Description

Book Synopsis

The Definitive, Up-to-Date, Student-Friendly Guide to Separation Process EngineeringWith More Mass Transfer Coverage and a New Chapter on Crystallization

 

Separation Process Engineering, Fourth Edition, is the most comprehensive, accessible guide available on modern separation processes and the fundamentals of mass transfer. In this completely updated edition, Phillip C. Wankat teaches each key concept through detailed, realistic examples using real dataincluding up-to-date simulation practice and spreadsheet-based exercises.

 

Wankat thoroughly covers each separation process, including flash, column, and batch distillation; exact calculations and shortcut methods for multicomponent distillation; staged and packed column design; absorption; stripping; and more. This edition provides expand

Table of Contents

Preface xix

Acknowledgments xxi

About the Author xxiii

Nomenclature xxv

Chapter 1: Introduction to Separation Process Engineering 1

1.0. Summary—Objectives 1

1.1. Importance of Separations 1

1.2. Concept of Equilibrium 3

1.3. Mass Transfer Concepts 4

1.4. Problem-Solving Methods 5

1.5. Units 7

1.6. Computers and Computer Simulations 8

1.7. Prerequisite Material 8

1.8. Other Resources on Separation Process Engineering 9

References 11

Homework 12

Chapter 2: Flash Distillation 15

2.0. Summary—Objectives 15

2.1. Basic Method of Flash Distillation 15

2.2. Form and Sources of Equilibrium Data 17

2.3. Graphical Representation of Binary VLE 20

2.4. Binary Flash Distillation 25

2.5. Multicomponent VLE 32

2.6. Multicomponent Flash Distillation 36

2.7. Simultaneous Multicomponent Convergence 42

2.8. Three-Phase Flash Calculations 47

2.9. Size Calculation 48

2.10. Using Existing Flash Drums 53

References 54

Homework 55

Appendix A. Computer Simulation of Flash Distillation 67

Appendix B. Spreadsheets for Flash Distillation 77

Chapter 3: Introduction to Column Distillation 81

3.0. Summary—Objectives 81

3.1. Developing a Distillation Cascade 82

3.2. Distillation Equipment 88

3.3. Specifications 90

3.4. External Column Balances 94

References 98

Homework 98

Chapter 4: Binary Column Distillation: Internal Stage-by-Stage Balances 105

4.0. Summary—Objectives 105

4.1. Internal Balances 106

4.2. Binary Stage-by-Stage Solution Methods 110

4.3. Introduction to the McCabe-Thiele Method 116

4.4. Feed Line 120

4.5. Complete McCabe-Thiele Method 128

4.6. Profiles for Binary Distillation 132

4.7. Open Steam Heating 132

4.8. General McCabe-Thiele Analysis Procedure 138

4.9. Other Distillation Column Situations 146

4.10. Limiting Operating Conditions 151

4.11. Efficiencies 154

4.12. Simulation Problems 156

4.13. New Uses for Old Columns 158

4.14. Subcooled Reflux and Superheated Boilup 159

4.15. Comparisons Between Analytical and Graphical Methods 161

References 162

Homework 163

Appendix A. Computer Simulation of Binary Distillation 179

Appendix B. Spreadsheets for Binary Distillation 183

Chapter 5: Introduction to Multicomponent Distillation 189

5.0. Summary—Objectives 189

5.1. Calculational Difficulties 189

5.2. Profiles for Multicomponent Distillation 194

5.3. Stage-by-Stage Calculations for CMO 199

References 206

Homework 206

Appendix A. Simplified Spreadsheet for Stage-by-Stage Calculations for Ternary Distillation 212

Appendix B. Automated Spreadsheet with VBA for Stage-by-Stage Calculations for Ternary Distillation 215

