagation Problems 489

13.2.5. Dispersive Propagation Problems 495

13.3. Envelope Detection Followed by Correlation 498

14. Nonlinear System Analysis 505

14.1. Zero-Memory and Finite-Memory Nonlinear Systems 505

14.2. Square-Law and Cubic Nonlinear Models 507

14.3. Volterra Nonlinear Models 509

14.4. SI/SO Models with Parallel Linear and Nonlinear Systems 510

14.5. SI/SO Models with Nonlinear Feedback 512

14.6. Recommended Nonlinear Models and Techniques 514

14.7. Duffing SDOF Nonlinear System 515

14.7.1. Analysis for SDOF Linear System 516

14.7.2. Analysis for Duffing SDOF Nonlinear System 518

14.8. Nonlinear Drift Force Model 520

14.8.1. Basic Formulas for Proposed Model 521

14.8.2. Spectral Decomposition Problem 523

14.8.3. System Identification Problem 524

Bibliography 527

Appendix A: Statistical Tables 533

Appendix B: Definitions for Random Data Analysis 545

List of Figures 557

List of Tables 565

List of Examples 567

Answers to Problems in Random Data 571

Index 599

Random Data

Product form

£138.56

Includes FREE delivery

RRP £153.95 – you save £15.39 (9%)

Order before 4pm today for delivery by Tue 23 Dec 2025.

A Hardback by Julius S. Bendat, Allan G. Piersol

15 in stock


    View other formats and editions of Random Data by Julius S. Bendat

    Publisher: John Wiley & Sons Inc
    Publication Date: 05/03/2010
    ISBN13: 9780470248775, 978-0470248775
    ISBN10: 0470248777

    Description

    Book Synopsis
    RANDOM DATA

    A TIMELY UPDATE OF THE CLASSIC BOOK ON THE THEORY AND APPLICATION OF RANDOM DATA ANALYSIS

    First published in 1971, Random Data served as an authoritative book on the analysis of experimental physical data for engineering and scientific applications. This Fourth Edition features coverage of new developments in random data management and analysis procedures that are applicable to a broad range of applied fields, from the aerospace and automotive industries to oceanographic and biomedical research.

    This new edition continues to maintain a balance of classic theory and novel techniques. The authors expand on the treatment of random data analysis theory, including derivations of key relationships in probability and random process theory. The book remains unique in its practical treatment of nonstationary data analysis and nonlinear system analysis, presenting the latest techniques on modern data acquisition, storage, conversion, and qualifi

