Description

Book Synopsis

This fully revised and updated third edition covers the physical and mathematical fundamentals of vibration analysis, including single degree of freedom, multi-degree of freedom, and continuous systems. A new chapter on special topics that include motion control, impact dynamics, and nonlinear dynamics is added to the new edition. In a simple and systematic manner, the book presents techniques that can easily be applied to the analysis of vibration of mechanical and structural systems. Suitable for a one-semester course on vibrations, the book presents the new concepts in simple terms and explains procedures for solving problems in considerable detail. It contains numerous exercises, examples and end-of-chapter problems.




Table of Contents
1 Introduction.- 1.1 Basic Definitions.- 1.2 Elements of the Vibration Models.- 1.3 Particle Dynamics.- 1.4 Systems of Particles.- 1.5 Dynamics of Rigid Bodies.- 1.6 Linearization of the Differential Equations.- 1.7 Idealization of Mechanical and Structural Systems.- Problems.- 2 Solution of the Vibration Equations.- 2.1 Homogeneous Differential Equations.- 2.2 Initial Conditions.- 2.3 Solution of Nonhomogeneous Equations with Constant Coefficients.- 2.4 Stability of Motion.- Problems.- 3 Free Vibration of Single Degree of Freedom Systems.- 3.1 Free Undamped Vibration.- 3.2 Analysis of the Oscillatory Motion.- 3.3 Stability of Undamped Linear Systems.- 3.4 Continuous Systems.- 3.5 Equivalent Systems.- 3.6 Free Damped Vibration.- 3.7 Logarithmic Decrement.- 3.8 Structural Damping.- 3.9 Coulomb Damping.- 3.10 Self-Excited Vibration.- 3.11 Motion Control.- 3.12 Impact Dynamics.- Problems.- 4 Forced Vibration.- 4.1 Differential Equation of Motion.- 4.2 Forced Undamped Vibration.- 4.3 Resonance and Beating.- 4.4 Forced Vibration of Damped Systems.- 4.5 Rotating Unbalance.- 4.6 Base Motion.- 4.7 Measuring Instruments.- 4.8 Experimental Methods for Damping Evaluation.- Problems.- 5 Response to Nonharmonic Forces.- 5.1 Periodic Forcing Functions.- 5.2 Determination of the Fourier Coefficients.- 5.3 Special Cases.- 5.4 Vibration Under Periodic Forcing Functions.- 5.5 Impulsive Motion.- 5.6 Response to an Arbitrary Forcing Function.- 5.7 Frequency Contents in Arbitrary Forcing Functions.- 5.8 Computer Methods in Nonlinear Vibration.- Problems.- 6 Systems with More Than One Degree of Freedom.- 6.1 Free Undamped Vibration.- 6.2 Matrix Equations.- 6.3 Damped Free Vibration.- 6.4 Undamped Forced Vibration.- 6.5 Vibration Absorber of the Undamped System.- 6.6 Forced Vibration of Damped Systems.- 6.7 The Untuned Viscous Vibration Absorber.- 6.8 Multi-Degree of Freedom Systems.- Problems.- 7 Continuous Systems.- 7.1 Free Longitudinal Vibrations.- 7.2 Free Torsional Vibrations.- 7.3 Free Transverse Vibrations.- 7.4 Orthogonality of the Eigenfunctions.- 7.5 Forced Longitudinal and Torsional Vibrations.- 7.6 Forced Transverse Vibrations.- Problems.- References.- Answers to Selected Problems.

Theory of Vibration: An Introduction

Product form

£85.49

Includes FREE delivery

RRP £89.99 – you save £4.50 (5%)

Order before 4pm today for delivery by Wed 17 Dec 2025.

A Hardback by Ahmed A. Shabana

Out of stock


    View other formats and editions of Theory of Vibration: An Introduction by Ahmed A. Shabana

    Publisher: Springer International Publishing AG
    Publication Date: 23/10/2018
    ISBN13: 9783319942704, 978-3319942704
    ISBN10: 3319942700

    Description

    Book Synopsis

    This fully revised and updated third edition covers the physical and mathematical fundamentals of vibration analysis, including single degree of freedom, multi-degree of freedom, and continuous systems. A new chapter on special topics that include motion control, impact dynamics, and nonlinear dynamics is added to the new edition. In a simple and systematic manner, the book presents techniques that can easily be applied to the analysis of vibration of mechanical and structural systems. Suitable for a one-semester course on vibrations, the book presents the new concepts in simple terms and explains procedures for solving problems in considerable detail. It contains numerous exercises, examples and end-of-chapter problems.




    Table of Contents
    1 Introduction.- 1.1 Basic Definitions.- 1.2 Elements of the Vibration Models.- 1.3 Particle Dynamics.- 1.4 Systems of Particles.- 1.5 Dynamics of Rigid Bodies.- 1.6 Linearization of the Differential Equations.- 1.7 Idealization of Mechanical and Structural Systems.- Problems.- 2 Solution of the Vibration Equations.- 2.1 Homogeneous Differential Equations.- 2.2 Initial Conditions.- 2.3 Solution of Nonhomogeneous Equations with Constant Coefficients.- 2.4 Stability of Motion.- Problems.- 3 Free Vibration of Single Degree of Freedom Systems.- 3.1 Free Undamped Vibration.- 3.2 Analysis of the Oscillatory Motion.- 3.3 Stability of Undamped Linear Systems.- 3.4 Continuous Systems.- 3.5 Equivalent Systems.- 3.6 Free Damped Vibration.- 3.7 Logarithmic Decrement.- 3.8 Structural Damping.- 3.9 Coulomb Damping.- 3.10 Self-Excited Vibration.- 3.11 Motion Control.- 3.12 Impact Dynamics.- Problems.- 4 Forced Vibration.- 4.1 Differential Equation of Motion.- 4.2 Forced Undamped Vibration.- 4.3 Resonance and Beating.- 4.4 Forced Vibration of Damped Systems.- 4.5 Rotating Unbalance.- 4.6 Base Motion.- 4.7 Measuring Instruments.- 4.8 Experimental Methods for Damping Evaluation.- Problems.- 5 Response to Nonharmonic Forces.- 5.1 Periodic Forcing Functions.- 5.2 Determination of the Fourier Coefficients.- 5.3 Special Cases.- 5.4 Vibration Under Periodic Forcing Functions.- 5.5 Impulsive Motion.- 5.6 Response to an Arbitrary Forcing Function.- 5.7 Frequency Contents in Arbitrary Forcing Functions.- 5.8 Computer Methods in Nonlinear Vibration.- Problems.- 6 Systems with More Than One Degree of Freedom.- 6.1 Free Undamped Vibration.- 6.2 Matrix Equations.- 6.3 Damped Free Vibration.- 6.4 Undamped Forced Vibration.- 6.5 Vibration Absorber of the Undamped System.- 6.6 Forced Vibration of Damped Systems.- 6.7 The Untuned Viscous Vibration Absorber.- 6.8 Multi-Degree of Freedom Systems.- Problems.- 7 Continuous Systems.- 7.1 Free Longitudinal Vibrations.- 7.2 Free Torsional Vibrations.- 7.3 Free Transverse Vibrations.- 7.4 Orthogonality of the Eigenfunctions.- 7.5 Forced Longitudinal and Torsional Vibrations.- 7.6 Forced Transverse Vibrations.- Problems.- References.- Answers to Selected Problems.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account