Description

Book Synopsis
PHYSICS OF SOLAR ENERGY AND ENERGY STORAGE

Join the fight for a renewable world with this indispensable introduction

Solar energy is one of the most essential tools in the fight to create a sustainable future. A wholly renewable and cost-effective energy source capable of providing domestic, business, and industrial energy, solar energy is expected to become a $223 billion a year industry by 2026. The future of global energy production demands researchers and engineers who understand the physics of harnessing, storing, and distributing solar energy.

Physics of Solar Energy and Energy Storage begins to meet this demand, with a thorough, accessible overview of the required fundamentals. Now fully updated to reflect the past decade of research amidst a growing understanding of the scale of our collective challenge, it promises to train the next generation of researchers and engineers who will join this vital effort.

Readers of the second edition of

Table of Contents

List of Figures xiii

List of Tables xix

Preface to the Second Edition xxi

Preface to the First Edition xxiii

Chapter 1: Introduction 1

1.1 Shaping a More Livable World 1

1.1.1 Fossil Fuels and Beyond 2

1.1.2 The Paris Agreement 4

1.1.3 Phasing Out Coal-Generated Power 5

1.1.4 Phasing Out ICE Vehicles 6

1.1.5 Economics of Renewable Energy 7

1.2 Solar Energy 9

1.3 Solar Photovoltaics 12

1.3.1 Birth of Modern Solar Cells 12

1.3.2 Basic Terms and Concepts on Solar Cells 14

1.3.3 Types of Solar Cells 15

1.4 A Rechargeable Battery Primer 16

1.4.1 Whittingham’s Initial Invention 17

1.4.2 Goodenough’s Improved Cathode 18

1.4.3 Yoshino’s Improved Anode 19

1.4.4 Current Status 20

1.5 Other Renewable Energy Resources 21

1.5.1 Hydroelectric Power 21

1.5.2 Wind Power 23

1.5.3 Biomass and Bioenergy 26

1.5.4 Shallow Geothermal Energy 31

1.5.5 Deep Geothermal Energy 32

1.5.6 Tidal Energy 34

Chapter 2: Nature of Solar Radiation 37

2.1 Light as Electromagnetic Waves 37

2.1.1 Maxwell’s Equations 38

2.1.2 Vector Potential and Scalar Potential 39

2.1.3 Electromagnetic Waves 40

2.1.4 Plane Waves and Polarization 41

2.1.5 Sinusoidal Waves 42

2.2 Interface Phenomena 43

2.2.1 Relative Dielectric Constant and Refractive Index 43

2.2.2 Energy Balance and Poynting Vector 45

2.2.3 Fresnel Formulas 46

2.2.4 Optics of metals 48

2.3 Blackbody Radiation 51

2.3.1 Rayleigh–Jeans Law 52

2.3.2 Planck Formula and Stefan–Boltzmann’s Law 55

2.4 Photoelectric Effect and Concept of Photons 58

2.4.1 Einstein’s Theory of Photons 59

2.4.2 Millikan’s Experimental Verification 61

2.4.3 Electron as a Field 61

2.5 Einstein’s Derivation of Blackbody Formula 63

Chapter 3: Origin of Solar Energy 67

3.1 Basic Parameters of the Sun 68

3.1.1 Distance 68

3.1.2 Mass 68

3.1.3 Radius 68

3.1.4 Emission Power 69

3.1.5 Surface Temperature 69

3.1.6 Composition 70

3.2 Kelvin–Helmholtz Time Scale 70

3.3 Energy Source of the Sun 72

3.3.1 The p − p Chain 73

3.3.2 Carbon Chain 74

3.3.3 Internal Structure of the Sun 74

Chapter 4: Tracking Sunlight 77

4.1 Rotation of Earth: Latitude and Longitude 77