Chapter 6 Exact Calculation Procedures for Multicomponent Distillation 219

6.0. Summary—Objectives 219

6.1. Introduction to Matrix Solution for Multicomponent Distillation 219

6.2. Component Mass Balances in Matrix Form 221

6.3. Initial Guesses for Flow Rates and Temperatures 225

6.4. Temperature Convergence 225

6.5. Energy Balances in Matrix Form 229

6.6. Introduction to Naphtali-Sandholm Simultaneous Convergence Method 232

6.7. Discussion 233

References 234

Homework 235

Appendix. Computer Simulations for Multicomponent Column Distillation 241

Chapter 7: Approximate Shortcut Methods for Multicomponent Distillation 249

7.0. Summary—Objectives 249

7.1. Total Reflux: Fenske Equation 250

7.2. Minimum Reflux: Underwood Equations 254

7.3. Gilliland Correlation for Number of Stages at Finite Reflux Ratios 259

References 263

Homework 263

Chapter 8: Introduction to Complex Distillation Methods 271

8.0. Summary—Objectives 271

8.1. Breaking Azeotropes with Other Separators 272

8.2. Binary Heterogeneous Azeotropic Distillation Processes 273

8.3. Steam Distillation 282

8.4. Pressure-Swing Distillation Processes 286

8.5. Complex Ternary Distillation Systems 287

8.6. Extractive Distillation 296

8.7. Azeotropic Distillation with Added Solvent 302

8.8. Distillation with Chemical Reaction 306

References 309

Homework 310

Appendix A. Simulation of Complex Distillation Systems 326

Appendix B. Spreadsheet for Residue Curve Generation 336

Chapter 9: Batch Distillation 339

9.0. Summary—Objectives 339

9.1. Introduction to Batch Distillation 339

9.2. Batch Distillation: Rayleigh Equation 341

9.3. Simple Binary Batch Distillation 344

9.4. Constant-Mole Batch Distillation 349

9.5. Batch Steam Distillation 350

9.6. Multistage Binary Batch Distillation 352

9.7. Multicomponent Simple Batch Distillation 357

9.8. Operating Time 361

References 362

Homework 363

Appendix A. Spreadsheet for Simple Multicomponent Batch Distillation, Constant Relative Volatility 372

