Description
Book SynopsisPHYSICS OF SOLAR ENERGY AND ENERGY STORAGE Join the fight for a renewable world with this indispensable introduction
Solar energy is one of the most essential tools in the fight to create a sustainable future. A wholly renewable and cost-effective energy source capable of providing domestic, business, and industrial energy, solar energy is expected to become a $223 billion a year industry by 2026. The future of global energy production demands researchers and engineers who understand the physics of harnessing, storing, and distributing solar energy.
Physics of Solar Energy and Energy Storage begins to meet this demand, with a thorough, accessible overview of the required fundamentals. Now fully updated to reflect the past decade of research amidst a growing understanding of the scale of our collective challenge, it promises to train the next generation of researchers and engineers who will join this vital effort.
Readers of the second edition of
Table of Contents
List of Figures xiii
List of Tables xix
Preface to the Second Edition xxi
Preface to the First Edition xxiii
Chapter 1: Introduction 1
1.1 Shaping a More Livable World 1
1.1.1 Fossil Fuels and Beyond 2
1.1.2 The Paris Agreement 4
1.1.3 Phasing Out Coal-Generated Power 5
1.1.4 Phasing Out ICE Vehicles 6
1.1.5 Economics of Renewable Energy 7
1.2 Solar Energy 9
1.3 Solar Photovoltaics 12
1.3.1 Birth of Modern Solar Cells 12
1.3.2 Basic Terms and Concepts on Solar Cells 14
1.3.3 Types of Solar Cells 15
1.4 A Rechargeable Battery Primer 16
1.4.1 Whittingham’s Initial Invention 17
1.4.2 Goodenough’s Improved Cathode 18
1.4.3 Yoshino’s Improved Anode 19
1.4.4 Current Status 20
1.5 Other Renewable Energy Resources 21
1.5.1 Hydroelectric Power 21
1.5.2 Wind Power 23
1.5.3 Biomass and Bioenergy 26
1.5.4 Shallow Geothermal Energy 31
1.5.5 Deep Geothermal Energy 32
1.5.6 Tidal Energy 34
Chapter 2: Nature of Solar Radiation 37
2.1 Light as Electromagnetic Waves 37
2.1.1 Maxwell’s Equations 38
2.1.2 Vector Potential and Scalar Potential 39
2.1.3 Electromagnetic Waves 40
2.1.4 Plane Waves and Polarization 41
2.1.5 Sinusoidal Waves 42
2.2 Interface Phenomena 43
2.2.1 Relative Dielectric Constant and Refractive Index 43
2.2.2 Energy Balance and Poynting Vector 45
2.2.3 Fresnel Formulas 46
2.2.4 Optics of metals 48
2.3 Blackbody Radiation 51
2.3.1 Rayleigh–Jeans Law 52
2.3.2 Planck Formula and Stefan–Boltzmann’s Law 55
2.4 Photoelectric Effect and Concept of Photons 58
2.4.1 Einstein’s Theory of Photons 59
2.4.2 Millikan’s Experimental Verification 61
2.4.3 Electron as a Field 61
2.5 Einstein’s Derivation of Blackbody Formula 63
Chapter 3: Origin of Solar Energy 67
3.1 Basic Parameters of the Sun 68
3.1.1 Distance 68
3.1.2 Mass 68
3.1.3 Radius 68
3.1.4 Emission Power 69
3.1.5 Surface Temperature 69
3.1.6 Composition 70
3.2 Kelvin–Helmholtz Time Scale 70
3.3 Energy Source of the Sun 72
3.3.1 The p − p Chain 73
3.3.2 Carbon Chain 74
3.3.3 Internal Structure of the Sun 74
Chapter 4: Tracking Sunlight 77
4.1 Rotation of Earth: Latitude and Longitude 77
4.2 Celestial Sphere 78
4.2.1 Coordinate Transformation: Cartesian Coordinates 80
4.2.2 Coordinate Transformation: Spherical Trigonometry 82
4.3 Treatment in Solar Time 84
4.3.1 Obliquity and Declination of the Sun 84
4.3.2 Sunrise and Sunset Time 86
4.3.3 Direct Solar Radiation on an Arbitrary Surface 87
4.3.4 Direct Daily Solar Radiation Energy 88
4.3.5 The 24 Solar Terms 92
4.4 Treatment in Standard Time 94
4.4.1 Sidereal Time and Solar Time 94
4.4.2 Right Ascension of the Sun 95
4.4.3 Time Difference Originated from Obliquity 96