4.2 Celestial Sphere 78

4.2.1 Coordinate Transformation: Cartesian Coordinates 80

4.2.2 Coordinate Transformation: Spherical Trigonometry 82

4.3 Treatment in Solar Time 84

4.3.1 Obliquity and Declination of the Sun 84

4.3.2 Sunrise and Sunset Time 86

4.3.3 Direct Solar Radiation on an Arbitrary Surface 87

4.3.4 Direct Daily Solar Radiation Energy 88

4.3.5 The 24 Solar Terms 92

4.4 Treatment in Standard Time 94

4.4.1 Sidereal Time and Solar Time 94

4.4.2 Right Ascension of the Sun 95

4.4.3 Time Difference Originated from Obliquity 96

4.4.4 Aphelion and Perihelion 98

4.4.5 Time Difference Originated from Eccentricity 98

4.4.6 Equation of Time 99

4.4.7 Declination of the Sun 102

4.4.8 Analemma 102

Chapter 5: Interaction of Sunlight with Earth 105

5.1 Interaction of Radiation with Matter 105

5.1.1 Absorptivity, Reflectivity, and Transmittivity 105

5.1.2 Emissivity and Kirchhoff’s Law 106

5.1.3 Bouguer–Lambert–Beer’s Law 106

5.2 Interaction of Sunlight with Atmosphere 108

5.2.1 AM1.5 Reference Solar Spectral Irradiance 109

5.2.2 Annual Insolation Map 110

5.3 Penetration of Solar Energy into Earth 111

Chapter 6: Thermodynamics of Solar Energy 117

6.1 Definitions 117

6.2 First Law of Thermodynamics 118

6.3 Second Law of Thermodynamics 121

6.3.1 Carnot Cycle 121

6.3.2 Thermodynamic Temperature 124

6.3.3 Entropy 125

6.4 Thermodynamic Functions 125

6.4.1 Free Energy 126

6.4.2 Enthalpy 126

6.4.3 Gibbs Free Energy 127

6.4.4 Chemical Potential 127

6.5 Ideal Gas 127

6.6 Ground Source Heat Pump and Air Conditioning 131

6.6.1 Theory 131

6.6.2 Coefficient of Performance 133

6.6.3 Vapor-Compression Heat Pump and Refrigerator 133

6.6.4 Ground Heat Exchanger 136

Chapter 7: A Quantum Mechanics Primer 139

7.1 The Static Schrödinger Equation 140

7.1.1 Wavefunctions in a One-Dimensional Potential Well 142

7.1.2 The Bra-and-Ket Notations 144

7.1.3 The Harmonic Oscillator 146

7.1.4 The Hydrogen Atom 151

7.1.5 The Stern–Gerlach Experiment 159

7.1.6 Nomenclature of Atomic States 160

7.1.7 Degeneracy and Wavefunction Hybridization 160

7.2 Many-Electron Systems 163

7.2.1 The Self-Consistent Field (SCF) Method 164

7.2.2 Slater Determinates and the Hartree-Fock Method 165

7.2.3 Density-Functional Theory (DFT) 165

7.2.4 HOMO and LUMO 166

7.3 The Chemical Bond 169

7.3.1 Bonding Energy and Antibonding Energy 169

7.3.2 The Hydrogen Molecular Ion 170

7.3.3 Types of Chemical Bonds 171

7.4 The Solid State 174

7.4.1 Bloch Waves and Energy Bands 174

7.4.2 Effective Mass 177

7.4.3 Conductor, Semiconductor, and Insulator 177

7.4.4 Semiconductors 179

7.4.5 The Band Structure of Silicon 180

7.5 The Dynamic Schrödinger Equation 181

7.5.1 A Heuristic Derivation 181

7.5.2 Reduction to Static Schrödinger’s Equation 184

7.5.3 Meaning of the Time-Dependent Phase Factor 184

7.5.4 Interaction with Radiation 185

Chapter 8: pn-Junctions 189

8.1 Semiconductors 189

8.1.1 Electrons and Holes 189

8.1.2 p-Type and n-Type Semiconductors 191

8.2 Formation of a pn-Junction 194

8.3 Analysis of pn-Junctions 198

8.3.1 Effect of Bias Voltage 199

8.3.2 Lifetime of Excess Minority Carriers 199

