Description

Book Synopsis

PWM DC-DC power converter technology underpins many energy conversion systems including renewable energy circuits, active power factor correctors, battery chargers, portable devices and LED drivers.

Following the success of Pulse-Width Modulated DC-DC Power Converters this second edition has been thoroughly revised and expanded to cover the latest challenges and advances in the field.

Key features of 2nd edition:

  • Four new chapters, detailing the latest advances in power conversion, focus on: small-signal model and dynamic characteristics of the buck converter in continuous conduction mode; voltage-mode control of buck converter; small-signal model and characteristics of the boost converter in the discontinuous conduction mode and electromagnetic compatibility EMC.
  • Provides readers with a solid understanding of the principles of operation, synthesis, analysis and design of PWM power converters and semiconductor power devices, includin

    Table of Contents

    About the Author xxi

    Preface xxiii

    Nomenclature xxv

    1 Introduction 1

    1.1 Classification of Power Supplies 1

    1.2 Basic Functions of Voltage Regulators 3

    1.3 Power Relationships in DC–DC Converters 4

    1.4 DC Transfer Functions of DC–DC Converters 5

    1.5 Static Characteristics of DC Voltage Regulators 6

    1.6 Dynamic Characteristics of DC Voltage Regulators 9

    1.7 Linear Voltage Regulators 12

    1.7.1 Series Voltage Regulator 13

    1.7.2 Shunt Voltage Regulator 14

    1.8 Topologies of PWM DC–DC Converters 16

    1.9 Relationships Among Current, Voltage, Energy, and Power 18

    1.10 Summary 19

    References 19

    Review Questions 20

    Problems 21

    2 Buck PWM DC–DC Converter 22

    2.1 Introduction 22

    2.2 DC Analysis of PWM Buck Converter for CCM 22

    2.2.1 Circuit Description 22

    2.2.2 Assumptions 25

    2.2.3 Time Interval: 0 < t DT 25

    2.2.4 Time Interval: DT < t T 26

    2.2.5 Device Stresses for CCM 27

    2.2.6 DC Voltage Transfer Function for CCM 27

    2.2.7 Boundary Between CCM and DCM 29

    2.2.8 Capacitors 31

    2.2.9 Ripple Voltage in Buck Converter for CCM 33

    2.2.10 Switching Losses with Linear MOSFET Output Capacitance 39

    2.2.11 Switching Losses with Nonlinear MOSFET Output Capacitance 40

    2.2.12 Power Losses and Efficiency of Buck Converter for CCM 43

    2.2.13 DC Voltage Transfer Function of Lossy Converter for CCM 48

    2.2.14 MOSFET Gate-Drive Power 48

    2.2.15 Gate Driver 49

    2.2.16 Design of Buck Converter for CCM 50

    2.3 DC Analysis of PWM Buck Converter for DCM 52

    2.3.1 Time Interval: 0 < t DT 56

    2.3.2 Time Interval: DT < t ≤ (D + D1)T 58

    2.3.3 Time Interval: (D + D1)T < t T 58

    2.3.4 Device Stresses for DCM 59

    2.3.5 DC Voltage Transfer Function for DCM 59

    2.3.6 Maximum Inductance for DCM 62

    2.3.7 Power Losses and Efficiency of Buck Converter for DCM 63

    2.3.8 Design of Buck Converter for DCM 65

    2.4 Buck Converter with Input Filter 68

    2.5 Buck Converter with Synchronous Rectifier 68

    2.6 Buck Converter with Positive Common Rail 76

    2.7 Quadratic Buck Converter 76

    2.8 Tapped-Inductor Buck Converters 79

    2.8.1 Tapped-Inductor Common-Diode Buck Converter 79

    2.8.2 Tapped-Inductor Common-Transistor Buck Converter 81

    2.8.3 Watkins–Johnson Converter 82

    2.9 Multiphase Buck Converter 83

    2.10 Switched-Inductor Buck Converter 85

    2.11 Layout 85

    2.12 Summary 85

    References 87

    Review Questions 88

    Problems 88

    3 Boost PWM DC–DC Converter 90

    3.1 Introduction 90

    3.2 DC Analysis of PWM Boost Converter for CCM 90

    3.2.1 Circuit Description 90

    3.2.2 Assumptions 91

    3.2.3 Time Interval: 0 < t DT 93

    3.2.4 Time Interval: DT < t T 94

    3.2.5 DC Voltage Transfer Function for CCM 94

    3.2.6 Boundary Between CCM and DCM 95

    3.2.7 Ripple Voltage in Boost Converter for CCM 98

    3.2.8 Power Losses and Efficiency of Boost Converter for CCM 100

    3.2.9 DC Voltage Transfer Function of Lossy Boost Converter for CCM 102

    3.2.10 Design of Boost Converter for CCM 103

    3.3 DC Analysis of PWM Boost Converter for DCM 107

    3.3.1 Time Interval: 0 < t DT 110

    3.3.2 Time Interval: DT < t ≤ (D + D1)T 111

    3.3.3 Time Interval: (D + D1)T < t T 112

    3.3.4 Device Stresses for DCM 112

    3.3.5 DC Voltage Transfer Function for DCM 112

    3.3.6 Maximum Inductance for DCM 117

    3.3.7 Power Losses and Efficiency of Boost Converter for DCM 117

    3.3.8 Design of Boost Converter for DCM 120

    3.4 Bidirectional Buck and Boost Converters 127

    3.5 Synchronous Boost Converter 129

    3.6 Tapped-Inductor Boost Converters 129

    3.6.1 Tapped-Inductor Common-Diode Boost Converter 131

    3.6.2 Tapped-Inductor Common-Load Boost Converter 132

    3.7 Duality 133

    3.8 Power Factor Correction 134

    3.8.1 Power Factor 134

    3.8.2 Boost Power Factor Corrector 138

    3.8.3 Electronic Ballasts for Fluorescent Lamps 141

    3.9 Summary 141

    References 142

    Review Questions 143

    Problems 143

    4 Buck–Boost PWM DC–DC Converter 145

    4.1 Introduction 145

    4.2 DC Analysis of PWM Buck–Boost Converter for CCM 145

    4.2.1 Circuit Description 145

    4.2.2 Assumptions 146

    4.2.3 Time Interval: 0 < t DT 146

    4.2.4 Time Interval: DT < t T 148

    4.2.5 DC Voltage Transfer Function for CCM 149

    4.2.6 Device Stresses for CCM 150

    4.2.7 Boundary Between CCM and DCM 151

    4.2.8 Ripple Voltage in Buck–Boost Converter for CCM 152

    4.2.9 Power Losses and Efficiency of the Buck–Boost Converter for CCM 155

    4.2.10 DC Voltage Transfer Function of Lossy Buck–Boost Converter for CCM 158

    4.2.11 Design of Buck–Boost Converter for CCM 159

    4.3 DC Analysis of PWM Buck–Boost Converter for DCM 162

    4.3.1 Time Interval: 0 < t DT 165

    4.3.2 Time Interval: DT < t ≤ (D + D1)T 166

    4.3.3 Time Interval: (D + D1)T < t T 167

    4.3.4 Device Stresses of the Buck–Boost Converter in DCM 167

    4.3.5 DC Voltage Transfer Function of the Buck–Boost Converter for DCM 167

    4.3.6 Maximum Inductance for DCM 170

    4.3.7 Power Losses and Efficiency of the Buck–Boost Converter in DCM 172

    4.3.8 Design of Buck–Boost Converter for DCM 174

    4.4 Bidirectional Buck–Boost Converter 180

    4.5 Synthesis of Buck–Boost Converter 181

    4.6 Synthesis of Boost–Buck (ćuk) Converter 183

    4.7 Noninverting Buck–Boost Converters 184

    4.7.1 Cascaded Noninverting Buck–Boost Converters 184

    4.7.2 Four-Transistor Noninverting Buck–Boost Converters 184

    4.8 Tapped-Inductor Buck–Boost Converters 186

    4.8.1 Tapped-Inductor Common-Diode Buck–Boost Converter 186

    4.8.2 Tapped-Inductor Common-Transistor Buck–Boost Converter 187

    4.8.3 Tapped-Inductor Common-Load Buck–Boost Converter 188

    4.8.4 Tapped-Inductor Common-Source Buck–Boost Converter 191

    4.9 Summary 192

    References 192

    Review Questions 193

    Problems 193

    5 Flyback PWM DC–DC Converter 195

    5.1 Introduction 195

    5.2 Transformers 196

    5.3 DC Analysis of PWM Flyback Converter for CCM 197

