Description

Book Synopsis
* Unique in presenting a completely new theoretic solution to control electric power in a simple way * Discusses the application of predicitive control in motor drives, with several examples and case studies * Matlab is included on a complimentary website so the reader can run their own simulations .

Table of Contents
Foreword xi

Preface xiii

Acknowledgments xv

Part One INTRODUCTION

1 Introduction 3

1.1 Applications of Power Converters and Drives 3

1.2 Types of Power Converters 5

1.2.1 Generic Drive System 5

1.2.2 Classification of Power Converters 5

1.3 Control of Power Converters and Drives 7

1.3.1 Power Converter Control in the Past 7

1.3.2 Power Converter Control Today 10

1.3.3 Control Requirements and Challenges 11

1.3.4 Digital Control Platforms 12

1.4 Why Predictive Control is Particularly Suited for Power Electronics 13

1.5 Contents of this Book 15

References 16

2 Classical Control Methods for Power Converters and Drives 17

2.1 Classical Current Control Methods 17

2.1.1 Hysteresis Current Control 18

2.1.2 Linear Control with Pulse Width Modulation or Space Vector Modulation 20

2.2 Classical Electrical Drive Control Methods 24

2.2.1 Field Oriented Control 24

2.2.2 Direct Torque Control 26

2.3 Summary 30

References 30

3 Model Predictive Control 31

3.1 Predictive Control Methods for Power Converters and Drives 31

3.2 Basic Principles of Model Predictive Control 32

3.3 Model Predictive Control for Power Electronics and Drives 34

3.3.1 Controller Design 35

3.3.2 Implementation 37

3.3.3 General Control Scheme 38

3.4 Summary 38

References 38

Part Two MODEL PREDICTIVE CONTROL APPLIED TO POWER CONVERTERS

4 Predictive Control of a Three-Phase Inverter 43

4.1 Introduction 43

4.2 Predictive Current Control 43

4.3 Cost Function 44

4.4 Converter Model 44

4.5 Load Model 48

4.6 Discrete-Time Model for Prediction 49

4.7 Working Principle 50

4.8 Implementation of the Predictive Control Strategy 50

4.9 Comparison to a Classical Control Scheme 59

4.10 Summary 63

References 63

5 Predictive Control of a Three-Phase Neutral-Point Clamped Inverter 65

5.1 Introduction 65

5.2 System Model 66

5.3 Linear Current Control Method with Pulse Width Modulation 70

5.4 Predictive Current Control Method 70

5.5 Implementation 72

5.5.1 Reduction of the Switching Frequency 74

5.5.2 Capacitor Voltage Balance 77

5.6 Summary 78

References 79

6 Control of an Active Front-End Rectifier 81

6.1 Introduction 81

6.2 Rectifier Model 84

6.2.1 Space Vector Model 84

6.2.2 Discrete-Time Model 85

6.3 Predictive Current Control in an Active Front-End 86

6.3.1 Cost Function 86

6.4 Predictive Power Control 89

6.4.1 Cost Function and Control Scheme 89

6.5 Predictive Control of an AC–DC–AC Converter 92

6.5.1 Control of the Inverter Side 92

6.5.2 Control of the Rectifier Side 94

6.5.3 Control Scheme 94

6.6 Summary 96

References 97

7 Control of a Matrix Converter 99

7.1 Introduction 99

7.2 System Model 99

7.2.1 Matrix Converter Model 99

7.2.2 Working Principle of the Matrix Converter 101

7.2.3 Commutation of the Switches 102

7.3 Classical Control: The Venturini Method 103

7.4 Predictive Current Control of the Matrix Converter 104

7.4.1 Model of the Matrix Converter for Predictive Control 104

7.4.2 Output Current Control 107

7.4.3 Output Current Control with Minimization of the Input Reactive Power 108

7.4.4 Input Reactive Power Control 113

7.5 Summary 113

References 114

Part Three MODEL PREDICTIVE CONTROL APPLIED TO MOTOR DRIVES

8 Predictive Control of Induction Machines 117

8.1 Introduction 117

8.2 Dynamic Model of an Induction Machine 118