Chapter 10: Staged and Packed Column Design 375

10.0. Summary—Objectives 375

10.1. Staged Column Equipment Description 376

10.2. Tray Efficiencies 385

10.3. Column Diameter Calculations 390

10.4. Balancing Calculated Diameters 396

10.5. Sieve Tray Layout and Tray Hydraulics 398

10.6. Valve Tray Design 404

10.7. Introduction to Packed Column Design 406

10.8. Packings and Packed Column Internals 406

10.9. Height of Packing: HETP Method 409

10.10. Packed Column Flooding and Diameter Calculation 411

10.11. Economic Trade-Offs for Packed Columns 417

10.12. Choice of Column Type 418

References 421

Homework 425

Appendix. Tray and Downcomer Design with Computer Simulator 433

Chapter 11: Economics and Energy Conservation in Distillation 437

11.0. Summary—Objectives 437

11.1. Equipment Costs 438

11.2. Basic Heat Exchanger Design 443

11.3. Design and Operating Effects on Costs 445

11.4. Changes in Plant Operating Rates 454

11.5. Energy Conservation in Distillation 455

11.6. Synthesis of Column Sequences for Almost Ideal Multicomponent Distillation 460

11.7. Synthesis of Distillation Systems for Nonideal Ternary Systems 466

References 470

Homework 472

Chapter 12: Absorption and Stripping 481

12.0. Summary—Objectives 482

12.1. Absorption and Stripping Equilibria 483

12.2. McCabe-Thiele Solution for Dilute Absorption 485

12.3. Stripping Analysis for Dilute Systems 489

12.4. Analytical Solution for Dilute Systems: Kremser Equation 490

12.5. Efficiencies 496

12.6. McCabe-Thiele Analysis for More Concentrated Systems 497

12.7. Column Diameter 501

12.8. Dilute Multisolute Absorbers and Strippers 502

12.9. Matrix Solution for Concentrated Absorbers and Strippers 504

12.10. Irreversible Absorption and Cocurrent Cascades 508

References 510

Homework 511

Appendix. Computer Simulations of Absorption and Stripping 520

Chapter 13: Liquid-Liquid Extraction 527

13.0. Summary—Objectives 527

13.1. Extraction Processes and Equipment 527

13.2. Dilute, Immiscible, Countercurrent Extraction 532

13.3. Dilute Fractional Extraction 539

13.4. Immiscible Single-Stage and Cross-Flow Extraction 543

13.5. Concentrated Immiscible Extraction 547

13.6. Immiscible Batch Extraction 551

13.7. Extraction Equilibrium for Partially Miscible Ternary Systems 553

13.8. Mixing Calculations and the Lever-Arm Rule 556

13.9. Partially Miscible Single-Stage and Cross-Flow Systems 558

13.10. Countercurrent Extraction Cascades for Partially Miscible Systems 561

13.11. Relationship Between McCabe-Thiele and Triangular Diagrams for Partially Miscible Systems 569

13.12. Minimum Solvent Rate for partially Miscible Systems 570

13.13. Extraction Computer Simulations 572

13.14. Design of Mixer-Settlers 573

References 586

Homework 588

Appendix. Computer Simulation of Extraction 598

Chapter 14: Washing, Leaching, and Supercritical Extraction 603

14.0. Summary—Objectives 603

14.1. Generalized McCabe-Thiele and Kremser Procedures 603

14.2. Washing 606

14.3. Leaching with Constant Flow Rates 610

14.4. Leaching with Variable Flow Rates 612

14.5. Introduction to Supercritical Fluid Extraction 615

14.6. Application of McCabe-Thiele and Kremser Methods to Other Separations 617

References 618

Homework 619

Chapter 15: Introduction to Diffusion and Mass Transfer 627

15.0. Summary–Objectives 629

15.1. Molecular Movement Leads to Mass Transfer 629

15.2. Fickian Model of Diffusivity 631

15.3. Values and Correlations for Fickian Binary Diffusivities 647

15.4. Linear Driving-Force Model of Mass Transfer for Binary Systems 656

15.5. Correlations for Mass Transfer Coefficients 670

15.6. Difficulties with Fickian Diffusion Model 682

15.7. Maxwell-Stefan Model of Diffusion and Mass Transfer 683

15.8. Advantages and Disadvantages of Different Diffusion and Mass Transfer Models 698

References 698

Homework 700

Appendix. Spreadsheets Examples 15-10 and 15-11 707

Chapter 16: Mass Transfer Analysis for Distillation, Absorption, Stripping, and Extraction 711

