Description

Book Synopsis
Aimed at beginner graduate students, this book provides a comprehensive introduction to muon spectroscopy and its uses in, among other applications, the study of semiconductors, magnets, superconductors, chemical reactions, and battery materials.

Trade Review
Fundamental particles such as electrons and protons have been used since their discovery for uncovering the structures of materials and for diagnostics and treatment in medicine. Instruments called spectroscopes exploit the waves associated with energetic particles to glean information, much as X-rays were used to decipher the structure of DNA. In this text, authors introduce another fundamental particle called the muon and discuss its usage in spectroscopic analysis [...] covering properties of the muon, its interactive behaviors with surrounding materials, the history and physics of muon spectroscopy, and production of muons for experimentation. Each chapter includes solved and still-to-be-solved examples along with some model answers. Good illustrations and graphs support the description of this fascinating new method of delving more deeply into the structure of matter. * Nanjundiah Sadanand, Central Connecticut State University *
Such an introductory text is completely lacking at the moment, and I think that this team is the ideal choice for bringing an edited volume together. * Nicola Spaldin (Materials Theory, ETH Zurich) *

Table of Contents
1: The Basics of µSR Part I: Elements of Muon Spectroscopy 2: Introduction 3: Muon Charge and Spin States 4: The Quantum Muon 5: Polarization Functions Part II: Science with µSR 6: Magnetism 7: Dynamic Effects in Magnetism 8: Measuring Dynamic Processes 9: Superconductors 10: Semiconductors and Dielectrics 11: Ionic Motion 12: Chemistry Part III: Practicalities of Muon Spectroscopy 13: Making Muons 14: Instrumentation 15: Doing the Experiment Part IV: Further Topics in Muon Spectroscopy 16: Calculating Muon Sites 17: Numerical Modelling 18: Low Energy µSR 19: Stimulation Methods 20: High Magnetic Fields 21: Muons under Pressure 22: Negative Muon Techniques Part V: Complementary Techniques 23: µSR versus Other Resonance and Bulk Techniques 24: X-rays, Neutrons, and µSR Free

Muon Spectroscopy An Introduction

Product form

£51.30

Includes FREE delivery

Order before 4pm today for delivery by Tue 23 Dec 2025.

A Paperback / softback by Stephen J. Blundell, Roberto De Renzi, Tom Lancaster

Out of stock


    View other formats and editions of Muon Spectroscopy An Introduction by Stephen J. Blundell

    Publisher: Oxford University Press
    Publication Date: 10/11/2021
    ISBN13: 9780198858966, 978-0198858966
    ISBN10: 0198858965

    Description

    Book Synopsis
    Aimed at beginner graduate students, this book provides a comprehensive introduction to muon spectroscopy and its uses in, among other applications, the study of semiconductors, magnets, superconductors, chemical reactions, and battery materials.

    Trade Review
    Fundamental particles such as electrons and protons have been used since their discovery for uncovering the structures of materials and for diagnostics and treatment in medicine. Instruments called spectroscopes exploit the waves associated with energetic particles to glean information, much as X-rays were used to decipher the structure of DNA. In this text, authors introduce another fundamental particle called the muon and discuss its usage in spectroscopic analysis [...] covering properties of the muon, its interactive behaviors with surrounding materials, the history and physics of muon spectroscopy, and production of muons for experimentation. Each chapter includes solved and still-to-be-solved examples along with some model answers. Good illustrations and graphs support the description of this fascinating new method of delving more deeply into the structure of matter. * Nanjundiah Sadanand, Central Connecticut State University *
    Such an introductory text is completely lacking at the moment, and I think that this team is the ideal choice for bringing an edited volume together. * Nicola Spaldin (Materials Theory, ETH Zurich) *

    Table of Contents
    1: The Basics of µSR Part I: Elements of Muon Spectroscopy 2: Introduction 3: Muon Charge and Spin States 4: The Quantum Muon 5: Polarization Functions Part II: Science with µSR 6: Magnetism 7: Dynamic Effects in Magnetism 8: Measuring Dynamic Processes 9: Superconductors 10: Semiconductors and Dielectrics 11: Ionic Motion 12: Chemistry Part III: Practicalities of Muon Spectroscopy 13: Making Muons 14: Instrumentation 15: Doing the Experiment Part IV: Further Topics in Muon Spectroscopy 16: Calculating Muon Sites 17: Numerical Modelling 18: Low Energy µSR 19: Stimulation Methods 20: High Magnetic Fields 21: Muons under Pressure 22: Negative Muon Techniques Part V: Complementary Techniques 23: µSR versus Other Resonance and Bulk Techniques 24: X-rays, Neutrons, and µSR Free

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account