8.3.3 Junction Current 200

8.3.4 Shockley Equation 201

8.4 Light-Emitting Diodes for Illumination 202

8.4.1 Invention of the Blue LED 203

8.4.2 The Working Principle 204

8.4.3 Wavelength Engineering 206

8.4.4 The Freestanding GaN Substrate 208

8.4.5 A Brief Sketch of History 208

Chapter 9: Semiconductor Solar Cells 211

9.1 Basic Concepts 211

9.1.1 Generating Electric Power 214

9.1.2 Solar Cell Equation 215

9.1.3 Maximum Power and Fill Factor 215

9.2 The Shockley–Queisser Limit 217

9.2.1 Ultimate Efficiency 218

9.2.2 Role of Recombination Time 220

9.2.3 Detailed-Balance Treatment 220

9.2.4 Nominal Efficiency 223

9.2.5 Shockley–Queisser Efficiency Limit 223

9.2.6 Efficiency Limit for AM1.5 Radiation 224

9.3 Nonradiative Recombination Processes 225

9.3.1 Auger Recombination 227

9.3.2 Trap-State Recombination 227

9.3.3 Surface-State Recombination 228

9.4 Antireflection Coatings 228

9.4.1 Matrix Method 229

9.4.2 Single-Layer Antireflection Coating 231

9.4.3 Double-Layer Antireflection Coatings 233

9.5 Crystalline Silicon Solar Cells 234

9.5.1 Production of Pure Silicon 235

9.5.2 Solar Cell Design and Processing 236

9.5.3 Module Fabrication 237

9.6 Thin-Film Solar Cells 238

9.6.1 CdTe Solar Cells 238

9.6.2 CIGS Solar Cells 239

9.6.3 Amorphous Silicon Thin-Film Solar Cells 240

9.7 Tandem Solar Cells 241

Chapter 10: Solar Photochemistry 245

10.1 Physics of Photosynthesis 245

10.1.1 Chlorophyll 246

10.1.2 ATP: Universal Energy Currency of Life 248

10.1.3 NADPH and NADP + 248

10.1.4 Calvin Cycle 249

10.1.5 C4 Plants versus C3 Plants 250

10.1.6 Chloroplast 250

10.1.7 Efficiency of Photosynthesis 251

10.2 Artificial Photosynthesis 253

10.3 Genetically Engineered Algae 253

10.4 Dye-Sensitized Solar Cells 253

10.5 Bilayer Organic Solar Cells 256

Chapter 11: Solar Thermal Energy 259

11.1 Early Solar Thermal Applications 259

11.2 Solar Heat Collectors 262

11.2.1 Selective Absorption Surface 262

11.2.2 Flat-Plate Collectors 266

11.2.3 All-Glass Vacuum-Tube Collectors 268

11.2.4 Thermosiphon Solar Heat Collectors 269

11.2.5 High-Pressure Vacuum Tube Collectors 271

11.3 Solar Water Heaters 271

11.4 Solar Thermal Power Systems 272

11.4.1 Parabolic Trough Concentrator 273

11.4.2 Central Receiver with Heliostats 274

11.4.3 Paraboloidal Dish Concentrator with Stirling Engine 274

Chapter 12: Physical Energy Storage 278

12.1 Pumped Hydro Storage 278

12.2 Sensible Heat Energy Storage 279

12.2.1 Water 281

12.2.2 Solid Sensible Heat Storage Materials 282

12.2.3 Synthetic Oil in Packed Beds 283

12.3 Phase Transition Thermal Storage 283

12.3.1 Water–Ice Systems 284

12.3.2 Paraffin Wax and Other Organic Materials 286

12.3.3 Salt Hydrates 286

Chapter 13: Rechargeable Batteries 288

13.1 An Electrochemistry Primer 288

13.1.1 Basic Terms and Definitions 288

13.1.2 Oxidation State 290

13.1.3 Standard Oxidation-Reduction Potentials 291

13.2 Lithium-Ion Batteries 292

13.2.1 Benefit to Humankind 292

13.2.2 Intercalation of Metal Ions 294

13.2.3 The Cathode Materials 296

13.2.4 The Anode Materials 299

13.2.5 Electrolytes 300

