Description

Book Synopsis

Addressing the exploding interest in bioengineering for healthcare applications, this book provides readers with detailed yet easy-to-understand guidance on biomedical device engineering. Written by prominent physicians and engineers, Medical Devices: Surgical and Image-Guided Technologies is organized into stand-alone chapters covering devices and systems in diagnostic, surgical, and implant procedures.

Assuming only basic background in math and science, the authors clearly explain the fundamentals for different systems along with such topics as engineering considerations, therapeutic techniques and applications, future trends, and more. After describing how to manage a design project for medical devices, the book examines the following:

  • Instruments for laparoscopic and ophthalmic surgery, plus surgical robotics
  • Catheters in vascular therapy and energy-based hemostatic surgical devices
  • Tissue ablation systems and the varied uses of laser

    Table of Contents
    PREFACE xvii

    CONTRIBUTORS xix

    PART I INTRODUCTION TO MEDICAL DEVICES 1

    1. Introduction 3
    Martin Culjat

    1.1 History of Medical Devices 3

    1.2 Medical Device Terminology 6

    1.3 Purpose of the Book 10

    2. Design of Medical Devices 11
    Gregory Nighswonger

    2.1 Introduction 11

    2.2 The Medical Device Design Environment 11

    2.2.1 US Regulation 12

    2.2.2 Differences in European Regulation 13

    2.2.3 Standards 14

    2.3 Basic Design Phases 15

    2.3.1 Feasibility 15

    2.3.2 Planning and Organization—Assembling the Design Team 16

    2.3.3 When to Involve Regulatory Affairs 17

    2.3.4 Conceptualizing and Review 17

    2.3.5 Testing and Refinement 20

    2.3.6 Proving the Concept 20

    2.3.7 Pilot Testing and Release to Manufacturing 22

    2.4 Postmarket Activities 25

    2.5 Final Note 25

    PART II MINIMALLY INVASIVE DEVICES AND TECHNIQUES 27

    3. Instrumentation for Laparoscopic Surgery 29
    Camellia Racu-Keefer, Scott Um, Martin Culjat, and Erik Dutson

    3.1 Introduction 29

    3.2 Basic Principles 31

    3.3 Laparoscopic Instrumentation 34

    3.3.1 Trocars 34

    3.3.2 Standard Laparoscopic Instruments 37

    3.3.3 Additional Laparoscopic Instruments 42

    3.3.4 Specimen Retrieval Bags 44

    3.3.5 Disposable Instruments 44

    3.4 Innovative Applications 45

    3.5 Summary and Future Applications 46

    4. Surgical Instruments in Ophthalmology 49
    Allen Y. Hu, Robert M. Beardsley, and Jean-Pierre Hubschman

    4.1 Introduction 49

    4.2 Cataract Surgery 51

    4.2.1 Basic Technique 51

    4.2.2 Principles of Phacoemulsification 52

    4.2.3 Phacoemulsification Instruments 54

    4.2.4 Phacoemulsification Systems 55

    4.2.5 Future Directions 56

    4.3 Vitreoretinal Surgery 56

    4.3.1 Basic Techniques 56

    4.3.2 Principles of Vitrectomy 57

    4.3.3 Vitrectomy Instruments 58

    4.3.4 Vitrectomy Systems 60

    4.3.5 Future Directions 60

    4.4 Other Ophthalmic Surgical Procedures 61

    4.5 Conclusion 62

    5. Surgical Robotics 63
    Jacob Rosen

    5.1 Introduction 63

    5.2 Background and Leading Concepts 63

    5.2.1 Human–Machine Interfaces: System Approach 65

    5.2.2 Tissue Biomechanics 70

    5.2.3 Teleoperation 72

    5.2.4 Image-Guided Surgery 78

    5.2.5 Objective Assessment of Skill 79

    5.3 Commercial Systems 80

    5.3.1 ROBODOC® (Curexo Technology Corporation) 80

    5.3.2 daVinci (Intuitive Surgical) 83

    5.3.3 Sensei® X (Hansen Medical) 84

    5.3.4 RIO® MAKOplasty (MAKO Surgical Corporation) 86

    5.3.5 CyberKnife (Accuray) 89

    5.3.6 Renaissance™ (Mazor Robotics) 91

    5.3.7 ARTAS® System (Restoration Robotics, Inc.) 92

    5.4 Trends and Future Directions 93

    6. Catheters in Vascular Therapy 99
    Axel Boese

    6.1 Introduction 99

    6.2 Historic Overview 100

    6.3 Catheter Interventions 102

    6.4 Catheter and Guide Wire Shapes and Configurations 105

    6.4.1 Catheters 105

    6.4.2 Guide Wires 113

    6.5 Conclusion 116

    PART III ENERGY DELIVERY DEVICES AND SYSTEMS 119

    7. Energy-Based Hemostatic Surgical Devices 121
    Amit P. Mulgaonkar, Warren Grundfest, and Rahul Singh

    7.1 Introduction 121

    7.2 History of Energy-Based Hemostasis 122

    7.3 Energy-Based Surgical Methods and Their Effects on Tissues 125

    7.3.1 Disambiguation 126

    7.3.2 Thermal Effects on Tissues 127

    7.4 Electrosurgery 128

    7.4.1 Electrosurgical Theory 128

    7.4.2 Cutting and Coagulation Techniques 130