    5.3.1 Derivation of PWM Flyback Converter 197

    5.3.2 Circuit Description 197

    5.3.3 Assumptions 199

    5.3.4 Time Interval: 0 < t DT 200

    5.3.5 Time Interval: DT < t T 201

    5.3.6 DC Voltage Transfer Function for CCM 203

    5.3.7 Boundary Between CCM and DCM 204

    5.3.8 Ripple Voltage in Flyback Converter for CCM 205

    5.3.9 Power Losses and Efficiency of Flyback Converter for CCM 207

    5.3.10 DC Voltage Transfer Function of Lossy Converter for CCM 210

    5.3.11 Design of Flyback Converter for CCM 211

    5.4 DC Analysis of PWM Flyback Converter for DCM 214

    5.4.1 Time Interval: 0 < t DT 217

    5.4.2 Time Interval: DT < t ≤ (D + D1)T 219

    5.4.3 Time Interval: (D + D1)T < t T 220

    5.4.4 DC Voltage Transfer Function for DCM 221

    5.4.5 Maximum Magnetizing Inductance for DCM 222

    5.4.6 Ripple Voltage in Flyback Converter for DCM 225

    5.4.7 Power Losses and Efficiency of Flyback Converter for DCM 226

    5.4.8 Design of Flyback Converter for DCM 228

    5.5 Multiple-Output Flyback Converter 232

    5.6 Bidirectional Flyback Converter 237

    5.7 Ringing in Flyback Converter 237

    5.8 Flyback Converter with Passive Dissipative Snubber 240

    5.9 Flyback Converter with Zener Diode Voltage Clamp 240

    5.10 Flyback Converter with Active Clamping 241

    5.11 Two-Transistor Flyback Converter 241

    5.12 Summary 243

    References 244

    Review Questions 244

    Problems 245

    6 Forward PWM DC–DC Converter 246

    6.1 Introduction 246

    6.2 DC Analysis of PWM Forward Converter for CCM 246

    6.2.1 Derivation of Forward PWM Converter 246

    6.2.2 Time Interval: 0 < t DT 248

    6.2.3 Time Interval: DT < t DT + tm 251

    6.2.4 Time Interval: DT + tm < t T 253

    6.2.5 Maximum Duty Cycle 253

    6.2.6 Device Stresses 254

    6.2.7 DC Voltage Transfer Function for CCM 255

    6.2.8 Boundary Between CCM and DCM 255

    6.2.9 Ripple Voltage in Forward Converter for CCM 256

    6.2.10 Power Losses and Efficiency of Forward Converter for CCM 258

    6.2.11 DC Voltage Transfer Function of Lossy Converter for CCM 261

    6.2.12 Design of Forward Converter for CCM 262

    6.3 DC Analysis of PWM Forward Converter for DCM 269

    6.3.1 Time Interval: 0 < t DT 269

    6.3.2 Time Interval: DT < t DT + tm 272

    6.3.3 Time Interval: DT + tm < t ≤ (D + D1)T 273

    6.3.4 Time Interval: (D + D1)T < t T 273

    6.3.5 DC Voltage Transfer Function for DCM 274

    6.3.6 Maximum Inductance for DCM 277

    6.3.7 Power Losses and Efficiency of Forward Converter for DCM 278

    6.3.8 Design of Forward Converter for DCM 280

    6.4 Multiple-Output Forward Converter 288

    6.5 Forward Converter with Synchronous Rectifier 288

    6.6 Forward Converters with Active Clamping 288

    6.7 Two-Switch Forward Converter 290

    6.8 Forward–Flyback Converter 291

    6.9 Summary 292

    References 293

    Review Questions 293

    Problems 294

    7 Half-Bridge PWM DC–DC Converter 296

    7.1 Introduction 296

    7.2 DC Analysis of PWM Half-Bridge Converter for CCM 296

    7.2.1 Circuit Description 296

    7.2.2 Assumptions 299

    7.2.3 Time Interval: 0 < t DT 299

    7.2.4 Time Interval: DT < t T∕2 301

    7.2.5 Time Interval: T∕2 < t T∕2 + DT 303

    7.2.6 Time Interval: T∕2 + DT < t T 304

    7.2.7 Device Stresses 304

    7.2.8 DC Voltage Transfer Function of Lossless Half-Bridge Converter for CCM 304

    7.2.9 Boundary Between CCM and DCM 305

    7.2.10 Ripple Voltage in Half-Bridge Converter for CCM 306

    7.2.11 Power Losses and Efficiency of Half-Bridge Converter for CCM 308

    7.2.12 DC Voltage Transfer Function of Lossy Converter for CCM 311

    7.2.13 Design of Half-Bridge Converter for CCM 312

    7.3 DC Analysis of PWM Half-Bridge Converter for DCM 315

    7.3.1 Time Interval: 0 < t DT 315

    7.3.2 Time Interval: DT < t ≤ (D + D1)T 320

    7.3.3 Time Interval: (D + D1)T < t T∕2 322

    7.3.4 DC Voltage Transfer Function for DCM 322

    7.3.5 Maximum Inductance for DCM 326

    7.4 Summary 326

    References 327

    Review Questions 327

    Problems 328

    8 Full-Bridge PWM DC–DC Converter 330

    8.1 Introduction 330

    8.2 DC Analysis of PWM Full-Bridge Converter for CCM 330

    8.2.1 Circuit Description 330

    8.2.2 Assumptions 332

    8.2.3 Time Interval: 0 < t DT 332

    8.2.4 Time Interval: DT < t T∕2 334

    8.2.5 Time Interval: T∕2 < t T∕2 + DT 336

    8.2.6 Time Interval: T∕2 + DT < t T 336

    8.2.7 Device Stresses 337

    8.2.8 DC Voltage Transfer Function of Lossless Full-Wave Converter for CCM 337

    8.2.9 Boundary Between CCM and DCM 338

    8.2.10 Ripple Voltage in Full-Bridge Converter for CCM 339

    8.2.11 Power Losses and Efficiency of Full-Bridge Converter for CCM 340

    8.2.12 DC Voltage Transfer Function of Lossy Converter for CCM 344

    8.2.13 Design of Full-Bridge Converter for CCM 345

    8.3 DC Analysis of PWM Full-Bridge Converter for DCM 351

    8.3.1 Time Interval: 0 < t DT 351

    8.3.2 Time Interval: DT < t ≤ (D + D1)T 353

    8.3.3 Time Interval: (D + D1)T < t T∕2 355

    8.3.4 DC Voltage Transfer Function for DCM 356

    8.3.5 Maximum Inductance for DCM 359

    8.4 Phase-Controlled Full-Bridge Converter 361

    8.5 Summary 362

    References 362

    Review Questions 362

    Problems 363

    9 Small-Signal Models of PWM Converters for CCM and DCM 365

    9.1 Introduction 365

    9.2 Assumptions 366

    9.3 Averaged Model of Ideal Switching Network for CCM 366

    9.4 Averaged Values of Switched Resistances 369

    9.5 Model Reduction 375

    9.6 Large-Signal Averaged Model for CCM 377

    9.7 DC and Small-Signal Circuit Linear Models of Switching Network for CCM 381

    9.7.1 Large-Signal Circuit Model of Switching Network for CCM 381

    9.7.2 Linearization of Switching Network Model for CCM 384

    9.8 Block Diagram of Small-signal Model of PWM DC–DC Converters 385

    9.9 Family of PWM Converter Models for CCM 386

    9.10 PWM Small-Signal Switch Model for CCM 389

    9.11 Modeling of Ideal Switching Network for DCM 391

    9.11.1 Relationships Among DC Components for DCM 391

    9.11.2 Small-Signal Model of Ideal Switching Network for DCM 395

    9.12 Averaged Parasitic Resistances for DCM 398

    9.13 Summary 400

    References 402

    Review Questions 405

    Problems 405

    10 Small-Signal Characteristics of Buck Converter for CCM 407

    10.1 Introduction 407

    10.2 Small-Signal Model of the PWM Buck Converter 407

    10.3 Open-Loop Transfer Functions 408

    10.3.1 Open-Loop Control-to-Output Transfer Function 409

    10.3.2 Delay in Control-to-Output Transfer Function 416

    10.3.3 Open-Loop Input-to-Output Transfer Function 418

    10.3.4 Open-Loop Input Impedance 420

    10.3.5 Open-Loop Output Impedance 423

    10.4 Open-Loop Step Responses 426

    10.4.1 Open-Loop Response of Output Voltage to Step Change in Input Voltage 426

    10.4.2 Open-Loop Response of Output Voltage to Step Change in Duty Cycle 431

    10.4.3 Open-Loop Response of Output Voltage to Step Change in Load Current 433

    10.5 Open-Loop DC Transfer Functions 434

    10.6 Summary 436