13.2.6 The Separator 301

13.2.7 Packaging 302

13.2.8 Mineral Resource of Lithium 305

13.3 Sodium-Ion Batteries 306

13.3.1 The Cathode Materials 307

13.3.2 The Anode Materials 309

13.3.3 Rest of the System 310

13.4 Traditional Rechargeable Batteries 310

13.4.1 Lead–Acid Batteries 310

13.4.2 Nickel Metal Hydride Batteries 311

Chapter 14: Building with Sunshine 313

14.1 Early Solar Architecture 314

14.1.1 Ancient Solar Architecture 314

14.1.2 Holistic Architecture in Rural China 314

14.2 Building Materials 315

14.2.1 Thermal Resistance 316

14.2.2 Specific Thermal Resistance 316

14.2.3 Heat Transfer Coefficient: The U-Value 317

14.2.4 Thermal Mass 318

14.2.5 Glazing 318

14.3 Example of Holistic Design 320

Appendix A: Energy Unit Conversion 325

Appendix B: Spherical Trigonometry 327

B.1 Spherical Triangle 327

B.2 Cosine Formula 328

B.3 Sine Formula 329

B.4 Formula C 331

Appendix C: Vector Analysis and Determinants 333

C.1 Vector Analysis 333

C.2 Determinants 334

Appendix D: Real Spherical Harmonics 336

D.1 The Spherical Coordinate System 336

D.2 Spherical Harmonics 337

Appendix E: Complex Numbers 341

E.1 Definition of Complex Numbers 341

E.2 The Euler Formula 342

Appendix F: Statistics of Particles 343

F.1 Maxwell–Boltzmann Statistics 344

F.2 Fermi–Dirac Statistics 345

F.3 Bose–Einstein Statistics 346

Appendix G: Measurement in Quantum Mechanics 347

G.1 The Measurement Postulate 347

G.2 Experiments in Position Detection 349

G.3 Tomographic Imaging of Wavefunctions 351

G.4 Einstein’s Opinion on Quantum Mechanics 353

G.5 A Modern View of Schrödinger’s Cat 353

G.6 A Natural Presentation of Quantum Mechanics 354

Bibliography 357

Index 365

Physics of Solar Energy and Energy Storage

Product form

£99.00

Includes FREE delivery

RRP £110.00 – you save £11.00 (10%)

Order before 4pm tomorrow for delivery by Mon 29 Dec 2025.

A Hardback by C. Julian Chen

15 in stock


    View other formats and editions of Physics of Solar Energy and Energy Storage by C. Julian Chen

    Publisher: John Wiley & Sons Inc
    Publication Date: 19/01/2024
    ISBN13: 9781394203611, 978-1394203611
    ISBN10: 1394203616

    Description

    Book Synopsis
    PHYSICS OF SOLAR ENERGY AND ENERGY STORAGE

    Join the fight for a renewable world with this indispensable introduction

    Solar energy is one of the most essential tools in the fight to create a sustainable future. A wholly renewable and cost-effective energy source capable of providing domestic, business, and industrial energy, solar energy is expected to become a $223 billion a year industry by 2026. The future of global energy production demands researchers and engineers who understand the physics of harnessing, storing, and distributing solar energy.

    Physics of Solar Energy and Energy Storage begins to meet this demand, with a thorough, accessible overview of the required fundamentals. Now fully updated to reflect the past decade of research amidst a growing understanding of the scale of our collective challenge, it promises to train the next generation of researchers and engineers who will join this vital effort.