8.3 Field Oriented Control of an Induction Machine Fed by a Matrix Converter Using Predictive Current Control 121

8.3.1 Control Scheme 121

8.4 Predictive Torque Control of an Induction Machine Fed by a Voltage Source Inverter 123

8.5 Predictive Torque Control of an Induction Machine Fed by a Matrix Converter 128

8.5.1 Torque and Flux Control 128

8.5.2 Torque and Flux Control with Minimization of the Input Reactive Power 129

8.6 Summary 130

References 131

9 Predictive Control of Permanent Magnet Synchronous Motors 133

9.1 Introduction 133

9.2 Machine Equations 133

9.3 Field Oriented Control Using Predictive Current Control 135

9.3.1 Discrete-Time Model 136

9.3.2 Control Scheme 136

9.4 Predictive Speed Control 139

9.4.1 Discrete-Time Model 139

9.4.2 Control Scheme 140

9.4.3 Rotor Speed Estimation 141

9.5 Summary 142

References 143

Part Four DESIGN AND IMPLEMENTATION ISSUES OF MODEL PREDICTIVE CONTROL

10 Cost Function Selection 147

10.1 Introduction 147

10.2 Reference Following 147

10.2.1 Some Examples 148

10.3 Actuation Constraints 148

10.3.1 Minimization of the Switching Frequency 150

10.3.2 Minimization of the Switching Losses 152

10.4 Hard Constraints 155

10.5 Spectral Content 157

10.6 Summary 161

References 161

11 Weighting Factor Design 163

11.1 Introduction 163

11.2 Cost Function Classification 164

11.2.1 Cost Functions without Weighting Factors 164

11.2.2 Cost Functions with Secondary Terms 164

11.2.3 Cost Functions with Equally Important Terms 165

11.3 Weighting Factors Adjustment 166

11.3.1 For Cost Functions with Secondary Terms 166

11.3.2 For Cost Functions with Equally Important Terms 167

11.4 Examples 168

11.4.1 Switching Frequency Reduction 168

11.4.2 Common-Mode Voltage Reduction 168

11.4.3 Input Reactive Power Reduction 170

11.4.4 Torque and Flux Control 170

11.4.5 Capacitor Voltage Balancing 174

11.5 Summary 175

References 176

12 Delay Compensation 177

12.1 Introduction 177

12.2 Effect of Delay due to Calculation Time 177

12.3 Delay Compensation Method 180

12.4 Prediction of Future References 181

12.4.1 Calculation of Future References Using Extrapolation 185

12.4.2 Calculation of Future References Using Vector Angle Compensation 185

12.5 Summary 188

References 188

13 Effect of Model Parameter Errors 191

13.1 Introduction 191

13.2 Three-Phase Inverter 191

13.3 Proportional–Integral Controllers with Pulse Width Modulation 192

13.3.1 Control Scheme 192

13.3.2 Effect of Model Parameter Errors 193

13.4 Deadbeat Control with Pulse Width Modulation 194

13.4.1 Control Scheme 194

13.4.2 Effect of Model Parameter Errors 195

13.5 Model Predictive Control 195

13.5.1 Effect of Load Parameter Variation 196

13.6 Comparative Results 197

13.7 Summary 201

References 201

Appendix A Predictive Control Simulation – Three-Phase Inverter 203

A.1 Predictive Current Control of a Three-Phase Inverter 203

A.1.1 Definition of Simulation Parameters 207

A.1.2 MATLAB® Code for Predictive Current Control 208

Appendix B Predictive Control Simulation – Torque Control of an Induction Machine Fed by a Two-Level Voltage Source Inverter 211

B.1 Definition of Predictive Torque Control Simulation Parameters 213

B.2 MATLAB® Code for the Predictive Torque Control Simulation 215

Appendix C Predictive Control Simulation – Matrix Converter 219

C.1 Predictive Current Control of a Direct Matrix Converter 219

C.1.1 Definition of Simulation Parameters 221

C.1.2 MATLAB® Code for Predictive Current Control with Instantaneous Reactive Power Minimization 222

Index 227

Predictive Control of Power Converters and

Product form

£89.96

Includes FREE delivery

RRP £99.95 – you save £9.99 (9%)

Order before 4pm tomorrow for delivery by Wed 31 Dec 2025.