16.0. Summary—Objectives 711

16.1. HTU-NTU Analysis of Packed Distillation Columns 712

16.2. Relationship of HETP and HTU 720

16.3. Mass Transfer Correlations for Packed Towers 723

16.4. HTU-NTU Analysis of Concentrated Absorbers and Strippers 731

16.5. HTU-NTU Analysis of Cocurrent Absorbers 736

16.6. Prediction of Distillation Tray Efficiency 738

16.7. Mass Transfer Analysis of Extraction 741

16.8. Rate-Based Analysis of Distillation 753

References 756

Homework 758

Appendix. Computer Rate-Based Simulation of Distillation 765

Chapter 17: Crystallization from Solution 769

17.0. Summary–Objectives 769

17.1. Basic Principles of Crystallization from Solution 770

17.2. Continuous Cooling Crystallizers 776

17.3. Evaporative and Vacuum Crystallizers 785

17.4. Sieve Analysis 793

17.5. Introduction to Population Balances 798

17.6. Crystal Size Distributions for MSMPR Crystallizers 800

17.7 Seeding 814

17.8. Batch and Semibatch Crystallization 820

17.9. Precipitation 825

References 828

Homework 830

Appendix. Spreadsheets 836

Chapter 18: Introduction to Membrane Separation Processes 837

18.0. Summary—Objectives 838

18.1. Membrane Separation Equipment 840

18.2. Membrane Concepts 843

18.3. Gas Permeation 845

18.4. Reverse Osmosis (RO) 862

18.5. Ultrafiltration (UF) 877

18.6. Pervaporation (Pervap) 883

18.7. Bulk Flow Pattern Effects 895

References 899

Homework 901

Appendix. Spreadsheet for Crossflow Gas Permeation 914

Chapter 19: Introduction to Adsorption, Chromatography, and Ion Exchange 917

19.0. Summary—Objectives 918

19.1. Sorbents and Sorption Equilibrium 918

19.2. Solute Movement Analysis for Linear Systems: Basics and Applications to Chromatography 930

19.3. Solute Movement Analysis for Linear Systems: Temperature and Pressure Swing Adsorption and Simulated Moving Beds 938

19.4. Nonlinear Solute Movement Analysis 961

19.5. Ion Exchange 970

19.6. Mass and Energy Transfer in Packed Beds 978

19.7. Mass Transfer Solutions for Linear Systems 985

19.8. LUB Approach for Nonlinear Sorption Systems 993

19.9. Checklist for Practical Design and Operation 998

References 1000

Homework 1003

Appendix. Aspen Chromatography Simulator 1019

Appendix A: Aspen Plus Troubleshooting Guide for Separations 1047

Appendix B: Instructions for Fitting VLE and LLE Data with Aspen Plus 1051

Appendix C: Unit Conversions and Physical Constants 1053

Appendix D: Data Locations 1055

Answers to Selected Problems 1065

Index 1073

Separation Process Engineering

Product form

£134.92

Includes FREE delivery

Order before 4pm today for delivery by Sat 3 Jan 2026.

A Hardback by Phillip Wankat

Out of stock


    View other formats and editions of Separation Process Engineering by Phillip Wankat

    Publisher: Pearson Education (US)
    Publication Date: 28/08/2016
    ISBN13: 9780133443653, 978-0133443653
    ISBN10: 0133443655

    Description

    Book Synopsis

    The Definitive, Up-to-Date, Student-Friendly Guide to Separation Process EngineeringWith More Mass Transfer Coverage and a New Chapter on Crystallization

     

    Separation Process Engineering, Fourth Edition, is the most comprehensive, accessible guide available on modern separation processes and the fundamentals of mass transfer. In this completely updated edition, Phillip C. Wankat teaches each key concept through detailed, realistic examples using real dataincluding up-to-date simulation practice and spreadsheet-based exercises.

     

    Wankat thoroughly covers each separation process, including flash, column, and batch distillation; exact calculations and shortcut methods for multicomponent distillation; staged and packed column design; absorption; stripping; and more. This edition provides expand