    Readers of the second edition of

    Table of Contents

    List of Figures xiii

    List of Tables xix

    Preface to the Second Edition xxi

    Preface to the First Edition xxiii

    Chapter 1: Introduction 1

    1.1 Shaping a More Livable World 1

    1.1.1 Fossil Fuels and Beyond 2

    1.1.2 The Paris Agreement 4

    1.1.3 Phasing Out Coal-Generated Power 5

    1.1.4 Phasing Out ICE Vehicles 6

    1.1.5 Economics of Renewable Energy 7

    1.2 Solar Energy 9

    1.3 Solar Photovoltaics 12

    1.3.1 Birth of Modern Solar Cells 12

    1.3.2 Basic Terms and Concepts on Solar Cells 14

    1.3.3 Types of Solar Cells 15

    1.4 A Rechargeable Battery Primer 16

    1.4.1 Whittingham’s Initial Invention 17

    1.4.2 Goodenough’s Improved Cathode 18

    1.4.3 Yoshino’s Improved Anode 19

    1.4.4 Current Status 20

    1.5 Other Renewable Energy Resources 21

    1.5.1 Hydroelectric Power 21

    1.5.2 Wind Power 23

    1.5.3 Biomass and Bioenergy 26

    1.5.4 Shallow Geothermal Energy 31

    1.5.5 Deep Geothermal Energy 32

    1.5.6 Tidal Energy 34

    Chapter 2: Nature of Solar Radiation 37

    2.1 Light as Electromagnetic Waves 37

    2.1.1 Maxwell’s Equations 38

    2.1.2 Vector Potential and Scalar Potential 39

    2.1.3 Electromagnetic Waves 40

    2.1.4 Plane Waves and Polarization 41

    2.1.5 Sinusoidal Waves 42

    2.2 Interface Phenomena 43

    2.2.1 Relative Dielectric Constant and Refractive Index 43

    2.2.2 Energy Balance and Poynting Vector 45

    2.2.3 Fresnel Formulas 46

    2.2.4 Optics of metals 48

    2.3 Blackbody Radiation 51

    2.3.1 Rayleigh–Jeans Law 52

    2.3.2 Planck Formula and Stefan–Boltzmann’s Law 55

    2.4 Photoelectric Effect and Concept of Photons 58

    2.4.1 Einstein’s Theory of Photons 59

    2.4.2 Millikan’s Experimental Verification 61

    2.4.3 Electron as a Field 61

    2.5 Einstein’s Derivation of Blackbody Formula 63

    Chapter 3: Origin of Solar Energy 67

    3.1 Basic Parameters of the Sun 68

    3.1.1 Distance 68

    3.1.2 Mass 68

    3.1.3 Radius 68

    3.1.4 Emission Power 69

    3.1.5 Surface Temperature 69

    3.1.6 Composition 70

    3.2 Kelvin–Helmholtz Time Scale 70

    3.3 Energy Source of the Sun 72

    3.3.1 The p − p Chain 73

    3.3.2 Carbon Chain 74

    3.3.3 Internal Structure of the Sun 74

    Chapter 4: Tracking Sunlight 77

    4.1 Rotation of Earth: Latitude and Longitude 77

    4.2 Celestial Sphere 78

    4.2.1 Coordinate Transformation: Cartesian Coordinates 80

    4.2.2 Coordinate Transformation: Spherical Trigonometry 82

    4.3 Treatment in Solar Time 84

    4.3.1 Obliquity and Declination of the Sun 84

    4.3.2 Sunrise and Sunset Time 86

    4.3.3 Direct Solar Radiation on an Arbitrary Surface 87

    4.3.4 Direct Daily Solar Radiation Energy 88

    4.3.5 The 24 Solar Terms 92

    4.4 Treatment in Standard Time 94

    4.4.1 Sidereal Time and Solar Time 94

    4.4.2 Right Ascension of the Sun 95

    4.4.3 Time Difference Originated from Obliquity 96

    4.4.4 Aphelion and Perihelion 98

    4.4.5 Time Difference Originated from Eccentricity 98

    4.4.6 Equation of Time 99

    4.4.7 Declination of the Sun 102

    4.4.8 Analemma 102

    Chapter 5: Interaction of Sunlight with Earth 105

    5.1 Interaction of Radiation with Matter 105

    5.1.1 Absorptivity, Reflectivity, and Transmittivity 105

    5.1.2 Emissivity and Kirchhoff’s Law 106

    5.1.3 Bouguer–Lambert–Beer’s Law 106

    5.2 Interaction of Sunlight with Atmosphere 108

    5.2.1 AM1.5 Reference Solar Spectral Irradiance 109

    5.2.2 Annual Insolation Map 110

    5.3 Penetration of Solar Energy into Earth 111

    Chapter 6: Thermodynamics of Solar Energy 117

    6.1 Definitions 117