4.4.4 Aphelion and Perihelion 98
4.4.5 Time Difference Originated from Eccentricity 98
4.4.6 Equation of Time 99
4.4.7 Declination of the Sun 102
4.4.8 Analemma 102
Chapter 5: Interaction of Sunlight with Earth 105
5.1 Interaction of Radiation with Matter 105
5.1.1 Absorptivity, Reflectivity, and Transmittivity 105
5.1.2 Emissivity and Kirchhoff’s Law 106
5.1.3 Bouguer–Lambert–Beer’s Law 106
5.2 Interaction of Sunlight with Atmosphere 108
5.2.1 AM1.5 Reference Solar Spectral Irradiance 109
5.2.2 Annual Insolation Map 110
5.3 Penetration of Solar Energy into Earth 111
Chapter 6: Thermodynamics of Solar Energy 117
6.1 Definitions 117
6.2 First Law of Thermodynamics 118
6.3 Second Law of Thermodynamics 121
6.3.1 Carnot Cycle 121
6.3.2 Thermodynamic Temperature 124
6.3.3 Entropy 125
6.4 Thermodynamic Functions 125
6.4.1 Free Energy 126
6.4.2 Enthalpy 126
6.4.3 Gibbs Free Energy 127
6.4.4 Chemical Potential 127
6.5 Ideal Gas 127
6.6 Ground Source Heat Pump and Air Conditioning 131
6.6.1 Theory 131
6.6.2 Coefficient of Performance 133
6.6.3 Vapor-Compression Heat Pump and Refrigerator 133
6.6.4 Ground Heat Exchanger 136
Chapter 7: A Quantum Mechanics Primer 139
7.1 The Static Schrödinger Equation 140
7.1.1 Wavefunctions in a One-Dimensional Potential Well 142
7.1.2 The Bra-and-Ket Notations 144
7.1.3 The Harmonic Oscillator 146
7.1.4 The Hydrogen Atom 151
7.1.5 The Stern–Gerlach Experiment 159
7.1.6 Nomenclature of Atomic States 160
7.1.7 Degeneracy and Wavefunction Hybridization 160
7.2 Many-Electron Systems 163
7.2.1 The Self-Consistent Field (SCF) Method 164
7.2.2 Slater Determinates and the Hartree-Fock Method 165
7.2.3 Density-Functional Theory (DFT) 165
7.2.4 HOMO and LUMO 166
7.3 The Chemical Bond 169
7.3.1 Bonding Energy and Antibonding Energy 169
7.3.2 The Hydrogen Molecular Ion 170
7.3.3 Types of Chemical Bonds 171
7.4 The Solid State 174
7.4.1 Bloch Waves and Energy Bands 174
7.4.2 Effective Mass 177
7.4.3 Conductor, Semiconductor, and Insulator 177
7.4.4 Semiconductors 179
7.4.5 The Band Structure of Silicon 180
7.5 The Dynamic Schrödinger Equation 181
7.5.1 A Heuristic Derivation 181
7.5.2 Reduction to Static Schrödinger’s Equation 184
7.5.3 Meaning of the Time-Dependent Phase Factor 184
7.5.4 Interaction with Radiation 185
Chapter 8: pn-Junctions 189
8.1 Semiconductors 189
8.1.1 Electrons and Holes 189
8.1.2 p-Type and n-Type Semiconductors 191
8.2 Formation of a pn-Junction 194
8.3 Analysis of pn-Junctions 198
8.3.1 Effect of Bias Voltage 199
8.3.2 Lifetime of Excess Minority Carriers 199
8.3.3 Junction Current 200
8.3.4 Shockley Equation 201
8.4 Light-Emitting Diodes for Illumination 202
8.4.1 Invention of the Blue LED 203
8.4.2 The Working Principle 204
8.4.3 Wavelength Engineering 206
8.4.4 The Freestanding GaN Substrate 208
8.4.5 A Brief Sketch of History 208
Chapter 9: Semiconductor Solar Cells 211
9.1 Basic Concepts 211
9.1.1 Generating Electric Power 214
9.1.2 Solar Cell Equation 215
9.1.3 Maximum Power and Fill Factor 215
9.2 The Shockley–Queisser Limit 217
9.2.1 Ultimate Efficiency 218
9.2.2 Role of Recombination Time 220
9.2.3 Detailed-Balance Treatment 220
9.2.4 Nominal Efficiency 223
9.2.5 Shockley–Queisser Efficiency Limit 223
9.2.6 Efficiency Limit for AM1.5 Radiation 224
9.3 Nonradiative Recombination Processes 225
9.3.1 Auger Recombination 227
9.3.2 Trap-State Recombination 227
9.3.3 Surface-State Recombination 228
9.4 Antireflection Coatings 228
9.4.1 Matrix Method 229
9.4.2 Single-Layer Antireflection Coating 231
9.4.3 Double-Layer Antireflection Coatings 233
9.5 Crystalline Silicon Solar Cells 234
9.5.1 Production of Pure Silicon 235