    References 436

    Review Questions 437

    Problems 438

    11 Small-Signal Characteristics of Boost Converter for CCM 439

    11.1 Introduction 439

    11.2 DC Characteristics 439

    11.3 Open-Loop Control-to-Output Transfer Function 440

    11.4 Delay in Open-Loop Control-to-Output Transfer Function 449

    11.5 Open-Loop Audio Susceptibility 451

    11.6 Open-Loop Input Impedance 455

    11.7 Open-Loop Output Impedance 457

    11.8 Open-Loop Step Responses 461

    11.8.1 Open-Loop Response of Output Voltage to Step Change in Input Voltage 461

    11.8.2 Open-Loop Response of Output Voltage to Step Change in Duty Cycle 464

    11.8.3 Open-Loop Response of Output Voltage to Step Change in Load Current 465

    11.9 Summary 467

    References 467

    Review Questions 468

    Problems 468

    12 Voltage-Mode Control of PWM Buck Converter 470

    12.1 Introduction 470

    12.2 Properties of Negative Feedback 471

    12.3 Stability 474

    12.4 Single-Loop Control of PWM Buck Converter 475

    12.5 Closed-Loop Small-Signal Model of Buck Converter 478

    12.6 Pulse-Width Modulator 478

    12.7 Feedback Network 483

    12.8 Transfer Function of Buck Converter with Modulator and Feedback Network 486

    12.9 Control Circuits 489

    12.9.1 Error Amplifier 489

    12.9.2 Proportional Controller 490

    12.9.3 Integral Controller 492

    12.9.4 Proportional-Integral Controller 493

    12.9.5 Integral-Single-Lead Controller 497

    12.9.6 Loop Gain 504

    12.9.7 Closed-Loop Control-to-Output Voltage Transfer Function 504

    12.9.8 Closed-Loop Input-to-Output Transfer Function 506

    12.9.9 Closed-Loop Input Impedance 508

    12.9.10 Closed-Loop Output Impedance 509

    12.10 Closed-Loop Step Responses 511

    12.10.1 Response to Step Change in Input Voltage 511

    12.10.2 Response to Step Change in Reference Voltage 513

    12.10.3 Closed-Loop Response to Step Change in Load Current 515

    12.10.4 Closed-Loop DC Transfer Functions 515

    12.11 Summary 518

    References 519

    Review Questions 519

    Problems 520

    13 Voltage-Mode Control of Boost Converter 521

    13.1 Introduction 521

    13.2 Circuit of Boost Converter with Voltage-Mode Control 521

    13.3 Transfer Function of Modulator, Boost Converter Power Stage, and Feedback Network 523

    13.4 Integral-Double-Lead Controller 527

    13.5 Design of Integral-Double-Lead Controller 532

    13.6 Loop Gain 536

    13.7 Closed-Loop Control-to-Output Voltage Transfer Function 537

    13.8 Closed-Loop Audio Susceptibility 539

    13.9 Closed-Loop Input Impedance 539

    13.10 Closed-Loop Output Impedance 542

    13.11 Closed-Loop Step Responses 544

    13.11.1 Closed-Loop Response to Step Change in Input Voltage 544

    13.11.2 Closed-Loop Response to Step Change in Reference Voltage 547

    13.11.3 Closed-Loop Response to Step Change in Load Current 548

    13.12 Closed-Loop DC Transfer Functions 549

    13.13 Summary 552

    References 552

    Review Questions 552

    Problems 553

    14 Current-Mode Control 554

    14.1 Introduction 554

    14.2 Principle of Operation of PWM Converters with Peak CMC 555

    14.3 Relationship Between Duty Cycle and Inductor-Current Slopes 559

    14.4 Instability of Closed-Current Loop 560

    14.5 Slope Compensation 564

    14.5.1 Analysis of Slope Compensation in Time Domain 564

    14.5.2 Boundary of Slope Compensation for Buck and Buck–Boost Converters 569

    14.5.3 Boundary Slope Compensation for Boost Converter 570

    14.6 Sample-and-Hold Effect on Current Loop 570

    14.6.1 Natural Response of Inductor Current to Small Perturbation in Closed-Current Loop 572

    14.6.2 Forced Response of Inductor Current to Step Change in Control Voltage in Closed-Current Loop 575

    14.6.3 Relationship Between s-Domain and z-Domain 577

    14.6.4 Transfer Function of Closed-Current Loop in z-Domain 578

    14.7 Closed-Loop Control Voltage-to-Inductor Current Transfer Function in s-Domain 580

    14.7.1 Approximation of Hicl by Rational Transfer Function 582

    14.7.2 Step Responses of Closed-Inner Loop 588

    14.8 Loop Gain of Current Loop 588

    14.8.1 Loop Gain of Inner Loop in z-Domain 588

    14.8.2 Loop Gain of Inner Loop in s-Domain 590

    14.9 Gain-Crossover Frequency of Inner Loop 595

    14.10 Phase Margin of Inner Loop 596

    14.11 Maximum Duty Cycle for Converters without Slope Compensation 598

    14.12 Maximum Duty Cycle for Converters with Slope Compensation 600

    14.13 Minimum Slope Compensation for Buck and Buck–Boost Converter 605

    14.14 Minimum Slope Compensation for Boost Converter 607

    14.15 Error Voltage-to-Duty Cycle Transfer Function 610

    14.16 Closed-Loop Control Voltage-to-Duty Cycle Transfer Function of Current Loop 614

    14.17 Alternative Representation of Current Loop 618

    14.18 Current Loop with Disturbances 618

    14.18.1 Modified Approximation of Current Loop 619

    14.19 Voltage Loop of PWM Converters with Current-Mode Control 624

    14.19.1 Control-to-Output Transfer Function for Buck Converter 624

    14.19.2 Block Diagram of Power Stages of PWM Converters 627

    14.19.3 Closed-Voltage Loop Transfer Function of PWM Converters with Current-Mode Control 628

    14.19.4 Closed-Loop Audio Susceptibility of PWM Converters with Current-Mode Control 628

    14.19.5 Closed-Loop Output Impedance of PWM Converters with Current-Mode Control 630

    14.20 Feedforward Gains in PWM Converters with Current-Mode Control without Slope Compensation 631

    14.21 Feedforward Gains in PWM Converters with Current-Mode Control and Slope Compensation 634

    14.22 Control-to-Output Voltage Transfer Function of Inner Loop with Feedforward Gains 636

    14.23 Audio-Susceptibility of Inner Loop with Feedforward Gains 637

    14.24 Closed-Loop Transfer Functions with Feedforward Gains 638

    14.25 Slope Compensation by Adding a Ramp to Inductor Current Waveform 638

    14.26 Relationships for Constant-Frequency Current-Mode On-Time Control 639

    14.27 Summary 639

    References 640

    Review Questions 644

    Problems 644

    14.28 Appendix: Sample-and-Hold Modeling 645

    14.28.1 Sampler of the Control Voltage 645

    14.28.2 Zero-Order Hold of Inductor Current 648

    14.28.3 Approximations of esTs 650

    15 Current-Mode Control of Boost Converter 653

    15.1 Introduction 653

    15.2 Open-Loop Small-Signal Transfer Functions 653

    15.2.1 Open-Loop Duty Cycle-to-Inductor Current Transfer Function 653

    15.2.2 High-Frequency Open-Loop Duty Cycle-to-Inductor Current Transfer Function 659

    15.2.3 Open-Loop Input Voltage-to-Inductor Current Transfer Function 660

    15.2.4 Open-Loop Inductor-to-Output Current Transfer Function 665

    15.3 Open-Loop Step Responses of Inductor Current 667

    15.3.1 Open-Loop Response of Inductor Current to Step Change in Input Voltage 667

    15.3.2 Open-Loop Response of the Inductor Current to Step Change in the Duty Cycle 670

    15.3.3 Open-Loop Response of Inductor Current to Step Change in Load Current 672

    15.4 Closed-Current-Loop Transfer Functions 675

    15.4.1 Forward Gain 675