    6.2 First Law of Thermodynamics 118

    6.3 Second Law of Thermodynamics 121

    6.3.1 Carnot Cycle 121

    6.3.2 Thermodynamic Temperature 124

    6.3.3 Entropy 125

    6.4 Thermodynamic Functions 125

    6.4.1 Free Energy 126

    6.4.2 Enthalpy 126

    6.4.3 Gibbs Free Energy 127

    6.4.4 Chemical Potential 127

    6.5 Ideal Gas 127

    6.6 Ground Source Heat Pump and Air Conditioning 131

    6.6.1 Theory 131

    6.6.2 Coefficient of Performance 133

    6.6.3 Vapor-Compression Heat Pump and Refrigerator 133

    6.6.4 Ground Heat Exchanger 136

    Chapter 7: A Quantum Mechanics Primer 139

    7.1 The Static Schrödinger Equation 140

    7.1.1 Wavefunctions in a One-Dimensional Potential Well 142

    7.1.2 The Bra-and-Ket Notations 144

    7.1.3 The Harmonic Oscillator 146

    7.1.4 The Hydrogen Atom 151

    7.1.5 The Stern–Gerlach Experiment 159

    7.1.6 Nomenclature of Atomic States 160

    7.1.7 Degeneracy and Wavefunction Hybridization 160

    7.2 Many-Electron Systems 163

    7.2.1 The Self-Consistent Field (SCF) Method 164

    7.2.2 Slater Determinates and the Hartree-Fock Method 165

    7.2.3 Density-Functional Theory (DFT) 165

    7.2.4 HOMO and LUMO 166

    7.3 The Chemical Bond 169

    7.3.1 Bonding Energy and Antibonding Energy 169

    7.3.2 The Hydrogen Molecular Ion 170

    7.3.3 Types of Chemical Bonds 171

    7.4 The Solid State 174

    7.4.1 Bloch Waves and Energy Bands 174

    7.4.2 Effective Mass 177

    7.4.3 Conductor, Semiconductor, and Insulator 177

    7.4.4 Semiconductors 179

    7.4.5 The Band Structure of Silicon 180

    7.5 The Dynamic Schrödinger Equation 181

    7.5.1 A Heuristic Derivation 181

    7.5.2 Reduction to Static Schrödinger’s Equation 184

    7.5.3 Meaning of the Time-Dependent Phase Factor 184

    7.5.4 Interaction with Radiation 185

    Chapter 8: pn-Junctions 189

    8.1 Semiconductors 189

    8.1.1 Electrons and Holes 189

    8.1.2 p-Type and n-Type Semiconductors 191

    8.2 Formation of a pn-Junction 194

    8.3 Analysis of pn-Junctions 198

    8.3.1 Effect of Bias Voltage 199

    8.3.2 Lifetime of Excess Minority Carriers 199

    8.3.3 Junction Current 200

    8.3.4 Shockley Equation 201

    8.4 Light-Emitting Diodes for Illumination 202

    8.4.1 Invention of the Blue LED 203

    8.4.2 The Working Principle 204

    8.4.3 Wavelength Engineering 206

    8.4.4 The Freestanding GaN Substrate 208

    8.4.5 A Brief Sketch of History 208

    Chapter 9: Semiconductor Solar Cells 211

    9.1 Basic Concepts 211

    9.1.1 Generating Electric Power 214

    9.1.2 Solar Cell Equation 215

    9.1.3 Maximum Power and Fill Factor 215

    9.2 The Shockley–Queisser Limit 217

    9.2.1 Ultimate Efficiency 218

    9.2.2 Role of Recombination Time 220

    9.2.3 Detailed-Balance Treatment 220

    9.2.4 Nominal Efficiency 223

    9.2.5 Shockley–Queisser Efficiency Limit 223

    9.2.6 Efficiency Limit for AM1.5 Radiation 224

    9.3 Nonradiative Recombination Processes 225

    9.3.1 Auger Recombination 227

    9.3.2 Trap-State Recombination 227

    9.3.3 Surface-State Recombination 228

    9.4 Antireflection Coatings 228

    9.4.1 Matrix Method 229

    9.4.2 Single-Layer Antireflection Coating 231

    9.4.3 Double-Layer Antireflection Coatings 233

    9.5 Crystalline Silicon Solar Cells 234

    9.5.1 Production of Pure Silicon 235

    9.5.2 Solar Cell Design and Processing 236

    9.5.3 Module Fabrication 237

    9.6 Thin-Film Solar Cells 238

    9.6.1 CdTe Solar Cells 238

    9.6.2 CIGS Solar Cells 239

    9.6.3 Amorphous Silicon Thin-Film Solar Cells 240

    9.7 Tandem Solar Cells 241

    Chapter 10: Solar Photochemistry 245

    10.1 Physics of Photosynthesis 245

    10.1.1 Chlorophyll 246