    Table of Contents

    Preface xix

    Acknowledgments xxi

    About the Author xxiii

    Nomenclature xxv

    Chapter 1: Introduction to Separation Process Engineering 1

    1.0. Summary—Objectives 1

    1.1. Importance of Separations 1

    1.2. Concept of Equilibrium 3

    1.3. Mass Transfer Concepts 4

    1.4. Problem-Solving Methods 5

    1.5. Units 7

    1.6. Computers and Computer Simulations 8

    1.7. Prerequisite Material 8

    1.8. Other Resources on Separation Process Engineering 9

    References 11

    Homework 12

    Chapter 2: Flash Distillation 15

    2.0. Summary—Objectives 15

    2.1. Basic Method of Flash Distillation 15

    2.2. Form and Sources of Equilibrium Data 17

    2.3. Graphical Representation of Binary VLE 20

    2.4. Binary Flash Distillation 25

    2.5. Multicomponent VLE 32

    2.6. Multicomponent Flash Distillation 36

    2.7. Simultaneous Multicomponent Convergence 42

    2.8. Three-Phase Flash Calculations 47

    2.9. Size Calculation 48

    2.10. Using Existing Flash Drums 53

    References 54

    Homework 55

    Appendix A. Computer Simulation of Flash Distillation 67

    Appendix B. Spreadsheets for Flash Distillation 77

    Chapter 3: Introduction to Column Distillation 81

    3.0. Summary—Objectives 81

    3.1. Developing a Distillation Cascade 82

    3.2. Distillation Equipment 88

    3.3. Specifications 90

    3.4. External Column Balances 94

    References 98

    Homework 98

    Chapter 4: Binary Column Distillation: Internal Stage-by-Stage Balances 105

    4.0. Summary—Objectives 105

    4.1. Internal Balances 106

    4.2. Binary Stage-by-Stage Solution Methods 110

    4.3. Introduction to the McCabe-Thiele Method 116

    4.4. Feed Line 120

    4.5. Complete McCabe-Thiele Method 128

    4.6. Profiles for Binary Distillation 132

    4.7. Open Steam Heating 132

    4.8. General McCabe-Thiele Analysis Procedure 138

    4.9. Other Distillation Column Situations 146

    4.10. Limiting Operating Conditions 151

    4.11. Efficiencies 154

    4.12. Simulation Problems 156

    4.13. New Uses for Old Columns 158

    4.14. Subcooled Reflux and Superheated Boilup 159

    4.15. Comparisons Between Analytical and Graphical Methods 161

    References 162

    Homework 163

    Appendix A. Computer Simulation of Binary Distillation 179

    Appendix B. Spreadsheets for Binary Distillation 183

    Chapter 5: Introduction to Multicomponent Distillation 189

    5.0. Summary—Objectives 189

    5.1. Calculational Difficulties 189

    5.2. Profiles for Multicomponent Distillation 194

    5.3. Stage-by-Stage Calculations for CMO 199

    References 206

    Homework 206

    Appendix A. Simplified Spreadsheet for Stage-by-Stage Calculations for Ternary Distillation 212

    Appendix B. Automated Spreadsheet with VBA for Stage-by-Stage Calculations for Ternary Distillation 215

    Chapter 6 Exact Calculation Procedures for Multicomponent Distillation 219

    6.0. Summary—Objectives 219

    6.1. Introduction to Matrix Solution for Multicomponent Distillation 219

    6.2. Component Mass Balances in Matrix Form 221

    6.3. Initial Guesses for Flow Rates and Temperatures 225

    6.4. Temperature Convergence 225

    6.5. Energy Balances in Matrix Form 229

    6.6. Introduction to Naphtali-Sandholm Simultaneous Convergence Method 232

    6.7. Discussion 233

    References 234

    Homework 235

    Appendix. Computer Simulations for Multicomponent Column Distillation 241

    Chapter 7: Approximate Shortcut Methods for Multicomponent Distillation 249

    7.0. Summary—Objectives 249

    7.1. Total Reflux: Fenske Equation 250

    7.2. Minimum Reflux: Underwood Equations 254

    7.3. Gilliland Correlation for Number of Stages at Finite Reflux Ratios 259

    References 263

    Homework 263

    Chapter 8: Introduction to Complex Distillation Methods 271

    8.0. Summary—Objectives 271

    8.1. Breaking Azeotropes with Other Separators 272

    8.2. Binary Heterogeneous Azeotropic Distillation Processes 273

    8.3. Steam Distillation 282

    8.4. Pressure-Swing Distillation Processes 286

    8.5. Complex Ternary Distillation Systems 287

    8.6. Extractive Distillation 296

    8.7. Azeotropic Distillation with Added Solvent 302

    8.8. Distillation with Chemical Reaction 306

    References 309

    Homework 310

    Appendix A. Simulation of Complex Distillation Systems 326

    Appendix B. Spreadsheet for Residue Curve Generation 336

    Chapter 9: Batch Distillation 339

    9.0. Summary—Objectives 339

    9.1. Introduction to Batch Distillation 339

    9.2. Batch Distillation: Rayleigh Equation 341

    9.3. Simple Binary Batch Distillation 344

    9.4. Constant-Mole Batch Distillation 349

    9.5. Batch Steam Distillation 350

    9.6. Multistage Binary Batch Distillation 352

    9.7. Multicomponent Simple Batch Distillation 357

    9.8. Operating Time 361

    References 362

    Homework 363

    Appendix A. Spreadsheet for Simple Multicomponent Batch Distillation, Constant Relative Volatility 372