    Table of Contents

    Preface xv

    Preface to the Third Edition xvii

    Glossary of Symbols xix

    1. Basic Descriptions and Properties 1

    1.1. Deterministic Versus Random Data 1

    1.2. Classifications of Deterministic Data 3

    1.2.1. Sinusoidal Periodic Data 3

    1.2.2. Complex Periodic Data 4

    1.2.3. Almost-Periodic Data 6

    1.2.4. Transient Nonperiodic Data 7

    1.3. Classifications of Random Data 8

    1.3.1. Stationary Random Data 9

    1.3.2. Ergodic Random Data 11

    1.3.3. Nonstationary Random Data 12

    1.3.4. Stationary Sample Records 12

    1.4. Analysis of Random Data 13

    1.4.1. Basic Descriptive Properties 13

    1.4.2. Input/Output Relations 19

    1.4.3. Error Analysis Criteria 21

    1.4.4. Data Analysis Procedures 23

    2. Linear Physical Systems 25

    2.1. Constant-Parameter Linear Systems 25

    2.2. Basic Dynamic Characteristics 26

    2.3. Frequency Response Functions 28

    2.4. Illustrations of Frequency Response Functions 30

    2.4.1. Mechanical Systems 30

    2.4.2. Electrical Systems 39

    2.4.3. Other Systems 41

    2.5. Practical Considerations 41

    3. Probability Fundamentals 45

    3.1. One Random Variable 45

    3.1.1. Probability Density and Distribution Functions 46

    3.1.2. Expected Values 49

    3.1.3. Change of Variables 50

    3.1.4. Moment-Generating and Characteristic Functions 52

    3.1.5. Chebyshev’s Inequality 53

    3.2. Two Random Variables 54

    3.2.1. Expected Values and Correlation Coefficient 55

    3.2.2. Distribution for Sum of Two Random Variables 56

    3.2.3. Joint Moment-Generating and Characteristic Functions 57

    3.3. Gaussian (Normal) Distribution 59

    3.3.1. Central Limit Theorem 60

    3.3.2. Joint Gaussian (Normal) Distribution 62

    3.3.3. Moment-Generating and Characteristic Functions 63

    3.3.4. N-Dimensional Gaussian (Normal) Distribution 64

    3.4. Rayleigh Distribution 67

    3.4.1. Distribution of Envelope and Phase for Narrow Bandwidth Data 67

    3.4.2. Distribution of Output Record for Narrow Bandwidth Data 71

    3.5. Higher Order Changes of Variables 72

    4. Statistical Principles 79

    4.1. Sample Values and Parameter Estimation 79

    4.2. Important Probability Distribution Functions 82

    4.2.1. Gaussian (Normal) Distribution 82

    4.2.2. Chi-Square Distribution 83

    4.2.3. The t Distribution 84

    4.2.4. The F Distribution 84

    4.3. Sampling Distributions and Illustrations 85

    4.3.1. Distribution of Sample Mean with Known Variance 85

    4.3.2. Distribution of Sample Variance 86

    4.3.3. Distribution of Sample Mean with Unknown Variance 87

    4.3.4. Distribution of Ratio of Two Sample Variances 87

    4.4. Confidence Intervals 88

    4.5. Hypothesis Tests 91

    4.5.1. Chi-Square Goodness-of-Fit Test 94

    4.5.2. Nonparametric Trend Test 96

    4.6. Correlation and Regression Procedures 99

    4.6.1. Linear Correlation Analysis 99

    4.6.2. Linear Regression Analysis 102

    5. Stationary Random Processes 109

    5.1. Basic Concepts 109

    5.1.1. Correlation (Covariance) Functions 111

    5.1.2. Examples of Autocorrelation Functions 113

    5.1.3. Correlation Coefficient Functions 115

    5.1.4. Cross-Correlation Function for Time Delay 116

    5.2. Spectral Density Functions 118

    5.2.1. Spectra via Correlation Functions 118

    5.2.2. Spectra via Finite Fourier Transforms 126

    5.2.3. Spectra via Filtering–Squaring–Averaging 129

    5.2.4. Wavenumber Spectra 132

    5.2.5. Coherence Functions 134

    5.2.6. Cross-Spectrum for Time Delay 135

    5.2.7. Location of Peak Value 137

    5.2.8. Uncertainty Relation 138

    5.2.9. Uncertainty Principle and Schwartz Inequality 140

    5.3. Ergodic and Gaussian Random Processes 142

    5.3.1. Ergodic Random Processes 142

    5.3.2. Sufficient Condition for Ergodicity 145

    5.3.3. Gaussian Random Processes 147

    5.3.4. Linear Transformations of Random Processes 149

    5.4. Derivative Random Processes 151

    5.4.1. Correlation Functions 151

    5.4.2. Spectral Density Functions 154

    5.5. Level Crossings and Peak Values 155

    5.5.1. Expected Number of Level Crossings per Unit Time 155

    5.5.2. Peak Probability Functions for Narrow Bandwidth Data 159

    5.5.3. Expected Number and Spacing of Positive Peaks 161

    5.5.4. Peak Probability Functions for Wide Bandwidth Data 162

    5.5.5. Derivations 164