A Hardback by Jose Rodriguez, Patricio Cortes

15 in stock


    View other formats and editions of Predictive Control of Power Converters and by Jose Rodriguez

    Publisher: John Wiley & Sons Inc
    Publication Date: 13/04/2012
    ISBN13: 9781119963981, 978-1119963981
    ISBN10: 1119963982

    Description

    Book Synopsis
    * Unique in presenting a completely new theoretic solution to control electric power in a simple way * Discusses the application of predicitive control in motor drives, with several examples and case studies * Matlab is included on a complimentary website so the reader can run their own simulations .

    Table of Contents
    Foreword xi

    Preface xiii

    Acknowledgments xv

    Part One INTRODUCTION

    1 Introduction 3

    1.1 Applications of Power Converters and Drives 3

    1.2 Types of Power Converters 5

    1.2.1 Generic Drive System 5

    1.2.2 Classification of Power Converters 5

    1.3 Control of Power Converters and Drives 7

    1.3.1 Power Converter Control in the Past 7

    1.3.2 Power Converter Control Today 10

    1.3.3 Control Requirements and Challenges 11

    1.3.4 Digital Control Platforms 12

    1.4 Why Predictive Control is Particularly Suited for Power Electronics 13

    1.5 Contents of this Book 15

    References 16

    2 Classical Control Methods for Power Converters and Drives 17

    2.1 Classical Current Control Methods 17

    2.1.1 Hysteresis Current Control 18

    2.1.2 Linear Control with Pulse Width Modulation or Space Vector Modulation 20

    2.2 Classical Electrical Drive Control Methods 24

    2.2.1 Field Oriented Control 24

    2.2.2 Direct Torque Control 26

    2.3 Summary 30

    References 30

    3 Model Predictive Control 31

    3.1 Predictive Control Methods for Power Converters and Drives 31

    3.2 Basic Principles of Model Predictive Control 32

    3.3 Model Predictive Control for Power Electronics and Drives 34

    3.3.1 Controller Design 35

    3.3.2 Implementation 37

    3.3.3 General Control Scheme 38

    3.4 Summary 38

    References 38

    Part Two MODEL PREDICTIVE CONTROL APPLIED TO POWER CONVERTERS

    4 Predictive Control of a Three-Phase Inverter 43

    4.1 Introduction 43

    4.2 Predictive Current Control 43

    4.3 Cost Function 44

    4.4 Converter Model 44

    4.5 Load Model 48

    4.6 Discrete-Time Model for Prediction 49

    4.7 Working Principle 50

    4.8 Implementation of the Predictive Control Strategy 50

    4.9 Comparison to a Classical Control Scheme 59

    4.10 Summary 63

    References 63

    5 Predictive Control of a Three-Phase Neutral-Point Clamped Inverter 65

    5.1 Introduction 65

    5.2 System Model 66

    5.3 Linear Current Control Method with Pulse Width Modulation 70

    5.4 Predictive Current Control Method 70

    5.5 Implementation 72

    5.5.1 Reduction of the Switching Frequency 74

    5.5.2 Capacitor Voltage Balance 77

    5.6 Summary 78

    References 79

    6 Control of an Active Front-End Rectifier 81

    6.1 Introduction 81

    6.2 Rectifier Model 84

    6.2.1 Space Vector Model 84

    6.2.2 Discrete-Time Model 85

    6.3 Predictive Current Control in an Active Front-End 86

    6.3.1 Cost Function 86

    6.4 Predictive Power Control 89

    6.4.1 Cost Function and Control Scheme 89

    6.5 Predictive Control of an AC–DC–AC Converter 92

    6.5.1 Control of the Inverter Side 92

    6.5.2 Control of the Rectifier Side 94

    6.5.3 Control Scheme 94

    6.6 Summary 96

    References 97

    7 Control of a Matrix Converter 99

    7.1 Introduction 99

    7.2 System Model 99

    7.2.1 Matrix Converter Model 99

    7.2.2 Working Principle of the Matrix Converter 101

    7.2.3 Commutation of the Switches 102

    7.3 Classical Control: The Venturini Method 103

    7.4 Predictive Current Control of the Matrix Converter 104

    7.4.1 Model of the Matrix Converter for Predictive Control 104

    7.4.2 Output Current Control 107

    7.4.3 Output Current Control with Minimization of the Input Reactive Power 108

    7.4.4 Input Reactive Power Control 113

    7.5 Summary 113

    References 114

