Description
Book SynopsisThe expansion of unconventional petroleum resources in the recent decade and the rapid development of computational technology have provided the opportunity to develop and apply 3D numerical modeling technology to simulate the hydraulic fracturing of shale and tight sand formations. This book presents 3D numerical modeling technologies for hydraulic fracturing developed in recent years, and introduces solutions to various 3D geomechanical problems related to hydraulic fracturing. In the solution processes of the case studies included in the book, fully coupled multi-physics modeling has been adopted, along with innovative computational techniques, such as submodeling.
In practice, hydraulic fracturing is an essential project component in shale gas/oil development and tight sand oil, and provides an essential measure in the process of drilling cuttings reinjection (CRI). It is also an essential measure for widened mud weight window (MWW) when drilling through naturally fractured
Table of Contents
1. Introduction to Continuum Damage Mechanics: theory and numerical scheme.
2. 3-D optimized design of multistage fracturing of horizontal wells based on Continuum Damage Mechanics.
3. Numerical simulation on Interaction between parallel wells in Zipper-Frac.
4. Integrated 3-dimensional numerical simulation on Cutting Reinjection: hydraulic fracturing, fault reactivation, seismicity.
5. Wellbore trajectory optimization for drilling in naturally fractured shale formation: criteria and numerical scheme.
6. Numerical solution of widened mud weight window for drilling through naturally fractured reservoirs.
7. Natural fracture: measurements and mathematical representation.
8. Numerical simulation of hydraulic fracturing on formation with natural fractural.
9. Stress orientation analysis related to pressure depletion and production enhancement measures.
10. Utility software for data processing platform: FE to FEM, and FEM to wellbore trajectory