9.5.2 Solar Cell Design and Processing 236
9.5.3 Module Fabrication 237
9.6 Thin-Film Solar Cells 238
9.6.1 CdTe Solar Cells 238
9.6.2 CIGS Solar Cells 239
9.6.3 Amorphous Silicon Thin-Film Solar Cells 240
9.7 Tandem Solar Cells 241
Chapter 10: Solar Photochemistry 245
10.1 Physics of Photosynthesis 245
10.1.1 Chlorophyll 246
10.1.2 ATP: Universal Energy Currency of Life 248
10.1.3 NADPH and NADP + 248
10.1.4 Calvin Cycle 249
10.1.5 C4 Plants versus C3 Plants 250
10.1.6 Chloroplast 250
10.1.7 Efficiency of Photosynthesis 251
10.2 Artificial Photosynthesis 253
10.3 Genetically Engineered Algae 253
10.4 Dye-Sensitized Solar Cells 253
10.5 Bilayer Organic Solar Cells 256
Chapter 11: Solar Thermal Energy 259
11.1 Early Solar Thermal Applications 259
11.2 Solar Heat Collectors 262
11.2.1 Selective Absorption Surface 262
11.2.2 Flat-Plate Collectors 266
11.2.3 All-Glass Vacuum-Tube Collectors 268
11.2.4 Thermosiphon Solar Heat Collectors 269
11.2.5 High-Pressure Vacuum Tube Collectors 271
11.3 Solar Water Heaters 271
11.4 Solar Thermal Power Systems 272
11.4.1 Parabolic Trough Concentrator 273
11.4.2 Central Receiver with Heliostats 274
11.4.3 Paraboloidal Dish Concentrator with Stirling Engine 274
Chapter 12: Physical Energy Storage 278
12.1 Pumped Hydro Storage 278
12.2 Sensible Heat Energy Storage 279
12.2.1 Water 281
12.2.2 Solid Sensible Heat Storage Materials 282
12.2.3 Synthetic Oil in Packed Beds 283
12.3 Phase Transition Thermal Storage 283
12.3.1 Water–Ice Systems 284
12.3.2 Paraffin Wax and Other Organic Materials 286
12.3.3 Salt Hydrates 286
Chapter 13: Rechargeable Batteries 288
13.1 An Electrochemistry Primer 288
13.1.1 Basic Terms and Definitions 288
13.1.2 Oxidation State 290
13.1.3 Standard Oxidation-Reduction Potentials 291
13.2 Lithium-Ion Batteries 292
13.2.1 Benefit to Humankind 292
13.2.2 Intercalation of Metal Ions 294
13.2.3 The Cathode Materials 296
13.2.4 The Anode Materials 299
13.2.5 Electrolytes 300
13.2.6 The Separator 301
13.2.7 Packaging 302
13.2.8 Mineral Resource of Lithium 305
13.3 Sodium-Ion Batteries 306
13.3.1 The Cathode Materials 307
13.3.2 The Anode Materials 309
13.3.3 Rest of the System 310
13.4 Traditional Rechargeable Batteries 310
13.4.1 Lead–Acid Batteries 310
13.4.2 Nickel Metal Hydride Batteries 311
Chapter 14: Building with Sunshine 313
14.1 Early Solar Architecture 314
14.1.1 Ancient Solar Architecture 314
14.1.2 Holistic Architecture in Rural China 314
14.2 Building Materials 315
14.2.1 Thermal Resistance 316
14.2.2 Specific Thermal Resistance 316
14.2.3 Heat Transfer Coefficient: The U-Value 317
14.2.4 Thermal Mass 318
14.2.5 Glazing 318
14.3 Example of Holistic Design 320
Appendix A: Energy Unit Conversion 325
Appendix B: Spherical Trigonometry 327
B.1 Spherical Triangle 327
B.2 Cosine Formula 328
B.3 Sine Formula 329
B.4 Formula C 331
Appendix C: Vector Analysis and Determinants 333
C.1 Vector Analysis 333
C.2 Determinants 334
Appendix D: Real Spherical Harmonics 336
D.1 The Spherical Coordinate System 336
D.2 Spherical Harmonics 337
Appendix E: Complex Numbers 341
E.1 Definition of Complex Numbers 341
E.2 The Euler Formula 342
Appendix F: Statistics of Particles 343
F.1 Maxwell–Boltzmann Statistics 344
F.2 Fermi–Dirac Statistics 345
F.3 Bose–Einstein Statistics 346
Appendix G: Measurement in Quantum Mechanics 347
G.1 The Measurement Postulate 347
G.2 Experiments in Position Detection 349
G.3 Tomographic Imaging of Wavefunctions 351
G.4 Einstein’s Opinion on Quantum Mechanics 353
G.5 A Modern View of Schrödinger’s Cat 353
G.6 A Natural Presentation of Quantum Mechanics 354
Bibliography 357
Index 365