    Part Three MODEL PREDICTIVE CONTROL APPLIED TO MOTOR DRIVES

    8 Predictive Control of Induction Machines 117

    8.1 Introduction 117

    8.2 Dynamic Model of an Induction Machine 118

    8.3 Field Oriented Control of an Induction Machine Fed by a Matrix Converter Using Predictive Current Control 121

    8.3.1 Control Scheme 121

    8.4 Predictive Torque Control of an Induction Machine Fed by a Voltage Source Inverter 123

    8.5 Predictive Torque Control of an Induction Machine Fed by a Matrix Converter 128

    8.5.1 Torque and Flux Control 128

    8.5.2 Torque and Flux Control with Minimization of the Input Reactive Power 129

    8.6 Summary 130

    References 131

    9 Predictive Control of Permanent Magnet Synchronous Motors 133

    9.1 Introduction 133

    9.2 Machine Equations 133

    9.3 Field Oriented Control Using Predictive Current Control 135

    9.3.1 Discrete-Time Model 136

    9.3.2 Control Scheme 136

    9.4 Predictive Speed Control 139

    9.4.1 Discrete-Time Model 139

    9.4.2 Control Scheme 140

    9.4.3 Rotor Speed Estimation 141

    9.5 Summary 142

    References 143

    Part Four DESIGN AND IMPLEMENTATION ISSUES OF MODEL PREDICTIVE CONTROL

    10 Cost Function Selection 147

    10.1 Introduction 147

    10.2 Reference Following 147

    10.2.1 Some Examples 148

    10.3 Actuation Constraints 148

    10.3.1 Minimization of the Switching Frequency 150

    10.3.2 Minimization of the Switching Losses 152

    10.4 Hard Constraints 155

    10.5 Spectral Content 157

    10.6 Summary 161

    References 161

    11 Weighting Factor Design 163

    11.1 Introduction 163

    11.2 Cost Function Classification 164

    11.2.1 Cost Functions without Weighting Factors 164

    11.2.2 Cost Functions with Secondary Terms 164

    11.2.3 Cost Functions with Equally Important Terms 165

    11.3 Weighting Factors Adjustment 166

    11.3.1 For Cost Functions with Secondary Terms 166

    11.3.2 For Cost Functions with Equally Important Terms 167

    11.4 Examples 168

    11.4.1 Switching Frequency Reduction 168

    11.4.2 Common-Mode Voltage Reduction 168

    11.4.3 Input Reactive Power Reduction 170

    11.4.4 Torque and Flux Control 170

    11.4.5 Capacitor Voltage Balancing 174

    11.5 Summary 175

    References 176

    12 Delay Compensation 177

    12.1 Introduction 177

    12.2 Effect of Delay due to Calculation Time 177

    12.3 Delay Compensation Method 180

    12.4 Prediction of Future References 181

    12.4.1 Calculation of Future References Using Extrapolation 185

    12.4.2 Calculation of Future References Using Vector Angle Compensation 185

    12.5 Summary 188

    References 188

    13 Effect of Model Parameter Errors 191

    13.1 Introduction 191

    13.2 Three-Phase Inverter 191

    13.3 Proportional–Integral Controllers with Pulse Width Modulation 192

    13.3.1 Control Scheme 192

    13.3.2 Effect of Model Parameter Errors 193

    13.4 Deadbeat Control with Pulse Width Modulation 194

    13.4.1 Control Scheme 194

    13.4.2 Effect of Model Parameter Errors 195

    13.5 Model Predictive Control 195

    13.5.1 Effect of Load Parameter Variation 196

    13.6 Comparative Results 197

    13.7 Summary 201

    References 201

    Appendix A Predictive Control Simulation – Three-Phase Inverter 203

    A.1 Predictive Current Control of a Three-Phase Inverter 203

    A.1.1 Definition of Simulation Parameters 207

    A.1.2 MATLAB® Code for Predictive Current Control 208

    Appendix B Predictive Control Simulation – Torque Control of an Induction Machine Fed by a Two-Level Voltage Source Inverter 211

    B.1 Definition of Predictive Torque Control Simulation Parameters 213

    B.2 MATLAB® Code for the Predictive Torque Control Simulation 215

    Appendix C Predictive Control Simulation – Matrix Converter 219

    C.1 Predictive Current Control of a Direct Matrix Converter 219

    C.1.1 Definition of Simulation Parameters 221

    C.1.2 MATLAB® Code for Predictive Current Control with Instantaneous Reactive Power Minimization 222

    Index 227

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account