Description

Book Synopsis
Solitons are waves with exceptional stability properties which appear in many areas of physics. The basic properties of solitons are introduced here using examples from macroscopic physics (e.g. blood pressure pulses and fibre optical communications). The book then presents the main theoretical methods before discussing applications from solid state or atomic physics such as dislocations, excitations in spin chains, conducting polymers, ferroelectrics and BoseâEinstein condensates. Examples are also taken from biological physics and include energy transfer in proteins and DNA fluctuations. Throughout the book the authors emphasise a fresh approach to modelling nonlinearities in physics. Instead of a perturbative approach, nonlinearities are treated intrinsically and the analysis based on the soliton equations introduced in this book. Based on the authors' graduate course, this textbook gives an instructive view of the physics of solitons for students with a basic knowledge of general p

Table of Contents
List of Portraits; Preface; Part I. Different Classes of Solitons: Introduction; 1. Nontopological solitons: the Korteweg-de Vries equation; 2. Topological soltitons: sine-Gordon equation; 3. Envelope solitons and nonlinear localisation: the nonlinear Schrödinger equation; 4. The modelling process: ion acoustic waves in a plasma; Part II. Mathematical Methods for the Study of Solitons: Introduction; 5. Linearisation around the soliton solution; 6. Collective coordinate method; 7. The inverse-scattering transform; Part III. Examples in Solid State and Atomic Physics: Introduction; 8. The Ferm–Pasta–Ulam problem; 9. A simple model for dislocations in crystals; 10. Ferroelectric domain walls; 11. Incommensurate phases; 12. Solitons in magnetic systems; 13. Solitons in Conducting polymers; 14. Solitons in Bose–Einstein condensates; Part IV. Nonlinear Excitations in Biological Molecules: Introduction; 15. Energy localisation and transfer in proteins; 16. Nonlinear dynamics and statistical physics of DNA; Conclusion: Physical solitons: do they exist?; Part V. Appendices: A. Derivation of the KdV equation for surface hydrodynamic waves; B. Mechanics of a continuous medium; C. Coherent states of an harmonic oscillator; References; Index.

Physics of Solitons

Product form

£53.99

Includes FREE delivery

Order before 4pm today for delivery by Thu 18 Dec 2025.

A Paperback by Thierry Dauxois, Michel Peyrard

15 in stock


    View other formats and editions of Physics of Solitons by Thierry Dauxois

    Publisher: Cambridge University Press
    Publication Date: 6/10/2010 12:00:00 AM
    ISBN13: 9780521143608, 978-0521143608
    ISBN10: 0521143608

    Description

    Book Synopsis
    Solitons are waves with exceptional stability properties which appear in many areas of physics. The basic properties of solitons are introduced here using examples from macroscopic physics (e.g. blood pressure pulses and fibre optical communications). The book then presents the main theoretical methods before discussing applications from solid state or atomic physics such as dislocations, excitations in spin chains, conducting polymers, ferroelectrics and BoseâEinstein condensates. Examples are also taken from biological physics and include energy transfer in proteins and DNA fluctuations. Throughout the book the authors emphasise a fresh approach to modelling nonlinearities in physics. Instead of a perturbative approach, nonlinearities are treated intrinsically and the analysis based on the soliton equations introduced in this book. Based on the authors' graduate course, this textbook gives an instructive view of the physics of solitons for students with a basic knowledge of general p

    Table of Contents
    List of Portraits; Preface; Part I. Different Classes of Solitons: Introduction; 1. Nontopological solitons: the Korteweg-de Vries equation; 2. Topological soltitons: sine-Gordon equation; 3. Envelope solitons and nonlinear localisation: the nonlinear Schrödinger equation; 4. The modelling process: ion acoustic waves in a plasma; Part II. Mathematical Methods for the Study of Solitons: Introduction; 5. Linearisation around the soliton solution; 6. Collective coordinate method; 7. The inverse-scattering transform; Part III. Examples in Solid State and Atomic Physics: Introduction; 8. The Ferm–Pasta–Ulam problem; 9. A simple model for dislocations in crystals; 10. Ferroelectric domain walls; 11. Incommensurate phases; 12. Solitons in magnetic systems; 13. Solitons in Conducting polymers; 14. Solitons in Bose–Einstein condensates; Part IV. Nonlinear Excitations in Biological Molecules: Introduction; 15. Energy localisation and transfer in proteins; 16. Nonlinear dynamics and statistical physics of DNA; Conclusion: Physical solitons: do they exist?; Part V. Appendices: A. Derivation of the KdV equation for surface hydrodynamic waves; B. Mechanics of a continuous medium; C. Coherent states of an harmonic oscillator; References; Index.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account