    15.4.2 Loop Gain of Current Loop 675

    15.4.3 Closed-Loop Gain of Current Loop 675

    15.4.4 Control-to-Output Transfer Function 677

    15.4.5 Input Voltage-to-Duty Cycle Transfer Function 684

    15.4.6 Load Current-to-Duty Cycle Transfer Function 688

    15.4.7 Output Impedance of Closed-Current Loop 690

    15.5 Closed-Voltage-Loop Transfer Functions 695

    15.5.1 Control-to-Output Transfer Function 695

    15.5.2 Control Voltage-to-Feedback Voltage Transfer Function 695

    15.5.3 Loop Gain of Voltage Loop 697

    15.5.4 Closed-Loop Gain of Voltage Loop 701

    15.5.5 Closed-Loop Audio Susceptibility with Integral Controller 703

    15.5.6 Closed-Loop Output Impedance with Integral Controller 704

    15.6 Closed-Loop Step Responses 706

    15.6.1 Closed-Loop Response of Output Voltage to Step Change in Input Voltage 706

    15.6.2 Closed-Loop Response of Output Voltage to Step Change in Load Current 708

    15.6.3 Closed-Loop Response of Output Voltage to Step Change in Reference Voltage 708

    15.7 Closed-Loop DC Transfer Functions 710

    15.8 Summary 711

    References 711

    Review Questions 712

    Problems 712

    16 Open-Loop Small-Signal Characteristics of PWM Boost Converter for DCM 713

    16.1 Introduction 713

    16.2 Small-Signal Model of Boost Converter for DCM 713

    16.3 Open-Loop Control-to-Output Transfer Function 716

    16.4 Open-Loop Input-to-Output Voltage Transfer Function 719

    16.5 Open-Loop Input Impedance 724

    16.6 Open-Loop Output Impedance 725

    16.7 Step Responses of Output Voltage of Boost Converter for DCM 728

    16.7.1 Response of Output Voltage to Step Change in Input Voltage 728

    16.7.2 Response of Output Voltage to Step Change in Duty Cycle 730

    16.7.3 Response of Output Voltage to Step Change in Load Current 730

    16.8 Open-Loop Duty Cycle-to-Inductor Current Transfer Function 731

    16.9 Open-Loop Input Voltage-to-Inductor Current Transfer Function 735

    16.10 Open-Loop Output Current-to-Inductor Current Transfer Function 735

    16.11 Step Responses of Inductor Current of Boost Converter for DCM 738

    16.11.1 Step Response of Inductor Current to Step Change in Input Voltage 738

    16.11.2 Step Response of Inductor Current to Step Change in Duty Cycle 740

    16.11.3 Step Response of Inductor Current to Step Change in Load Current 741

    16.12 DC Characteristics of Boost Converter for DCM 742

    16.12.1 DC-to-DC Voltage Transfer Function of Lossless Boost Converter for DCM 742

    16.12.2 DC-to-DC Voltage Transfer Function of Lossy Boost Converter for DCM 743

    16.12.3 Efficiency of Boost Converter for DCM 745

    16.13 Summary 745

    References 745

    Review Questions 746

    Problems 746

    17 Silicon and Silicon-Carbide Power Diodes 747

    17.1 Introduction 747

    17.2 Electronic Power Switches 747

    17.3 Atom 748

    17.4 Electron and Hole Effective Mass 749

    17.5 Semiconductors 750

    17.6 Intrinsic Semiconductors 751

    17.7 Extrinsic Semiconductors 756

    17.7.1 n-Type Semiconductor 756

    17.7.2 p-Type Semiconductor 759

    17.7.3 Maximum Operating Temperature 761

    17.8 Wide Band Gap Semiconductors 762

    17.9 Physical Structure of Junction Diodes 764

    17.9.1 Formation of Depletion Layer 765

    17.9.2 Charge Transport 767

    17.10 Static IV Diode Characteristic 768

    17.11 Breakdown Voltage of Junction Diodes 772

    17.11.1 Depletion-Layer Width 773

    17.11.2 Electric Field Intensity Distribution 775

    17.11.3 Avalanche Breakdown Voltage 779

    17.11.4 Punch-Through Breakdown Voltage 781

    17.11.5 Edge Terminations 782

    17.12 Capacitances of Junction Diodes 784

    17.12.1 Junction Capacitance 784

    17.12.2 Diffusion Capacitance 787

    17.13 Reverse Recovery of pn Junction Diodes 789

    17.13.1 Qualitative Description 789

    17.13.2 Reverse Recovery in Resistive Circuits 790

    17.13.3 Charge-Continuity Equation 793

    17.13.4 Reverse Recovery in Inductive Circuits 796

    17.14 Schottky Diodes 798

    17.14.1 Static IV Characteristic of Schottky Diodes 801

    17.14.2 Breakdown Voltages of Schottky Diodes 802

    17.14.3 Junction Capacitance of Schottky Diodes 802

    17.14.4 Switching Characteristics of Schottky Diodes 802

    17.15 Solar Cells 806

    17.16 Light-Emitting Diodes 809

    17.17 SPICE Model of Diodes 810

    17.18 Summary 811

    References 815

    Review Questions 816

    Problems 817

    18 Silicon and Silicon-Carbide Power MOSFETs 819

    18.1 Introduction 819

    18.2 Integrated MOSFETs 819

    18.3 Physical Structure of Power MOSFETs 819

    18.4 Principle of Operation of Power MOSFETs 824

    18.4.1 Cutoff Region 824

    18.4.2 Formation of MOSFET Channel 824

    18.4.3 Linear Region 824

    18.4.4 Saturation Region 825

    18.4.5 Antiparallel Diode 825

    18.5 Derivation of Power MOSFET Characteristics 826

    18.5.1 Ohmic Region 826

    18.5.2 Pinch-off Region 829

    18.5.3 Channel-Length Modulation 830

    18.6 Power MOSFET Characteristics 831

    18.7 Mobility of Charge Carriers 833

    18.7.1 Effect of Doping Concentration on Mobility 834

    18.7.2 Effect of Temperature on Mobility 836

    18.7.3 Effect of Electric Field on Mobility 840

    18.8 Short-Channel Effects 846

    18.8.1 Ohmic Region 846

    18.8.2 Pinch-off Region 847

    18.9 Aspect Ratio of Power MOSFETs 848

    18.10 Breakdown Voltage of Power MOSFETs 850

    18.11 Gate Oxide Breakdown Voltage of Power MOSFETs 852

    18.12 Specific On-Resistance 852

    18.13 Figures-of-Merit of Semiconductors 855

    18.14 On-Resistance of Power MOSFETs 857

    18.14.1 Channel Resistance 857

    18.14.2 Accumulation Region Resistance 857

    18.14.3 Neck Region Resistance 858

    18.14.4 Drift Region Resistance 859

    18.15 Capacitances of Power MOSFETs 862

    18.15.1 Gate-to-Source Capacitance 862

    18.15.2 Drain-to-Source Capacitance 864

    18.15.3 Gate-to-Drain Capacitance 864

    18.16 Switching Waveforms 875

    18.17 SPICE Model of Power MOSFETs 877

    18.18 IGBTs 879

    18.19 Heat Sinks 880

    18.20 Summary 886

    References 888

    Review Questions 888

    Problems 889

    19 Electromagnetic Compatibility 891

    19.1 Introduction 891

    19.2 Definition of EMI 891

    19.3 Definition of EMC 892

    19.4 EMI Immunity 892

    19.5 EMI Susceptibility 893

    19.6 Classification of EMI 893

    19.7 Sources of EMI 895

    19.8 Safety Standards 896

    19.9 EMC Standards 896

    19.10 Near Field and Far Field 897

    19.11 Techniques of EMI Reduction 897

    19.12 Insertion Loss 898

    19.13 EMI Filters 898

    19.14 Feed-Through Capacitors 900

    19.15 EMI Shielding 900

    19.16 Interconnections 902

    19.17 Summary 903

    References 903

    Review Questions 903

    Problem 904

    A Introduction to SPICE 907

    B Introduction to MATLAB® 910

    C Physical Constants 915

    Answers to Problems 917

    Index 925

PulseWidth Modulated DCDC Power Converters

Product form

£95.36

Includes FREE delivery

RRP £105.95 – you save £10.59 (9%)

Order before 4pm today for delivery by Tue 20 Jan 2026.

