Description

Book Synopsis

The text includes exercises and worked examples to facilitate understanding of the subject.



Table of Contents
Chapter 1: Overview.

1.1 Introduction to Modal Testing.

1.2 Applications of Modal Testing.

1.3 Philosophy of Modal Testing.

1.4 Summary of Theory.

1.5 Summary of Measurement Methods.

1.6 Summary of Modal Analysis Processes.

1.7 Review of Test Procedures, and Levels.

1.8 Terminology and Notation.

Chapter 2: Theoretical Basis.

2.1 Introduction.

2.2 Single-Degree-of-Freedom (SDOF) System Theory.

2.3 Presentation and Properties of FRF Data for SDOF System.

2.4 Undamped Multi-Degree-of-Freedom (MDOF) Systems.

2.5 MDOF Systems with Proportional Damping.

2.6 MDOF Systems with Structural (Hysteretic) Damping – General Case.

2.7 MDOF Systems with Viscous Damping – General Case.

2.8 Modal Analysis of Rotating Structures.

2.9 Complex Modes.

2.10 Characteristics and Presentation of MDOF FRF Data.

2.11 Non-sinusoidal Vibration and FRF Properties.

2.12 Complete and Incomplete Models.

2.13 Sensitivity of Models.

2.14 Analysis of Weakly Non-linear Structures.

Chapter 3: Response Function Measurement Techniques.

3.1 Introduction and Test Planning.

3.2 Basic Measurement System.

3.3 Structure Preparation.

3.4 Excitation of the Structure.

3.5 Transducers and Amplifiers.

3.6 Analysers.

3.7 Digital Signal Processing.

3.8 Use of Different Excitation Signals.

3.9 Calibration.

3.10 Mass Cancellation.

3.11 Rotational FRF Measurement.

3.12 Measurements on Non-Linear Structures.

3.13 Multi-point Excitation Methods.

3.14 Measuring FRFs and ODSs using the Scanning LDV.

Chapter 4: Modal Parameter Extraction Methods.

4.1 Introduction.

4.2 Preliminary Checks of FRF Data.

4.3 SDOF Modal Analysis Methods.

4.4 SDOF Modal Analysis in the Frequency Domain (SISO).

4.5 Global Modal Analysis Methods in the Frequency Domain.

4.6 MDOF Modal Analysis in the Time Domain.

4.7 Modal Analysis of Non-Linear Structures.

4.8 Concluding Comments.

Chapter 5: Derivation of Mathematical Models.

5.1 Introduction.

5.2 Modal Models.

5.3 Refinement of Modal Models.

5.4 Display of Modal Model.

5.5 Response Models.

5.6 Spatial Models.

5.7 Mobility Skeletons and System Models.

Chapter 6: Applications.

6.1 Introduction.

6.2 Comparison of and Correlation of Experiment and Prediction.

6.3 Adjustment or Updating of Models.

6.4 Coupled and Modified Structure Analysis.

6.5 Response Prediction and Force Determination.

6.6 Test Planning.

Notation.

Appendices: A Maths Toolkit.

1. Use of Complex Algebra to Describe Harmonic Vibration.

2. Review of Matrix Notation and Properties.

3. Matrix Decomposition and the SVD.

4. Transformations of Equations of Motion between Stationary and Rotating Axes.

5. Fourier Analysis.

References.

Index.

Modal Testing

Product form

£74.66

Includes FREE delivery

RRP £82.95 – you save £8.29 (9%)

Order before 4pm today for delivery by Tue 23 Dec 2025.

A Hardback by D. J. Ewins

15 in stock


    View other formats and editions of Modal Testing by D. J. Ewins

    Publisher: John Wiley & Sons Inc
    Publication Date: 20/09/2000
    ISBN13: 9780863802188, 978-0863802188
    ISBN10: 0863802184

    Description

    Book Synopsis

    The text includes exercises and worked examples to facilitate understanding of the subject.



    Table of Contents
    Chapter 1: Overview.

    1.1 Introduction to Modal Testing.

    1.2 Applications of Modal Testing.

    1.3 Philosophy of Modal Testing.

    1.4 Summary of Theory.

    1.5 Summary of Measurement Methods.

    1.6 Summary of Modal Analysis Processes.

    1.7 Review of Test Procedures, and Levels.

    1.8 Terminology and Notation.

    Chapter 2: Theoretical Basis.

    2.1 Introduction.

    2.2 Single-Degree-of-Freedom (SDOF) System Theory.

    2.3 Presentation and Properties of FRF Data for SDOF System.

    2.4 Undamped Multi-Degree-of-Freedom (MDOF) Systems.

    2.5 MDOF Systems with Proportional Damping.

    2.6 MDOF Systems with Structural (Hysteretic) Damping – General Case.

    2.7 MDOF Systems with Viscous Damping – General Case.

    2.8 Modal Analysis of Rotating Structures.

    2.9 Complex Modes.

    2.10 Characteristics and Presentation of MDOF FRF Data.

    2.11 Non-sinusoidal Vibration and FRF Properties.

    2.12 Complete and Incomplete Models.

    2.13 Sensitivity of Models.

    2.14 Analysis of Weakly Non-linear Structures.

    Chapter 3: Response Function Measurement Techniques.

    3.1 Introduction and Test Planning.

    3.2 Basic Measurement System.

    3.3 Structure Preparation.

    3.4 Excitation of the Structure.

    3.5 Transducers and Amplifiers.

    3.6 Analysers.

    3.7 Digital Signal Processing.

    3.8 Use of Different Excitation Signals.

    3.9 Calibration.

    3.10 Mass Cancellation.

    3.11 Rotational FRF Measurement.

    3.12 Measurements on Non-Linear Structures.

    3.13 Multi-point Excitation Methods.

    3.14 Measuring FRFs and ODSs using the Scanning LDV.

    Chapter 4: Modal Parameter Extraction Methods.

    4.1 Introduction.

    4.2 Preliminary Checks of FRF Data.

    4.3 SDOF Modal Analysis Methods.

    4.4 SDOF Modal Analysis in the Frequency Domain (SISO).

    4.5 Global Modal Analysis Methods in the Frequency Domain.

    4.6 MDOF Modal Analysis in the Time Domain.

    4.7 Modal Analysis of Non-Linear Structures.

    4.8 Concluding Comments.

    Chapter 5: Derivation of Mathematical Models.

    5.1 Introduction.

    5.2 Modal Models.

    5.3 Refinement of Modal Models.

    5.4 Display of Modal Model.

    5.5 Response Models.

    5.6 Spatial Models.

    5.7 Mobility Skeletons and System Models.

    Chapter 6: Applications.

    6.1 Introduction.

    6.2 Comparison of and Correlation of Experiment and Prediction.

    6.3 Adjustment or Updating of Models.

    6.4 Coupled and Modified Structure Analysis.

    6.5 Response Prediction and Force Determination.

    6.6 Test Planning.

    Notation.

    Appendices: A Maths Toolkit.

    1. Use of Complex Algebra to Describe Harmonic Vibration.

    2. Review of Matrix Notation and Properties.

    3. Matrix Decomposition and the SVD.

    4. Transformations of Equations of Motion between Stationary and Rotating Axes.

    5. Fourier Analysis.

    References.

    Index.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account