    Chapter 10: Staged and Packed Column Design 375

    10.0. Summary—Objectives 375

    10.1. Staged Column Equipment Description 376

    10.2. Tray Efficiencies 385

    10.3. Column Diameter Calculations 390

    10.4. Balancing Calculated Diameters 396

    10.5. Sieve Tray Layout and Tray Hydraulics 398

    10.6. Valve Tray Design 404

    10.7. Introduction to Packed Column Design 406

    10.8. Packings and Packed Column Internals 406

    10.9. Height of Packing: HETP Method 409

    10.10. Packed Column Flooding and Diameter Calculation 411

    10.11. Economic Trade-Offs for Packed Columns 417

    10.12. Choice of Column Type 418

    References 421

    Homework 425

    Appendix. Tray and Downcomer Design with Computer Simulator 433

    Chapter 11: Economics and Energy Conservation in Distillation 437

    11.0. Summary—Objectives 437

    11.1. Equipment Costs 438

    11.2. Basic Heat Exchanger Design 443

    11.3. Design and Operating Effects on Costs 445

    11.4. Changes in Plant Operating Rates 454

    11.5. Energy Conservation in Distillation 455

    11.6. Synthesis of Column Sequences for Almost Ideal Multicomponent Distillation 460

    11.7. Synthesis of Distillation Systems for Nonideal Ternary Systems 466

    References 470

    Homework 472

    Chapter 12: Absorption and Stripping 481

    12.0. Summary—Objectives 482

    12.1. Absorption and Stripping Equilibria 483

    12.2. McCabe-Thiele Solution for Dilute Absorption 485

    12.3. Stripping Analysis for Dilute Systems 489

    12.4. Analytical Solution for Dilute Systems: Kremser Equation 490

    12.5. Efficiencies 496

    12.6. McCabe-Thiele Analysis for More Concentrated Systems 497

    12.7. Column Diameter 501

    12.8. Dilute Multisolute Absorbers and Strippers 502

    12.9. Matrix Solution for Concentrated Absorbers and Strippers 504

    12.10. Irreversible Absorption and Cocurrent Cascades 508

    References 510

    Homework 511

    Appendix. Computer Simulations of Absorption and Stripping 520

    Chapter 13: Liquid-Liquid Extraction 527

    13.0. Summary—Objectives 527

    13.1. Extraction Processes and Equipment 527

    13.2. Dilute, Immiscible, Countercurrent Extraction 532

    13.3. Dilute Fractional Extraction 539

    13.4. Immiscible Single-Stage and Cross-Flow Extraction 543

    13.5. Concentrated Immiscible Extraction 547

    13.6. Immiscible Batch Extraction 551

    13.7. Extraction Equilibrium for Partially Miscible Ternary Systems 553

    13.8. Mixing Calculations and the Lever-Arm Rule 556

    13.9. Partially Miscible Single-Stage and Cross-Flow Systems 558

    13.10. Countercurrent Extraction Cascades for Partially Miscible Systems 561

    13.11. Relationship Between McCabe-Thiele and Triangular Diagrams for Partially Miscible Systems 569

    13.12. Minimum Solvent Rate for partially Miscible Systems 570

    13.13. Extraction Computer Simulations 572

    13.14. Design of Mixer-Settlers 573

    References 586

    Homework 588

    Appendix. Computer Simulation of Extraction 598

    Chapter 14: Washing, Leaching, and Supercritical Extraction 603

    14.0. Summary—Objectives 603

    14.1. Generalized McCabe-Thiele and Kremser Procedures 603

    14.2. Washing 606

    14.3. Leaching with Constant Flow Rates 610

    14.4. Leaching with Variable Flow Rates 612

    14.5. Introduction to Supercritical Fluid Extraction 615

    14.6. Application of McCabe-Thiele and Kremser Methods to Other Separations 617

    References 618

    Homework 619