A Hardback by Marian K. Kazimierczuk

15 in stock


    View other formats and editions of PulseWidth Modulated DCDC Power Converters by Marian K. Kazimierczuk

    Publisher: John Wiley & Sons Inc
    Publication Date: 16/10/2015
    ISBN13: 9781119009542, 978-1119009542
    ISBN10: 1119009545

    Description

    Book Synopsis

    PWM DC-DC power converter technology underpins many energy conversion systems including renewable energy circuits, active power factor correctors, battery chargers, portable devices and LED drivers.

    Following the success of Pulse-Width Modulated DC-DC Power Converters this second edition has been thoroughly revised and expanded to cover the latest challenges and advances in the field.

    Key features of 2nd edition:

    • Four new chapters, detailing the latest advances in power conversion, focus on: small-signal model and dynamic characteristics of the buck converter in continuous conduction mode; voltage-mode control of buck converter; small-signal model and characteristics of the boost converter in the discontinuous conduction mode and electromagnetic compatibility EMC.
    • Provides readers with a solid understanding of the principles of operation, synthesis, analysis and design of PWM power converters and semiconductor power devices, includin

      Table of Contents

      About the Author xxi

      Preface xxiii

      Nomenclature xxv

      1 Introduction 1

      1.1 Classification of Power Supplies 1

      1.2 Basic Functions of Voltage Regulators 3

      1.3 Power Relationships in DC–DC Converters 4

      1.4 DC Transfer Functions of DC–DC Converters 5

      1.5 Static Characteristics of DC Voltage Regulators 6

      1.6 Dynamic Characteristics of DC Voltage Regulators 9

      1.7 Linear Voltage Regulators 12

      1.7.1 Series Voltage Regulator 13

      1.7.2 Shunt Voltage Regulator 14

      1.8 Topologies of PWM DC–DC Converters 16

      1.9 Relationships Among Current, Voltage, Energy, and Power 18

      1.10 Summary 19

      References 19

      Review Questions 20

      Problems 21

      2 Buck PWM DC–DC Converter 22

      2.1 Introduction 22

      2.2 DC Analysis of PWM Buck Converter for CCM 22

      2.2.1 Circuit Description 22

      2.2.2 Assumptions 25

      2.2.3 Time Interval: 0 < t DT 25

      2.2.4 Time Interval: DT < t T 26

      2.2.5 Device Stresses for CCM 27

      2.2.6 DC Voltage Transfer Function for CCM 27

      2.2.7 Boundary Between CCM and DCM 29

      2.2.8 Capacitors 31

      2.2.9 Ripple Voltage in Buck Converter for CCM 33

      2.2.10 Switching Losses with Linear MOSFET Output Capacitance 39

      2.2.11 Switching Losses with Nonlinear MOSFET Output Capacitance 40

      2.2.12 Power Losses and Efficiency of Buck Converter for CCM 43

      2.2.13 DC Voltage Transfer Function of Lossy Converter for CCM 48

      2.2.14 MOSFET Gate-Drive Power 48

      2.2.15 Gate Driver 49

      2.2.16 Design of Buck Converter for CCM 50

      2.3 DC Analysis of PWM Buck Converter for DCM 52

      2.3.1 Time Interval: 0 < t DT 56

      2.3.2 Time Interval: DT < t ≤ (D + D1)T 58

      2.3.3 Time Interval: (D + D1)T < t T 58

      2.3.4 Device Stresses for DCM 59

      2.3.5 DC Voltage Transfer Function for DCM 59

      2.3.6 Maximum Inductance for DCM 62

      2.3.7 Power Losses and Efficiency of Buck Converter for DCM 63

      2.3.8 Design of Buck Converter for DCM 65

      2.4 Buck Converter with Input Filter 68

      2.5 Buck Converter with Synchronous Rectifier 68

      2.6 Buck Converter with Positive Common Rail 76

      2.7 Quadratic Buck Converter 76

      2.8 Tapped-Inductor Buck Converters 79

      2.8.1 Tapped-Inductor Common-Diode Buck Converter 79

      2.8.2 Tapped-Inductor Common-Transistor Buck Converter 81

      2.8.3 Watkins–Johnson Converter 82

      2.9 Multiphase Buck Converter 83

      2.10 Switched-Inductor Buck Converter 85

      2.11 Layout 85

      2.12 Summary 85

      References 87

      Review Questions 88

      Problems 88

      3 Boost PWM DC–DC Converter 90

      3.1 Introduction 90

      3.2 DC Analysis of PWM Boost Converter for CCM 90

      3.2.1 Circuit Description 90

      3.2.2 Assumptions 91

      3.2.3 Time Interval: 0 < t DT 93

      3.2.4 Time Interval: DT < t T 94

      3.2.5 DC Voltage Transfer Function for CCM 94

      3.2.6 Boundary Between CCM and DCM 95

      3.2.7 Ripple Voltage in Boost Converter for CCM 98

      3.2.8 Power Losses and Efficiency of Boost Converter for CCM 100

      3.2.9 DC Voltage Transfer Function of Lossy Boost Converter for CCM 102

      3.2.10 Design of Boost Converter for CCM 103

      3.3 DC Analysis of PWM Boost Converter for DCM 107

      3.3.1 Time Interval: 0 < t DT 110

      3.3.2 Time Interval: DT < t ≤ (D + D1)T 111

      3.3.3 Time Interval: (D + D1)T < t T 112

      3.3.4 Device Stresses for DCM 112

      3.3.5 DC Voltage Transfer Function for DCM 112

      3.3.6 Maximum Inductance for DCM 117

      3.3.7 Power Losses and Efficiency of Boost Converter for DCM 117

      3.3.8 Design of Boost Converter for DCM 120

      3.4 Bidirectional Buck and Boost Converters 127

      3.5 Synchronous Boost Converter 129

      3.6 Tapped-Inductor Boost Converters 129

      3.6.1 Tapped-Inductor Common-Diode Boost Converter 131

      3.6.2 Tapped-Inductor Common-Load Boost Converter 132

      3.7 Duality 133

      3.8 Power Factor Correction 134

      3.8.1 Power Factor 134

      3.8.2 Boost Power Factor Corrector 138

      3.8.3 Electronic Ballasts for Fluorescent Lamps 141

      3.9 Summary 141

      References 142

      Review Questions 143

      Problems 143

      4 Buck–Boost PWM DC–DC Converter 145

      4.1 Introduction 145

      4.2 DC Analysis of PWM Buck–Boost Converter for CCM 145

      4.2.1 Circuit Description 145

      4.2.2 Assumptions 146

      4.2.3 Time Interval: 0 < t DT 146

      4.2.4 Time Interval: DT < t T 148

      4.2.5 DC Voltage Transfer Function for CCM 149

      4.2.6 Device Stresses for CCM 150

      4.2.7 Boundary Between CCM and DCM 151

      4.2.8 Ripple Voltage in Buck–Boost Converter for CCM 152

      4.2.9 Power Losses and Efficiency of the Buck–Boost Converter for CCM 155

      4.2.10 DC Voltage Transfer Function of Lossy Buck–Boost Converter for CCM 158

      4.2.11 Design of Buck–Boost Converter for CCM 159

      4.3 DC Analysis of PWM Buck–Boost Converter for DCM 162

      4.3.1 Time Interval: 0 < t DT 165

      4.3.2 Time Interval: DT < t ≤ (D + D1)T 166

      4.3.3 Time Interval: (D + D1)T < t T 167

      4.3.4 Device Stresses of the Buck–Boost Converter in DCM 167

      4.3.5 DC Voltage Transfer Function of the Buck–Boost Converter for DCM 167

      4.3.6 Maximum Inductance for DCM 170

      4.3.7 Power Losses and Efficiency of the Buck–Boost Converter in DCM 172

      4.3.8 Design of Buck–Boost Converter for DCM 174

      4.4 Bidirectional Buck–Boost Converter 180

      4.5 Synthesis of Buck–Boost Converter 181

      4.6 Synthesis of Boost–Buck (ćuk) Converter 183

      4.7 Noninverting Buck–Boost Converters 184

      4.7.1 Cascaded Noninverting Buck–Boost Converters 184

      4.7.2 Four-Transistor Noninverting Buck–Boost Converters 184

      4.8 Tapped-Inductor Buck–Boost Converters 186

      4.8.1 Tapped-Inductor Common-Diode Buck–Boost Converter 186

      4.8.2 Tapped-Inductor Common-Transistor Buck–Boost Converter 187

      4.8.3 Tapped-Inductor Common-Load Buck–Boost Converter 188

      4.8.4 Tapped-Inductor Common-Source Buck–Boost Converter 191

