Description

Book Synopsis
This book introduces students to projective geometry from an analytic perspective, mixing recent results from the past 100 years with the history of the field in one of the most comprehensive surveys of the subject. The subject is taught conceptually, with worked examples and diagrams to aid in understanding.

Trade Review
'This book provides a lively and lovely perspective on real projective spaces, combining art, history, groups and elegant proofs.' William M. Kantor
'This book is a celebration of the projective viewpoint of geometry. It gradually introduces the reader to the subject, and the arguments are presented in a way that highlights the power of projective thinking in geometry. The reader surprisingly discovers not only that Euclidean and related theorems can be realized as derivatives of projective results, but there are also unnoticed connections between results from ancient times. The treatise also contains a large number of exercises and is dotted with worked examples, which help the reader to appreciate and deeply understand the arguments they refer to. In my opinion this is a book that will definitely change the way we look at the Euclidean and projective analytic geometry.' Alessandro Siciliano, Università degli Studi della Basilicata

Table of Contents
Preface; Part I. The Real Projective Plane: 1. Fundamental aspects of the real projective plane; 2. Collineations; 3. Polarities and conics; 4. Cross-ratio; 5. The group of the conic; 6. Involution; 7. Affine plane geometry viewed projectively; 8. Euclidean plane geometry viewed projectively; 9. Transformation geometry: Klein's point of view; 10. The power of projective thinking; 11. From perspective to projective; 12. Remarks on the history of projective geometry; Part II. Two Real Projective 3-Space: 13. Fundamental aspects of real projective space; 14. Triangles and tetrahedra; 15. Reguli and quadrics; 16. Line geometry; 17. Projections; 18. A glance at inversive geometry; Part III. Higher Dimensions: 19. Generalising to higher dimensions; 20. The Klein quadric and Veronese surface; Appendix: Group actions; References; Index.

Analytic Projective Geometry

Product form

£52.24

Includes FREE delivery

RRP £54.99 – you save £2.75 (5%)

Order before 4pm tomorrow for delivery by Tue 16 Dec 2025.

A Hardback by John Bamberg, Tim Penttila

3 in stock


    View other formats and editions of Analytic Projective Geometry by John Bamberg

    Publisher: Cambridge University Press
    Publication Date: 10/19/2023 12:00:00 AM
    ISBN13: 9781009260596, 978-1009260596
    ISBN10: 1009260596

    Description

    Book Synopsis
    This book introduces students to projective geometry from an analytic perspective, mixing recent results from the past 100 years with the history of the field in one of the most comprehensive surveys of the subject. The subject is taught conceptually, with worked examples and diagrams to aid in understanding.

    Trade Review
    'This book provides a lively and lovely perspective on real projective spaces, combining art, history, groups and elegant proofs.' William M. Kantor
    'This book is a celebration of the projective viewpoint of geometry. It gradually introduces the reader to the subject, and the arguments are presented in a way that highlights the power of projective thinking in geometry. The reader surprisingly discovers not only that Euclidean and related theorems can be realized as derivatives of projective results, but there are also unnoticed connections between results from ancient times. The treatise also contains a large number of exercises and is dotted with worked examples, which help the reader to appreciate and deeply understand the arguments they refer to. In my opinion this is a book that will definitely change the way we look at the Euclidean and projective analytic geometry.' Alessandro Siciliano, Università degli Studi della Basilicata

    Table of Contents
    Preface; Part I. The Real Projective Plane: 1. Fundamental aspects of the real projective plane; 2. Collineations; 3. Polarities and conics; 4. Cross-ratio; 5. The group of the conic; 6. Involution; 7. Affine plane geometry viewed projectively; 8. Euclidean plane geometry viewed projectively; 9. Transformation geometry: Klein's point of view; 10. The power of projective thinking; 11. From perspective to projective; 12. Remarks on the history of projective geometry; Part II. Two Real Projective 3-Space: 13. Fundamental aspects of real projective space; 14. Triangles and tetrahedra; 15. Reguli and quadrics; 16. Line geometry; 17. Projections; 18. A glance at inversive geometry; Part III. Higher Dimensions: 19. Generalising to higher dimensions; 20. The Klein quadric and Veronese surface; Appendix: Group actions; References; Index.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account