    10.1.2 ATP: Universal Energy Currency of Life 248

    10.1.3 NADPH and NADP + 248

    10.1.4 Calvin Cycle 249

    10.1.5 C4 Plants versus C3 Plants 250

    10.1.6 Chloroplast 250

    10.1.7 Efficiency of Photosynthesis 251

    10.2 Artificial Photosynthesis 253

    10.3 Genetically Engineered Algae 253

    10.4 Dye-Sensitized Solar Cells 253

    10.5 Bilayer Organic Solar Cells 256

    Chapter 11: Solar Thermal Energy 259

    11.1 Early Solar Thermal Applications 259

    11.2 Solar Heat Collectors 262

    11.2.1 Selective Absorption Surface 262

    11.2.2 Flat-Plate Collectors 266

    11.2.3 All-Glass Vacuum-Tube Collectors 268

    11.2.4 Thermosiphon Solar Heat Collectors 269

    11.2.5 High-Pressure Vacuum Tube Collectors 271

    11.3 Solar Water Heaters 271

    11.4 Solar Thermal Power Systems 272

    11.4.1 Parabolic Trough Concentrator 273

    11.4.2 Central Receiver with Heliostats 274

    11.4.3 Paraboloidal Dish Concentrator with Stirling Engine 274

    Chapter 12: Physical Energy Storage 278

    12.1 Pumped Hydro Storage 278

    12.2 Sensible Heat Energy Storage 279

    12.2.1 Water 281

    12.2.2 Solid Sensible Heat Storage Materials 282

    12.2.3 Synthetic Oil in Packed Beds 283

    12.3 Phase Transition Thermal Storage 283

    12.3.1 Water–Ice Systems 284

    12.3.2 Paraffin Wax and Other Organic Materials 286

    12.3.3 Salt Hydrates 286

    Chapter 13: Rechargeable Batteries 288

    13.1 An Electrochemistry Primer 288

    13.1.1 Basic Terms and Definitions 288

    13.1.2 Oxidation State 290

    13.1.3 Standard Oxidation-Reduction Potentials 291

    13.2 Lithium-Ion Batteries 292

    13.2.1 Benefit to Humankind 292

    13.2.2 Intercalation of Metal Ions 294

    13.2.3 The Cathode Materials 296

    13.2.4 The Anode Materials 299

    13.2.5 Electrolytes 300

    13.2.6 The Separator 301

    13.2.7 Packaging 302

    13.2.8 Mineral Resource of Lithium 305

    13.3 Sodium-Ion Batteries 306

    13.3.1 The Cathode Materials 307

    13.3.2 The Anode Materials 309

    13.3.3 Rest of the System 310

    13.4 Traditional Rechargeable Batteries 310

    13.4.1 Lead–Acid Batteries 310

    13.4.2 Nickel Metal Hydride Batteries 311

    Chapter 14: Building with Sunshine 313

    14.1 Early Solar Architecture 314

    14.1.1 Ancient Solar Architecture 314

    14.1.2 Holistic Architecture in Rural China 314

    14.2 Building Materials 315

    14.2.1 Thermal Resistance 316

    14.2.2 Specific Thermal Resistance 316

    14.2.3 Heat Transfer Coefficient: The U-Value 317

    14.2.4 Thermal Mass 318

    14.2.5 Glazing 318

    14.3 Example of Holistic Design 320

    Appendix A: Energy Unit Conversion 325

    Appendix B: Spherical Trigonometry 327

    B.1 Spherical Triangle 327

    B.2 Cosine Formula 328

    B.3 Sine Formula 329

    B.4 Formula C 331

    Appendix C: Vector Analysis and Determinants 333

    C.1 Vector Analysis 333

    C.2 Determinants 334

    Appendix D: Real Spherical Harmonics 336

    D.1 The Spherical Coordinate System 336

    D.2 Spherical Harmonics 337

    Appendix E: Complex Numbers 341

    E.1 Definition of Complex Numbers 341

    E.2 The Euler Formula 342

    Appendix F: Statistics of Particles 343

    F.1 Maxwell–Boltzmann Statistics 344

    F.2 Fermi–Dirac Statistics 345

    F.3 Bose–Einstein Statistics 346

    Appendix G: Measurement in Quantum Mechanics 347

    G.1 The Measurement Postulate 347

    G.2 Experiments in Position Detection 349

    G.3 Tomographic Imaging of Wavefunctions 351

    G.4 Einstein’s Opinion on Quantum Mechanics 353

    G.5 A Modern View of Schrödinger’s Cat 353

    G.6 A Natural Presentation of Quantum Mechanics 354

    Bibliography 357

    Index 365

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account