      4.9 Summary 192

      References 192

      Review Questions 193

      Problems 193

      5 Flyback PWM DC–DC Converter 195

      5.1 Introduction 195

      5.2 Transformers 196

      5.3 DC Analysis of PWM Flyback Converter for CCM 197

      5.3.1 Derivation of PWM Flyback Converter 197

      5.3.2 Circuit Description 197

      5.3.3 Assumptions 199

      5.3.4 Time Interval: 0 < t DT 200

      5.3.5 Time Interval: DT < t T 201

      5.3.6 DC Voltage Transfer Function for CCM 203

      5.3.7 Boundary Between CCM and DCM 204

      5.3.8 Ripple Voltage in Flyback Converter for CCM 205

      5.3.9 Power Losses and Efficiency of Flyback Converter for CCM 207

      5.3.10 DC Voltage Transfer Function of Lossy Converter for CCM 210

      5.3.11 Design of Flyback Converter for CCM 211

      5.4 DC Analysis of PWM Flyback Converter for DCM 214

      5.4.1 Time Interval: 0 < t DT 217

      5.4.2 Time Interval: DT < t ≤ (D + D1)T 219

      5.4.3 Time Interval: (D + D1)T < t T 220

      5.4.4 DC Voltage Transfer Function for DCM 221

      5.4.5 Maximum Magnetizing Inductance for DCM 222

      5.4.6 Ripple Voltage in Flyback Converter for DCM 225

      5.4.7 Power Losses and Efficiency of Flyback Converter for DCM 226

      5.4.8 Design of Flyback Converter for DCM 228

      5.5 Multiple-Output Flyback Converter 232

      5.6 Bidirectional Flyback Converter 237

      5.7 Ringing in Flyback Converter 237

      5.8 Flyback Converter with Passive Dissipative Snubber 240

      5.9 Flyback Converter with Zener Diode Voltage Clamp 240

      5.10 Flyback Converter with Active Clamping 241

      5.11 Two-Transistor Flyback Converter 241

      5.12 Summary 243

      References 244

      Review Questions 244

      Problems 245

      6 Forward PWM DC–DC Converter 246

      6.1 Introduction 246

      6.2 DC Analysis of PWM Forward Converter for CCM 246

      6.2.1 Derivation of Forward PWM Converter 246

      6.2.2 Time Interval: 0 < t DT 248

      6.2.3 Time Interval: DT < t DT + tm 251

      6.2.4 Time Interval: DT + tm < t T 253

      6.2.5 Maximum Duty Cycle 253

      6.2.6 Device Stresses 254

      6.2.7 DC Voltage Transfer Function for CCM 255

      6.2.8 Boundary Between CCM and DCM 255

      6.2.9 Ripple Voltage in Forward Converter for CCM 256

      6.2.10 Power Losses and Efficiency of Forward Converter for CCM 258

      6.2.11 DC Voltage Transfer Function of Lossy Converter for CCM 261

      6.2.12 Design of Forward Converter for CCM 262

      6.3 DC Analysis of PWM Forward Converter for DCM 269

      6.3.1 Time Interval: 0 < t DT 269

      6.3.2 Time Interval: DT < t DT + tm 272

      6.3.3 Time Interval: DT + tm < t ≤ (D + D1)T 273

      6.3.4 Time Interval: (D + D1)T < t T 273

      6.3.5 DC Voltage Transfer Function for DCM 274

      6.3.6 Maximum Inductance for DCM 277

      6.3.7 Power Losses and Efficiency of Forward Converter for DCM 278

      6.3.8 Design of Forward Converter for DCM 280

      6.4 Multiple-Output Forward Converter 288

      6.5 Forward Converter with Synchronous Rectifier 288

      6.6 Forward Converters with Active Clamping 288

      6.7 Two-Switch Forward Converter 290

      6.8 Forward–Flyback Converter 291

      6.9 Summary 292

      References 293

      Review Questions 293

      Problems 294

      7 Half-Bridge PWM DC–DC Converter 296

      7.1 Introduction 296

      7.2 DC Analysis of PWM Half-Bridge Converter for CCM 296

      7.2.1 Circuit Description 296

      7.2.2 Assumptions 299

      7.2.3 Time Interval: 0 < t DT 299

      7.2.4 Time Interval: DT < t T∕2 301

      7.2.5 Time Interval: T∕2 < t T∕2 + DT 303

      7.2.6 Time Interval: T∕2 + DT < t T 304

      7.2.7 Device Stresses 304

      7.2.8 DC Voltage Transfer Function of Lossless Half-Bridge Converter for CCM 304

      7.2.9 Boundary Between CCM and DCM 305

      7.2.10 Ripple Voltage in Half-Bridge Converter for CCM 306

      7.2.11 Power Losses and Efficiency of Half-Bridge Converter for CCM 308

      7.2.12 DC Voltage Transfer Function of Lossy Converter for CCM 311

      7.2.13 Design of Half-Bridge Converter for CCM 312

      7.3 DC Analysis of PWM Half-Bridge Converter for DCM 315

      7.3.1 Time Interval: 0 < t DT 315

      7.3.2 Time Interval: DT < t ≤ (D + D1)T 320

      7.3.3 Time Interval: (D + D1)T < t T∕2 322

      7.3.4 DC Voltage Transfer Function for DCM 322

      7.3.5 Maximum Inductance for DCM 326

      7.4 Summary 326

      References 327

      Review Questions 327

      Problems 328

      8 Full-Bridge PWM DC–DC Converter 330

      8.1 Introduction 330

      8.2 DC Analysis of PWM Full-Bridge Converter for CCM 330

      8.2.1 Circuit Description 330

      8.2.2 Assumptions 332

      8.2.3 Time Interval: 0 < t DT 332

      8.2.4 Time Interval: DT < t T∕2 334

      8.2.5 Time Interval: T∕2 < t T∕2 + DT 336

      8.2.6 Time Interval: T∕2 + DT < t T 336

      8.2.7 Device Stresses 337

      8.2.8 DC Voltage Transfer Function of Lossless Full-Wave Converter for CCM 337

      8.2.9 Boundary Between CCM and DCM 338

      8.2.10 Ripple Voltage in Full-Bridge Converter for CCM 339

      8.2.11 Power Losses and Efficiency of Full-Bridge Converter for CCM 340

      8.2.12 DC Voltage Transfer Function of Lossy Converter for CCM 344

      8.2.13 Design of Full-Bridge Converter for CCM 345

      8.3 DC Analysis of PWM Full-Bridge Converter for DCM 351

      8.3.1 Time Interval: 0 < t DT 351

      8.3.2 Time Interval: DT < t ≤ (D + D1)T 353

      8.3.3 Time Interval: (D + D1)T < t T∕2 355

      8.3.4 DC Voltage Transfer Function for DCM 356

      8.3.5 Maximum Inductance for DCM 359

      8.4 Phase-Controlled Full-Bridge Converter 361

      8.5 Summary 362

      References 362

      Review Questions 362

      Problems 363

      9 Small-Signal Models of PWM Converters for CCM and DCM 365

      9.1 Introduction 365

      9.2 Assumptions 366

      9.3 Averaged Model of Ideal Switching Network for CCM 366

      9.4 Averaged Values of Switched Resistances 369

      9.5 Model Reduction 375

      9.6 Large-Signal Averaged Model for CCM 377

      9.7 DC and Small-Signal Circuit Linear Models of Switching Network for CCM 381

      9.7.1 Large-Signal Circuit Model of Switching Network for CCM 381

      9.7.2 Linearization of Switching Network Model for CCM 384

      9.8 Block Diagram of Small-signal Model of PWM DC–DC Converters 385

      9.9 Family of PWM Converter Models for CCM 386

      9.10 PWM Small-Signal Switch Model for CCM 389

      9.11 Modeling of Ideal Switching Network for DCM 391

      9.11.1 Relationships Among DC Components for DCM 391

      9.11.2 Small-Signal Model of Ideal Switching Network for DCM 395

      9.12 Averaged Parasitic Resistances for DCM 398

      9.13 Summary 400

      References 402

      Review Questions 405

      Problems 405

      10 Small-Signal Characteristics of Buck Converter for CCM 407

      10.1 Introduction 407

      10.2 Small-Signal Model of the PWM Buck Converter 407

      10.3 Open-Loop Transfer Functions 408

      10.3.1 Open-Loop Control-to-Output Transfer Function 409

      10.3.2 Delay in Control-to-Output Transfer Function 416

      10.3.3 Open-Loop Input-to-Output Transfer Function 418

      10.3.4 Open-Loop Input Impedance 420

      10.3.5 Open-Loop Output Impedance 423

      10.4 Open-Loop Step Responses 426

      10.4.1 Open-Loop Response of Output Voltage to Step Change in Input Voltage 426

