Description

Automatic speech recognition (ASR) systems are finding increasing use in everyday life. Many of the commonplace environments where the systems are used are noisy, for example users calling up a voice search system from a busy cafeteria or a street. This can result in degraded speech recordings and adversely affect the performance of speech recognition systems. As the use of ASR systems increases, knowledge of the state-of-the-art in techniques to deal with such problems becomes critical to system and application engineers and researchers who work with or on ASR technologies. This book presents a comprehensive survey of the state-of-the-art in techniques used to improve the robustness of speech recognition systems to these degrading external influences.

Key features:

  • Reviews all the main noise robust ASR approaches, including signal separation, voice activity detection, robust feature extraction, model compensation and adaptation, missing data techniques and recognition of reverberant speech.
  • Acts as a timely exposition of the topic in light of more widespread use in the future of ASR technology in challenging environments.
  • Addresses robustness issues and signal degradation which are both key requirements for practitioners of ASR.
  • Includes contributions from top ASR researchers from leading research units in the field

Techniques for Noise Robustness in Automatic Speech Recognition

Product form

£101.95

Includes FREE delivery
Usually despatched within 5 days
Hardback by Tuomas Virtanen , Rita Singh

1 in stock

Short Description:

Automatic speech recognition (ASR) systems are finding increasing use in everyday life. Many of the commonplace environments where the systems... Read more

    Publisher: John Wiley & Sons Inc
    Publication Date: 30/10/2012
    ISBN13: 9781119970880, 978-1119970880
    ISBN10: 1119970881

    Number of Pages: 514

    Non Fiction , Computing

    Description

    Automatic speech recognition (ASR) systems are finding increasing use in everyday life. Many of the commonplace environments where the systems are used are noisy, for example users calling up a voice search system from a busy cafeteria or a street. This can result in degraded speech recordings and adversely affect the performance of speech recognition systems. As the use of ASR systems increases, knowledge of the state-of-the-art in techniques to deal with such problems becomes critical to system and application engineers and researchers who work with or on ASR technologies. This book presents a comprehensive survey of the state-of-the-art in techniques used to improve the robustness of speech recognition systems to these degrading external influences.

    Key features:

    • Reviews all the main noise robust ASR approaches, including signal separation, voice activity detection, robust feature extraction, model compensation and adaptation, missing data techniques and recognition of reverberant speech.
    • Acts as a timely exposition of the topic in light of more widespread use in the future of ASR technology in challenging environments.
    • Addresses robustness issues and signal degradation which are both key requirements for practitioners of ASR.
    • Includes contributions from top ASR researchers from leading research units in the field

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account