Description
Book Synopsis1. Introduction to structural analysis by the Finite Element Method. 2. 1D finite elements for axially loaded rods. 3. Advanced 1D rod elements and requirements for the numerical solution. 4. 2D solids. Linear triangular and rectangular elements. 5. 2D solids. Higher order elements. Shape functions and isoparametric formulation. 6. Axisymmetric solids. 7. Three dimensional solids. 8. Bending of slender beams. Euler-Bemouilli theory. 9. Thick/slender beams. Timoshenko theory. 10. Thin plates. Kirchhoffs theory. 11. Thick/thin plates. Reissner-Mindlin theory. 12. Analysis of shells using flat elements. 13. Axisymmetric shells. 14. Analysis of arbitrary shape shells using degenerate solid elements. 15. Three-dimensional rods and shell stiffness. 16. Prismatic structures. Finite strip and finite prism methods. 17. Miscellaneous: inclined supports, displacements, constrains, nodal condensation error estimation and mesh adaptivity etc. 18. Pre and post-processing. Mesh generation and visu
Table of Contents
1. Introduction to structural analysis by the Finite Element Method. 2. 1D finite elements for axially loaded rods. 3. Advanced 1D rod elements and requirements for the numerical solution. 4. 2D solids. Linear triangular and rectangular elements. 5. 2D solids. Higher order elements. Shape functions and isoparametric formulation. 6. Axisymmetric solids. 7. Three dimensional solids. 8. Bending of slender beams. Euler-Bemouilli theory. 9. Thick/slender beams. Timoshenko theory. 10. Thin plates. Kirchhoffs theory. 11. Thick/thin plates. Reissner-Mindlin theory. 12. Analysis of shells using flat elements. 13. Axisymmetric shells. 14. Analysis of arbitrary shape shells using degenerate solid elements. 15. Three-dimensional rods and shell stiffness. 16. Prismatic structures. Finite strip and finite prism methods. 17. Miscellaneous: inclined supports, displacements, constrains, nodal condensation error estimation and mesh adaptivity etc. 18. Pre and post-processing. Mesh generation and visualization of computer results. 19. Introduction to FEM programming.