      10.4.2 Open-Loop Response of Output Voltage to Step Change in Duty Cycle 431

      10.4.3 Open-Loop Response of Output Voltage to Step Change in Load Current 433

      10.5 Open-Loop DC Transfer Functions 434

      10.6 Summary 436

      References 436

      Review Questions 437

      Problems 438

      11 Small-Signal Characteristics of Boost Converter for CCM 439

      11.1 Introduction 439

      11.2 DC Characteristics 439

      11.3 Open-Loop Control-to-Output Transfer Function 440

      11.4 Delay in Open-Loop Control-to-Output Transfer Function 449

      11.5 Open-Loop Audio Susceptibility 451

      11.6 Open-Loop Input Impedance 455

      11.7 Open-Loop Output Impedance 457

      11.8 Open-Loop Step Responses 461

      11.8.1 Open-Loop Response of Output Voltage to Step Change in Input Voltage 461

      11.8.2 Open-Loop Response of Output Voltage to Step Change in Duty Cycle 464

      11.8.3 Open-Loop Response of Output Voltage to Step Change in Load Current 465

      11.9 Summary 467

      References 467

      Review Questions 468

      Problems 468

      12 Voltage-Mode Control of PWM Buck Converter 470

      12.1 Introduction 470

      12.2 Properties of Negative Feedback 471

      12.3 Stability 474

      12.4 Single-Loop Control of PWM Buck Converter 475

      12.5 Closed-Loop Small-Signal Model of Buck Converter 478

      12.6 Pulse-Width Modulator 478

      12.7 Feedback Network 483

      12.8 Transfer Function of Buck Converter with Modulator and Feedback Network 486

      12.9 Control Circuits 489

      12.9.1 Error Amplifier 489

      12.9.2 Proportional Controller 490

      12.9.3 Integral Controller 492

      12.9.4 Proportional-Integral Controller 493

      12.9.5 Integral-Single-Lead Controller 497

      12.9.6 Loop Gain 504

      12.9.7 Closed-Loop Control-to-Output Voltage Transfer Function 504

      12.9.8 Closed-Loop Input-to-Output Transfer Function 506

      12.9.9 Closed-Loop Input Impedance 508

      12.9.10 Closed-Loop Output Impedance 509

      12.10 Closed-Loop Step Responses 511

      12.10.1 Response to Step Change in Input Voltage 511

      12.10.2 Response to Step Change in Reference Voltage 513

      12.10.3 Closed-Loop Response to Step Change in Load Current 515

      12.10.4 Closed-Loop DC Transfer Functions 515

      12.11 Summary 518

      References 519

      Review Questions 519

      Problems 520

      13 Voltage-Mode Control of Boost Converter 521

      13.1 Introduction 521

      13.2 Circuit of Boost Converter with Voltage-Mode Control 521

      13.3 Transfer Function of Modulator, Boost Converter Power Stage, and Feedback Network 523

      13.4 Integral-Double-Lead Controller 527

      13.5 Design of Integral-Double-Lead Controller 532

      13.6 Loop Gain 536

      13.7 Closed-Loop Control-to-Output Voltage Transfer Function 537

      13.8 Closed-Loop Audio Susceptibility 539

      13.9 Closed-Loop Input Impedance 539

      13.10 Closed-Loop Output Impedance 542

      13.11 Closed-Loop Step Responses 544

      13.11.1 Closed-Loop Response to Step Change in Input Voltage 544

      13.11.2 Closed-Loop Response to Step Change in Reference Voltage 547

      13.11.3 Closed-Loop Response to Step Change in Load Current 548

      13.12 Closed-Loop DC Transfer Functions 549

      13.13 Summary 552

      References 552

      Review Questions 552

      Problems 553

      14 Current-Mode Control 554

      14.1 Introduction 554

      14.2 Principle of Operation of PWM Converters with Peak CMC 555

      14.3 Relationship Between Duty Cycle and Inductor-Current Slopes 559

      14.4 Instability of Closed-Current Loop 560

      14.5 Slope Compensation 564

      14.5.1 Analysis of Slope Compensation in Time Domain 564

      14.5.2 Boundary of Slope Compensation for Buck and Buck–Boost Converters 569

      14.5.3 Boundary Slope Compensation for Boost Converter 570

      14.6 Sample-and-Hold Effect on Current Loop 570

      14.6.1 Natural Response of Inductor Current to Small Perturbation in Closed-Current Loop 572

      14.6.2 Forced Response of Inductor Current to Step Change in Control Voltage in Closed-Current Loop 575

      14.6.3 Relationship Between s-Domain and z-Domain 577

      14.6.4 Transfer Function of Closed-Current Loop in z-Domain 578

      14.7 Closed-Loop Control Voltage-to-Inductor Current Transfer Function in s-Domain 580

      14.7.1 Approximation of Hicl by Rational Transfer Function 582

      14.7.2 Step Responses of Closed-Inner Loop 588

      14.8 Loop Gain of Current Loop 588

      14.8.1 Loop Gain of Inner Loop in z-Domain 588

      14.8.2 Loop Gain of Inner Loop in s-Domain 590

      14.9 Gain-Crossover Frequency of Inner Loop 595

      14.10 Phase Margin of Inner Loop 596

      14.11 Maximum Duty Cycle for Converters without Slope Compensation 598

      14.12 Maximum Duty Cycle for Converters with Slope Compensation 600

      14.13 Minimum Slope Compensation for Buck and Buck–Boost Converter 605

      14.14 Minimum Slope Compensation for Boost Converter 607

      14.15 Error Voltage-to-Duty Cycle Transfer Function 610

      14.16 Closed-Loop Control Voltage-to-Duty Cycle Transfer Function of Current Loop 614

      14.17 Alternative Representation of Current Loop 618

      14.18 Current Loop with Disturbances 618

      14.18.1 Modified Approximation of Current Loop 619

      14.19 Voltage Loop of PWM Converters with Current-Mode Control 624

      14.19.1 Control-to-Output Transfer Function for Buck Converter 624

      14.19.2 Block Diagram of Power Stages of PWM Converters 627

      14.19.3 Closed-Voltage Loop Transfer Function of PWM Converters with Current-Mode Control 628

      14.19.4 Closed-Loop Audio Susceptibility of PWM Converters with Current-Mode Control 628

      14.19.5 Closed-Loop Output Impedance of PWM Converters with Current-Mode Control 630

      14.20 Feedforward Gains in PWM Converters with Current-Mode Control without Slope Compensation 631

      14.21 Feedforward Gains in PWM Converters with Current-Mode Control and Slope Compensation 634

      14.22 Control-to-Output Voltage Transfer Function of Inner Loop with Feedforward Gains 636

      14.23 Audio-Susceptibility of Inner Loop with Feedforward Gains 637

      14.24 Closed-Loop Transfer Functions with Feedforward Gains 638

      14.25 Slope Compensation by Adding a Ramp to Inductor Current Waveform 638

      14.26 Relationships for Constant-Frequency Current-Mode On-Time Control 639

      14.27 Summary 639

      References 640

      Review Questions 644

      Problems 644

      14.28 Appendix: Sample-and-Hold Modeling 645

      14.28.1 Sampler of the Control Voltage 645

      14.28.2 Zero-Order Hold of Inductor Current 648

      14.28.3 Approximations of esTs 650

      15 Current-Mode Control of Boost Converter 653

      15.1 Introduction 653

      15.2 Open-Loop Small-Signal Transfer Functions 653

      15.2.1 Open-Loop Duty Cycle-to-Inductor Current Transfer Function 653

      15.2.2 High-Frequency Open-Loop Duty Cycle-to-Inductor Current Transfer Function 659

      15.2.3 Open-Loop Input Voltage-to-Inductor Current Transfer Function 660

      15.2.4 Open-Loop Inductor-to-Output Current Transfer Function 665

      15.3 Open-Loop Step Responses of Inductor Current 667

      15.3.1 Open-Loop Response of Inductor Current to Step Change in Input Voltage 667

      15.3.2 Open-Loop Response of the Inductor Current to Step Change in the Duty Cycle 670

