Description
Book SynopsisThese lecture notes treat polynomial identity rings from both the combinatorial and structural points of view. The greater part of recent research in polynomial identity rings is about combinatorial questions, and the combinatorial part of the lecture notes gives an up-to-date account of recent research. On the other hand, the main structural results have been known for some time, and the emphasis there is on a presentation accessible to newcomers to the subject.
Trade ReviewFrom the reviews:
“The book under review consists of two excellent monographs on the PI-theory by two leading researchers, V. Drensky and E. Formanek … In summary, both expositions are very well written, and the book is recommended both for graduate students and researchers.” (MATHEMATICAL REVIEWS)
Table of ContentsA Combinatorial Aspects in PI-Rings.- Vesselin Drensky.- 1 Basic Properties of PI-algebras.- 2 Quantitative Approach to PI-algebras.- 3 The Amitsur-Levitzki Theorem.- 4 Central Polynomials for Matrices.- 5 Invariant Theory of Matrices.- 6 The Nagata-Higman Theorem.- 7 The Shirshov Theorem for Finitely Generated PI-algebras.- 8 Growth of Codimensions of PI-algebras.- B Polynomial Identity Rings.- Edward Formanek.- 1 Polynomial Identities.- 2 The Amitsur-Levitzki Theorem.- 3 Central Polynomials.- 4 Kaplansky’s Theorem.- 5 Theorems of Amitsur and Levitzki on Radicals.- 6 Posner’s Theorem.- 7 Every PI-ring Satisfies a Power of the Standard Identity.- 8 Azumaya Algebras.- 9 Artin’s Theorem.- 10 Chain Conditions.- 11 Hilbert and Jacobson PI-Rings.- 12 The Ring of Generic Matrices.- 13 The Generic Division Ring of Two 2 x 2 Generic Matrices.- 14 The Center of the Generic Division Ring.- 15 Is the Center of the Generic Division Ring a Rational Function Field?.