    6. Single-Input/Output Relationships 173

    6.1. Single-Input/Single-Output Models 173

    6.1.1. Correlation and Spectral Relations 173

    6.1.2. Ordinary Coherence Functions 180

    6.1.3. Models with Extraneous Noise 183

    6.1.4. Optimum Frequency Response Functions 187

    6.2. Single-Input/Multiple-Output Models 190

    6.2.1. Single-Input/Two-Output Model 191

    6.2.2. Single-Input/Multiple-Output Model 192

    6.2.3. Removal of Extraneous Noise 194

    7. Multiple-Input/Output Relationships 201

    7.1. Multiple-Input/Single-Output Models 201

    7.1.1. General Relationships 202

    7.1.2. General Case of Arbitrary Inputs 205

    7.1.3. Special Case of Mutually Uncorrelated Inputs 206

    7.2. Two-Input/One-Output Models 207

    7.2.1. Basic Relationships 207

    7.2.2. Optimum Frequency Response Functions 210

    7.2.3. Ordinary and Multiple Coherence Functions 212

    7.2.4. Conditioned Spectral Density Functions 213

    7.2.5. Partial Coherence Functions 219

    7.3. General and Conditioned Multiple-Input Models 221

    7.3.1. Conditioned Fourier Transforms 223

    7.3.2. Conditioned Spectral Density Functions 224

    7.3.3. Optimum Systems for Conditioned Inputs 225

    7.3.4. Algorithm for Conditioned Spectra 226

    7.3.5. Optimum Systems for Original Inputs 229

    7.3.6. Partial and Multiple Coherence Functions 231

    7.4. Modified Procedure to Solve Multiple-Input/Single-Output Models 232

    7.4.1. Three-Input/Single-Output Models 234

    7.4.2. Formulas for Three-Input/Single-Output Models 235

    7.5. Matrix Formulas for Multiple-Input/Multiple-Output Models 237

    7.5.1. Multiple-Input/Multiple-Output Model 238

    7.5.2. Multiple-Input/Single-Output Model 241

    7.5.3. Model with Output Noise 243

    7.5.4. Single-Input/Single-Output Model 245

    8. Statistical Errors in Basic Estimates 249

    8.1. Definition of Errors 249

    8.2. Mean and Mean Square Value Estimates 252

    8.2.1. Mean Value Estimates 252

    8.2.2. Mean Square Value Estimates 256

    8.2.3. Variance Estimates 260

    8.3. Probability Density Function Estimates 261

    8.3.1. Bias of the Estimate 263

    8.3.2. Variance of the Estimate 264

    8.3.3. Normalized rms Error 265

    8.3.4. Joint Probability Density Function Estimates 265

    8.4. Correlation Function Estimates 266

    8.4.1. Bandwidth-Limited Gaussian White Noise 269

    8.4.2. Noise-to-Signal Considerations 270

    8.4.3. Location Estimates of Peak Correlation Values 271

    8.5. Autospectral Density Function Estimates 273

    8.5.1. Bias of the Estimate 274

    8.5.2. Variance of the Estimate 278

    8.5.3. Normalized rms Error 278

    8.5.4. Estimates from Finite Fourier Transforms 280

    8.5.5. Test for Equivalence of Autospectra 282

    8.6. Record Length Requirements 284

    9. Statistical Errors in Advanced Estimates 289

    9.1. Cross-Spectral Density Function Estimates 289

    9.1.1. Variance Formulas 292

    9.1.2. Covariance Formulas 293

    9.1.3. Phase Angle Estimates 297

    9.2. Single-Input/Output Model Estimates 298

    9.2.1. Bias in Frequency Response Function Estimates 300

    9.2.2. Coherent Output Spectrum Estimates 303

    9.2.3. Coherence Function Estimates 305

    9.2.4. Gain Factor Estimates 308

    9.2.5. Phase Factor Estimates 310

    9.3. Multiple-Input/Output Model Estimates 312

    10. Data Acquisition and Processing 317

    10.1. Data Acquisition 318

    10.1.1. Transducer and Signal Conditioning 318

    10.1.2. Data Transmission 321

    10.1.3. Calibration 322

    10.1.4. Dynamic Range 324

    10.2. Data Conversion 326

    10.2.1. Analog-to-Digital Converters 326

    10.2.2. Sampling Theorems for Random Records 328

    10.2.3. Sampling Rates and Aliasing Errors 330

    10.2.4. Quantization and Other Errors 333

    10.2.5. Data Storage 335

    10.3. Data Qualification 335

    10.3.1. Data Classification 336

    10.3.2. Data Validation 340

    10.3.3. Data Editing 345

    10.4. Data Analysis Procedures 349

    10.4.1. Procedure for Analyzing Individual Records 349

    10.4.2. Procedure for Analyzing Multiple Records 351

    11. Data Analysis 359

    11.1. Data Preparation 359

    11.1.1. Data Standardization 360

    11.1.2. Trend Removal 361

    11.1.3. Digital Filtering 363

    11.2. Fourier Series and Fast Fourier Transforms 366

    11.2.1. Standard Fourier Series Procedure 366

    11.2.2. Fast Fourier Transforms 368