    Chapter 15: Introduction to Diffusion and Mass Transfer 627

    15.0. Summary–Objectives 629

    15.1. Molecular Movement Leads to Mass Transfer 629

    15.2. Fickian Model of Diffusivity 631

    15.3. Values and Correlations for Fickian Binary Diffusivities 647

    15.4. Linear Driving-Force Model of Mass Transfer for Binary Systems 656

    15.5. Correlations for Mass Transfer Coefficients 670

    15.6. Difficulties with Fickian Diffusion Model 682

    15.7. Maxwell-Stefan Model of Diffusion and Mass Transfer 683

    15.8. Advantages and Disadvantages of Different Diffusion and Mass Transfer Models 698

    References 698

    Homework 700

    Appendix. Spreadsheets Examples 15-10 and 15-11 707

    Chapter 16: Mass Transfer Analysis for Distillation, Absorption, Stripping, and Extraction 711

    16.0. Summary—Objectives 711

    16.1. HTU-NTU Analysis of Packed Distillation Columns 712

    16.2. Relationship of HETP and HTU 720

    16.3. Mass Transfer Correlations for Packed Towers 723

    16.4. HTU-NTU Analysis of Concentrated Absorbers and Strippers 731

    16.5. HTU-NTU Analysis of Cocurrent Absorbers 736

    16.6. Prediction of Distillation Tray Efficiency 738

    16.7. Mass Transfer Analysis of Extraction 741

    16.8. Rate-Based Analysis of Distillation 753

    References 756

    Homework 758

    Appendix. Computer Rate-Based Simulation of Distillation 765

    Chapter 17: Crystallization from Solution 769

    17.0. Summary–Objectives 769

    17.1. Basic Principles of Crystallization from Solution 770

    17.2. Continuous Cooling Crystallizers 776

    17.3. Evaporative and Vacuum Crystallizers 785

    17.4. Sieve Analysis 793

    17.5. Introduction to Population Balances 798

    17.6. Crystal Size Distributions for MSMPR Crystallizers 800

    17.7 Seeding 814

    17.8. Batch and Semibatch Crystallization 820

    17.9. Precipitation 825

    References 828

    Homework 830

    Appendix. Spreadsheets 836

    Chapter 18: Introduction to Membrane Separation Processes 837

    18.0. Summary—Objectives 838

    18.1. Membrane Separation Equipment 840

    18.2. Membrane Concepts 843

    18.3. Gas Permeation 845

    18.4. Reverse Osmosis (RO) 862

    18.5. Ultrafiltration (UF) 877

    18.6. Pervaporation (Pervap) 883

    18.7. Bulk Flow Pattern Effects 895

    References 899

    Homework 901

    Appendix. Spreadsheet for Crossflow Gas Permeation 914

    Chapter 19: Introduction to Adsorption, Chromatography, and Ion Exchange 917

    19.0. Summary—Objectives 918

    19.1. Sorbents and Sorption Equilibrium 918

    19.2. Solute Movement Analysis for Linear Systems: Basics and Applications to Chromatography 930

    19.3. Solute Movement Analysis for Linear Systems: Temperature and Pressure Swing Adsorption and Simulated Moving Beds 938

    19.4. Nonlinear Solute Movement Analysis 961

    19.5. Ion Exchange 970

    19.6. Mass and Energy Transfer in Packed Beds 978

    19.7. Mass Transfer Solutions for Linear Systems 985

    19.8. LUB Approach for Nonlinear Sorption Systems 993

    19.9. Checklist for Practical Design and Operation 998

    References 1000

    Homework 1003

    Appendix. Aspen Chromatography Simulator 1019

    Appendix A: Aspen Plus Troubleshooting Guide for Separations 1047

    Appendix B: Instructions for Fitting VLE and LLE Data with Aspen Plus 1051

    Appendix C: Unit Conversions and Physical Constants 1053

    Appendix D: Data Locations 1055

    Answers to Selected Problems 1065

    Index 1073

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account