      15.3.3 Open-Loop Response of Inductor Current to Step Change in Load Current 672

      15.4 Closed-Current-Loop Transfer Functions 675

      15.4.1 Forward Gain 675

      15.4.2 Loop Gain of Current Loop 675

      15.4.3 Closed-Loop Gain of Current Loop 675

      15.4.4 Control-to-Output Transfer Function 677

      15.4.5 Input Voltage-to-Duty Cycle Transfer Function 684

      15.4.6 Load Current-to-Duty Cycle Transfer Function 688

      15.4.7 Output Impedance of Closed-Current Loop 690

      15.5 Closed-Voltage-Loop Transfer Functions 695

      15.5.1 Control-to-Output Transfer Function 695

      15.5.2 Control Voltage-to-Feedback Voltage Transfer Function 695

      15.5.3 Loop Gain of Voltage Loop 697

      15.5.4 Closed-Loop Gain of Voltage Loop 701

      15.5.5 Closed-Loop Audio Susceptibility with Integral Controller 703

      15.5.6 Closed-Loop Output Impedance with Integral Controller 704

      15.6 Closed-Loop Step Responses 706

      15.6.1 Closed-Loop Response of Output Voltage to Step Change in Input Voltage 706

      15.6.2 Closed-Loop Response of Output Voltage to Step Change in Load Current 708

      15.6.3 Closed-Loop Response of Output Voltage to Step Change in Reference Voltage 708

      15.7 Closed-Loop DC Transfer Functions 710

      15.8 Summary 711

      References 711

      Review Questions 712

      Problems 712

      16 Open-Loop Small-Signal Characteristics of PWM Boost Converter for DCM 713

      16.1 Introduction 713

      16.2 Small-Signal Model of Boost Converter for DCM 713

      16.3 Open-Loop Control-to-Output Transfer Function 716

      16.4 Open-Loop Input-to-Output Voltage Transfer Function 719

      16.5 Open-Loop Input Impedance 724

      16.6 Open-Loop Output Impedance 725

      16.7 Step Responses of Output Voltage of Boost Converter for DCM 728

      16.7.1 Response of Output Voltage to Step Change in Input Voltage 728

      16.7.2 Response of Output Voltage to Step Change in Duty Cycle 730

      16.7.3 Response of Output Voltage to Step Change in Load Current 730

      16.8 Open-Loop Duty Cycle-to-Inductor Current Transfer Function 731

      16.9 Open-Loop Input Voltage-to-Inductor Current Transfer Function 735

      16.10 Open-Loop Output Current-to-Inductor Current Transfer Function 735

      16.11 Step Responses of Inductor Current of Boost Converter for DCM 738

      16.11.1 Step Response of Inductor Current to Step Change in Input Voltage 738

      16.11.2 Step Response of Inductor Current to Step Change in Duty Cycle 740

      16.11.3 Step Response of Inductor Current to Step Change in Load Current 741

      16.12 DC Characteristics of Boost Converter for DCM 742

      16.12.1 DC-to-DC Voltage Transfer Function of Lossless Boost Converter for DCM 742

      16.12.2 DC-to-DC Voltage Transfer Function of Lossy Boost Converter for DCM 743

      16.12.3 Efficiency of Boost Converter for DCM 745

      16.13 Summary 745

      References 745

      Review Questions 746

      Problems 746

      17 Silicon and Silicon-Carbide Power Diodes 747

      17.1 Introduction 747

      17.2 Electronic Power Switches 747

      17.3 Atom 748

      17.4 Electron and Hole Effective Mass 749

      17.5 Semiconductors 750

      17.6 Intrinsic Semiconductors 751

      17.7 Extrinsic Semiconductors 756

      17.7.1 n-Type Semiconductor 756

      17.7.2 p-Type Semiconductor 759

      17.7.3 Maximum Operating Temperature 761

      17.8 Wide Band Gap Semiconductors 762

      17.9 Physical Structure of Junction Diodes 764

      17.9.1 Formation of Depletion Layer 765

      17.9.2 Charge Transport 767

      17.10 Static IV Diode Characteristic 768

      17.11 Breakdown Voltage of Junction Diodes 772

      17.11.1 Depletion-Layer Width 773

      17.11.2 Electric Field Intensity Distribution 775

      17.11.3 Avalanche Breakdown Voltage 779

      17.11.4 Punch-Through Breakdown Voltage 781

      17.11.5 Edge Terminations 782

      17.12 Capacitances of Junction Diodes 784

      17.12.1 Junction Capacitance 784

      17.12.2 Diffusion Capacitance 787

      17.13 Reverse Recovery of pn Junction Diodes 789

      17.13.1 Qualitative Description 789

      17.13.2 Reverse Recovery in Resistive Circuits 790

      17.13.3 Charge-Continuity Equation 793

      17.13.4 Reverse Recovery in Inductive Circuits 796

      17.14 Schottky Diodes 798

      17.14.1 Static IV Characteristic of Schottky Diodes 801

      17.14.2 Breakdown Voltages of Schottky Diodes 802

      17.14.3 Junction Capacitance of Schottky Diodes 802

      17.14.4 Switching Characteristics of Schottky Diodes 802

      17.15 Solar Cells 806

      17.16 Light-Emitting Diodes 809

      17.17 SPICE Model of Diodes 810

      17.18 Summary 811

      References 815

      Review Questions 816

      Problems 817

      18 Silicon and Silicon-Carbide Power MOSFETs 819

      18.1 Introduction 819

      18.2 Integrated MOSFETs 819

      18.3 Physical Structure of Power MOSFETs 819

      18.4 Principle of Operation of Power MOSFETs 824

      18.4.1 Cutoff Region 824

      18.4.2 Formation of MOSFET Channel 824

      18.4.3 Linear Region 824

      18.4.4 Saturation Region 825

      18.4.5 Antiparallel Diode 825

      18.5 Derivation of Power MOSFET Characteristics 826

      18.5.1 Ohmic Region 826

      18.5.2 Pinch-off Region 829

      18.5.3 Channel-Length Modulation 830

      18.6 Power MOSFET Characteristics 831

      18.7 Mobility of Charge Carriers 833

      18.7.1 Effect of Doping Concentration on Mobility 834

      18.7.2 Effect of Temperature on Mobility 836

      18.7.3 Effect of Electric Field on Mobility 840

      18.8 Short-Channel Effects 846

      18.8.1 Ohmic Region 846

      18.8.2 Pinch-off Region 847

      18.9 Aspect Ratio of Power MOSFETs 848

      18.10 Breakdown Voltage of Power MOSFETs 850

      18.11 Gate Oxide Breakdown Voltage of Power MOSFETs 852

      18.12 Specific On-Resistance 852

      18.13 Figures-of-Merit of Semiconductors 855

      18.14 On-Resistance of Power MOSFETs 857

      18.14.1 Channel Resistance 857

      18.14.2 Accumulation Region Resistance 857

      18.14.3 Neck Region Resistance 858

      18.14.4 Drift Region Resistance 859

      18.15 Capacitances of Power MOSFETs 862

      18.15.1 Gate-to-Source Capacitance 862

      18.15.2 Drain-to-Source Capacitance 864

      18.15.3 Gate-to-Drain Capacitance 864

      18.16 Switching Waveforms 875

      18.17 SPICE Model of Power MOSFETs 877

      18.18 IGBTs 879

      18.19 Heat Sinks 880

      18.20 Summary 886

      References 888

      Review Questions 888

      Problems 889

      19 Electromagnetic Compatibility 891

      19.1 Introduction 891

      19.2 Definition of EMI 891

      19.3 Definition of EMC 892

      19.4 EMI Immunity 892

      19.5 EMI Susceptibility 893

      19.6 Classification of EMI 893

      19.7 Sources of EMI 895

      19.8 Safety Standards 896

      19.9 EMC Standards 896

      19.10 Near Field and Far Field 897

      19.11 Techniques of EMI Reduction 897

      19.12 Insertion Loss 898

      19.13 EMI Filters 898

      19.14 Feed-Through Capacitors 900

      19.15 EMI Shielding 900

      19.16 Interconnections 902

      19.17 Summary 903

      References 903

      Review Questions 903

      Problem 904

      A Introduction to SPICE 907

      B Introduction to MATLAB® 910

      C Physical Constants 915

      Answers to Problems 917

      Index 925

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account