    11.2.3. Cooley–Tukey Procedure 374

    11.2.4. Procedures for Real-Valued Records 376

    11.2.5. Further Related Formulas 377

    11.2.6. Other Algorithms 378

    11.3. Probability Density Functions 379

    11.4. Autocorrelation Functions 381

    11.4.1. Autocorrelation Estimates via Direct Computations 381

    11.4.2. Autocorrelation Estimates via FFT Computations 381

    11.5. Autospectral Density Functions 386

    11.5.1. Autospectra Estimates by Ensemble Averaging 386

    11.5.2. Side-Lobe Leakage Suppression Procedures 388

    11.5.3. Recommended Computational Steps for Ensemble-Averaged Estimates 395

    11.5.4. Zoom Transform Procedures 396

    11.5.5. Autospectra Estimates by Frequency Averaging 399

    11.5.6. Other Spectral Analysis Procedures 403

    11.6. Joint Record Functions 404

    11.6.1. Joint Probability Density Functions 404

    11.6.2. Cross-Correlation Functions 405

    11.6.3. Cross-Spectral Density Functions 406

    11.6.4. Frequency Response Functions 407

    11.6.5. Unit Impulse Response (Weighting) Functions 408

    11.6.6. Ordinary Coherence Functions 408

    11.7. Multiple-Input/Output Functions 408

    11.7.1. Fourier Transforms and Spectral Functions 409

    11.7.2. Conditioned Spectral Density Functions 409

    11.7.3. Three-Input/Single-Output Models 411

    11.7.4. Functions in Modified Procedure 414

    12. Nonstationary Data Analysis 417

    12.1. Classes of Nonstationary Data 417

    12.2. Probability Structure of Nonstationary Data 419

    12.2.1. Higher Order Probability Functions 420

    12.2.2. Time-Averaged Probability Functions 421

    12.3. Nonstationary Mean Values 422

    12.3.1. Independent Samples 424

    12.3.2. Correlated Samples 425

    12.3.3. Analysis Procedures for Single Records 427

    12.4. Nonstationary Mean Square Values 429

    12.4.1. Independent Samples 429

    12.4.2. Correlated Samples 431

    12.4.3. Analysis Procedures for Single Records 432

    12.5. Correlation Structure of Nonstationary Data 436

    12.5.1. Double-Time Correlation Functions 436

    12.5.2. Alternative Double-Time Correlation Functions 437

    12.5.3. Analysis Procedures for Single Records 439

    12.6. Spectral Structure of Nonstationary Data 442

    12.6.1. Double-Frequency Spectral Functions 443

    12.6.2. Alternative Double-Frequency Spectral Functions 445

    12.6.3. Frequency Time Spectral Functions 449

    12.6.4. Analysis Procedures for Single Records 456

    12.7. Input/Output Relations for Nonstationary Data 462

    12.7.1. Nonstationary Input and Time-Varying Linear System 463

    12.7.2. Results for Special Cases 464

    12.7.3. Frequency–Time Spectral Input/Output Relations 465

    12.7.4. Energy Spectral Input/Output Relations 467

    13. The Hilbert Transform 473

    13.1. Hilbert Transforms for General Records 473

    13.1.1. Computation of Hilbert Transforms 476

    13.1.2. Examples of Hilbert Transforms 477

    13.1.3. Properties of Hilbert Transforms 478

    13.1.4. Relation to Physically Realizable Systems 480

    13.2. Hilbert Transforms for Correlation Functions 484

    13.2.1. Correlation and Envelope Definitions 484

    13.2.2. Hilbert Transform Relations 486

    13.2.3. Analytic Signals for Correlation Functions 486

    13.2.4. Nondispersive Propagation Problems 489

    13.2.5. Dispersive Propagation Problems 495

    13.3. Envelope Detection Followed by Correlation 498

    14. Nonlinear System Analysis 505

    14.1. Zero-Memory and Finite-Memory Nonlinear Systems 505

    14.2. Square-Law and Cubic Nonlinear Models 507

    14.3. Volterra Nonlinear Models 509

    14.4. SI/SO Models with Parallel Linear and Nonlinear Systems 510

    14.5. SI/SO Models with Nonlinear Feedback 512

    14.6. Recommended Nonlinear Models and Techniques 514

    14.7. Duffing SDOF Nonlinear System 515

    14.7.1. Analysis for SDOF Linear System 516

    14.7.2. Analysis for Duffing SDOF Nonlinear System 518

    14.8. Nonlinear Drift Force Model 520

    14.8.1. Basic Formulas for Proposed Model 521

    14.8.2. Spectral Decomposition Problem 523

    14.8.3. System Identification Problem 524

    Bibliography 527

    Appendix A: Statistical Tables 533

    Appendix B: Definitions for Random Data Analysis 545

    List of Figures 557

    List of Tables 565

    List of Examples 567

    Answers to Problems in Random Data 571

    Index 599

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account