Description
Book SynopsisPart I: Fundamentals of Electron Theory: Introduction. Wave Properties of Electrons. The Schroedinger Equation. Solution of the Schroedinger Equation for Four Specific Problems. Energy Bands in Crystals. Electrons in a Crystal.- Part II: Electrical Properties of Materials: Electrical Conduction in Metals and Alloys. Semiconductors. Electrical Properties of Polymers, Ceramics, Dielectrics and Amorphous Materials.- Part III: Optical Properties of Materials: The Optical Constants. Atomistic Theory of the Optical Properties. Quantum Mechanical Treatment of the Optical Properties. Applications.- Part IV: Magnetic Properties of Materials: Foundations of Magnetism. Magnetic Phenomena and Their Interpretation - Classical Approach. Quantum Mechanical Considerations. Applications.- Part V: Thermal Properties of Materials: Introduction. Fundamentals of Thermal Properties. Heat Capacity. Thermal Conduction. Thermal Expansion.- Appendices.- Index.
Trade ReviewFrom the reviews of the fourth edition:
“This is an excellent book for materials and electrical engineers, as well as advanced students. This book is divided into five distinct and self-contained parts, which makes it easier for the reader to find information on a particular area of interest. … contains many applications and problems that help to bridge the gap between physics and engineering. … For practicing engineers, this would be a good reference book. It would also be useful for someone looking to gain an overall concept of device physics.” (Ishtiaque Ahmed, Optics & Photonics News, April, 2012)
Table of ContentsPart I: Fundamentals of Electron Theory: Introduction. Wave Properties of Electrons. The Schroedinger Equation. Solution of the Schroedinger Equation for Four Specific Problems. Energy Bands in Crystals. Electrons in a Crystal.- Part II: Electrical Properties of Materials: Electrical Conduction in Metals and Alloys. Semiconductors. Electrical Properties of Polymers, Ceramics, Dielectrics and Amorphous Materials.- Part III: Optical Properties of Materials: The Optical Constants. Atomistic Theory of the Optical Properties. Quantum Mechanical Treatment of the Optical Properties. Applications.- Part IV: Magnetic Properties of Materials: Foundations of Magnetism. Magnetic Phenomena and Their Interpretation - Classical Approach. Quantum Mechanical Considerations. Applications.- Part V: Thermal Properties of Materials: Introduction. Fundamentals of Thermal Properties. Heat Capacity. Thermal Conduction. Thermal Expansion.- Appendices.- Index.