Description

Book Synopsis
In this monograph, we develop the theory of one of the most fascinating topics in coding theory, namely, perfect codes and related structures. Perfect codes are considered to be the most beautiful structure in coding theory, at least from the mathematical side. These codes are the largest ones with their given parameters. The book develops the theory of these codes in various metrics — Hamming, Johnson, Lee, Grassmann, as well as in other spaces and metrics. It also covers other related structures such as diameter perfect codes, quasi-perfect codes, mixed codes, tilings, combinatorial designs, and more. The goal is to give the aspects of all these codes, to derive bounds on their sizes, and present various constructions for these codes.The intention is to offer a different perspective for the area of perfect codes. For example, in many chapters there is a section devoted to diameter perfect codes. In these codes, anticodes are used instead of balls and these anticodes are related to intersecting families, an area that is part of extremal combinatorics. This is one example that shows how we direct our exposition in this book to both researchers in coding theory and mathematicians interested in combinatorics and extremal combinatorics. New perspectives for MDS codes, different from the classic ones, which lead to new directions of research on these codes are another example of how this book may appeal to both researchers in coding theory and mathematicians.The book can also be used as a textbook, either on basic course in combinatorial coding theory, or as an advance course in combinatorial coding theory.

Perfect Codes And Related Structures

Product form

£128.25

Includes FREE delivery

RRP £135.00 – you save £6.75 (5%)

Order before 4pm tomorrow for delivery by Sat 10 Jan 2026.

A Hardback by Tuvi Etzion

1 in stock


    View other formats and editions of Perfect Codes And Related Structures by Tuvi Etzion

    Publisher: World Scientific Publishing Co Pte Ltd
    Publication Date: 12/04/2022
    ISBN13: 9789811255878, 978-9811255878
    ISBN10: 9811255873

    Description

    Book Synopsis
    In this monograph, we develop the theory of one of the most fascinating topics in coding theory, namely, perfect codes and related structures. Perfect codes are considered to be the most beautiful structure in coding theory, at least from the mathematical side. These codes are the largest ones with their given parameters. The book develops the theory of these codes in various metrics — Hamming, Johnson, Lee, Grassmann, as well as in other spaces and metrics. It also covers other related structures such as diameter perfect codes, quasi-perfect codes, mixed codes, tilings, combinatorial designs, and more. The goal is to give the aspects of all these codes, to derive bounds on their sizes, and present various constructions for these codes.The intention is to offer a different perspective for the area of perfect codes. For example, in many chapters there is a section devoted to diameter perfect codes. In these codes, anticodes are used instead of balls and these anticodes are related to intersecting families, an area that is part of extremal combinatorics. This is one example that shows how we direct our exposition in this book to both researchers in coding theory and mathematicians interested in combinatorics and extremal combinatorics. New perspectives for MDS codes, different from the classic ones, which lead to new directions of research on these codes are another example of how this book may appeal to both researchers in coding theory and mathematicians.The book can also be used as a textbook, either on basic course in combinatorial coding theory, or as an advance course in combinatorial coding theory.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account