Description

Book Synopsis
1 Naive Set Theory.- 1.1 What is a Set?.- 1.2 Operations on Sets.- 1.3 Notation for Sets.- 1.4 Sets of Sets.- 1.5 Relations.- 1.6 Functions.- 1.7 Well-Or der ings and Ordinals.- 1.8 Problems.- 2 The ZermeloFraenkel Axioms.- 2.1 The Language of Set Theory.- 2.2 The Cumulative Hierarchy of Sets.- 2.3 The ZermeloFraenkel Axioms.- 2.4 Classes.- 2.5 Set Theory as an Axiomatic Theory.- 2.6 The Recursion Principle.- 2.7 The Axiom of Choice.- 2.8 Problems.- 3 Ordinal and Cardinal Numbers.- 3.1 Ordinal Numbers.- 3.2 Addition of Ordinals.- 3.3 Multiplication of Ordinals.- 3.4 Sequences of Ordinals.- 3.5 Ordinal Exponentiation.- 3.6 Cardinality, Cardinal Numbers.- 3.7 Arithmetic of Cardinal Numbers.- 3.8 Regular and Singular Cardinals.- 3.9 Cardinal Exponentiation.- 3.10 Inaccessible Cardinals.- 3.11 Problems.- 4 Topics in Pure Set Theory.- 4.1 The Borel Hierarchy.- 4.2 Closed Unbounded Sets.- 4.3 Stationary Sets and Regressive Functions.- 4.4 Trees.- 4.5 Extensions of Lebesgue Measure.- 4.6 A Re

Table of Contents
Preface; 1. Naïve Set Theory; 2. The Zermelo-Fraenkel Axioms; 3. Ordinal and Cardinal Numbers; 4. Topics in Pure Set Theory; 5. The Axiom of Constructibility; 6. Independence Proofs in Set Theory; 7. Non-Well-Founded Set Theory; Bibliography; Glossary of Symbols; Index

The Joy of Sets

Product form

£48.44

Includes FREE delivery

RRP £50.99 – you save £2.55 (5%)

Order before 4pm today for delivery by Thu 18 Dec 2025.

A Hardback by Keith Devlin

15 in stock


    View other formats and editions of The Joy of Sets by Keith Devlin

    Publisher: Springer
    Publication Date: 8/3/1993 12:00:00 AM
    ISBN13: 9780387940946, 978-0387940946
    ISBN10: 0387940944

    Description

    Book Synopsis
    1 Naive Set Theory.- 1.1 What is a Set?.- 1.2 Operations on Sets.- 1.3 Notation for Sets.- 1.4 Sets of Sets.- 1.5 Relations.- 1.6 Functions.- 1.7 Well-Or der ings and Ordinals.- 1.8 Problems.- 2 The ZermeloFraenkel Axioms.- 2.1 The Language of Set Theory.- 2.2 The Cumulative Hierarchy of Sets.- 2.3 The ZermeloFraenkel Axioms.- 2.4 Classes.- 2.5 Set Theory as an Axiomatic Theory.- 2.6 The Recursion Principle.- 2.7 The Axiom of Choice.- 2.8 Problems.- 3 Ordinal and Cardinal Numbers.- 3.1 Ordinal Numbers.- 3.2 Addition of Ordinals.- 3.3 Multiplication of Ordinals.- 3.4 Sequences of Ordinals.- 3.5 Ordinal Exponentiation.- 3.6 Cardinality, Cardinal Numbers.- 3.7 Arithmetic of Cardinal Numbers.- 3.8 Regular and Singular Cardinals.- 3.9 Cardinal Exponentiation.- 3.10 Inaccessible Cardinals.- 3.11 Problems.- 4 Topics in Pure Set Theory.- 4.1 The Borel Hierarchy.- 4.2 Closed Unbounded Sets.- 4.3 Stationary Sets and Regressive Functions.- 4.4 Trees.- 4.5 Extensions of Lebesgue Measure.- 4.6 A Re

    Table of Contents
    Preface; 1. Naïve Set Theory; 2. The Zermelo-Fraenkel Axioms; 3. Ordinal and Cardinal Numbers; 4. Topics in Pure Set Theory; 5. The Axiom of Constructibility; 6. Independence Proofs in Set Theory; 7. Non-Well-Founded Set Theory; Bibliography; Glossary of Symbols; Index

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account