    7.4.3 Equipment 131

    7.4.4 Considerations and Complications 133

    7.5 Future Of Electrosurgery 134

    7.6 Conclusion 135

    8. Tissue Ablation Systems 137
    Michael Douek, Justin McWilliams, and David Lu

    8.1 Introduction 137

    8.2 Evolving Paradigms in Cancer Therapy 138

    8.3 Basic Ablation Categories and Nomenclature 140

    8.4 Hyperthermic Ablation 140

    8.5 Fundamentals of In Vivo Energy Deposition 141

    8.6 Hyperthermic Ablation: Optimizing Tissue Ablation 143

    8.7 Radiofrequency Ablation 144

    8.8 RFA: Basic Principles 145

    8.9 RFA: In Vivo Energy Deposition 145

    8.10 Optimizing RFA 147

    8.11 Other Hyperthermic Ablation Techniques 149

    8.11.1 Microwave Ablation (MWA) 149

    8.11.2 MWA: Basic Principles 149

    8.11.3 MWA: In Vivo Energy Deposition 151

    8.11.4 Optimizing MWA 152

    8.12 Laser Ablation 153

    8.13 Hypothermic Ablation 154

    8.13.1 Cryoablation: Basic Concepts 154

    8.13.2 Cryoablation: In Vivo Considerations 154

    8.13.3 Optimizing Cryoablation Systems 154

    8.14 Chemical Ablation 157

    8.15 Novel Techniques 158

    8.15.1 High Intensity Focused Ultrasound (HIFU) 158

    8.15.2 Irreversible Electroporation (IRE) 159

    8.16 Tumor Ablation and Beyond 160

    9. Lasers in Medicine 163
    Zachary Taylor, Asael Papour, Oscar Stafsudd, and Warren Grundfest

    9.1 Introduction 163

    9.1.1 Historical Perspective 164

    9.1.2 Basic Operational Concepts 165

    9.1.3 First Experimental MASER (Microwave Amplification by Stimulated Emission of Radiation) 166

    9.2 Laser Fundamentals 167

    9.2.1 Two-Level Systems and Population Inversion 167

    9.2.2 Multiple Energy Levels 167

    9.2.3 Mode of Operation 169

    9.2.4 Beams and Optics 171

    9.3 Laser Light Compared to Other Sources of Light 174

    9.3.1 Temporal Coherence 174

    9.3.2 Spectral Coherence (Line Width) 175

    9.3.3 Beam Collimation 177

    9.3.4 Short Pulse Duration 177

    9.3.5 Summary 178

    9.4 Laser–Tissue Interactions 178

    9.4.1 Biostimulation 178

    9.4.2 Photochemical Interactions 179

    9.4.3 Photothermal Interactions 180

    9.4.4 Ablation 180

    9.4.5 Photodisruption 181

    9.5 Lasers in Diagnostics 181

    9.5.1 Optical Coherence Tomography 181

    9.5.2 Fluorescence Angiography 184

    9.5.3 Near Infrared Spectroscopy 185

    9.6 Laser Treatments and Therapy 186

    9.6.1 Overview of Current Medical Applications of Laser Technology 186

    9.6.2 Retinal Photodynamic Therapy (Photochemical) 188

    9.6.3 Transpupillary Thermal Therapy (TTT) (Photothermal) 188

    9.6.4 Vascular Birth Marks (Photocoagulation) 190

    9.6.5 Laser Assisted Corneal Refractive Surgery (Ablation) 191

    9.7 Conclusions 196

    PART IV IMPLANTABLE DEVICES AND SYSTEMS 197

    10. Vascular and Cardiovascular Devices 199
    Dan Levi, Allan Tulloch, John Ho, Colin Kealey, and David Rigberg

    10.1 Introduction 199

    10.2 Biocompatibility Considerations 200

    10.3 Materials 202

    10.3.1 316L Stainless Steel 203

    10.3.2 Nitinol 203

    10.3.3 Cobalt–Chromium Alloys 204

    10.4 Stents 204

    10.5 Closure Devices 206

    10.6 Transcatheter Heart Valves 208

    10.7 Inferior Vena Cava Filters 212

    10.8 Future Directions–Thin Film Nitinol 214

    10.9 Conclusion 216

    11. Mechanical Circulatory Support Devices 219
    Colin Kealey, Paymon Rahgozar, and Murray Kwon

    11.1 Introduction 219

    11.2 History 220

    11.3 Basic Principles 221

    11.3.1 Biocompatibility and Mechanical Circulatory Support Devices 221

    11.3.2 Hemocompatibility: Microscopic Considerations 222

    11.3.3 Hemocompatibility: Macroscopic Considerations 223

    11.4 Engineering Considerations in Mechanical Circulatory Support 223

    11.4.1 Overview 223

    11.4.2 Pump Design 225

    11.4.3 Positive Displacement Pumps 225

    11.4.4 Rotary Pumps 226

    11.4.5 Pulsatile Versus Nonpulsatile Flow 228

    11.5 Devices 228

    11.5.1 The HeartMate XVE Left Ventricular Assist System 228

    11.5.2 The HeartMate II Left Ventricular Assist System 231

    11.5.3 Short-Term Mechanical Circulatory Support: The Intraaortic Balloon Pump 234

    11.5.4 Pediatric Mechanical Circulatory Support: The Berlin Heart 237

    11.6 The Future of MCS Devices 239

    11.6.1 CorAide 239

    11.6.2 HeartMate III 239

    11.6.3 HeartWare 240

    11.6.4 VentrAssist 240

    11.7 Summary 240

    12. Orthopedic Implants 241
    Sophia N. Sangiorgio, Todd S. Johnson, Jon Moseley, G. Bryan Cornwall, and Edward Ebramzadeh

    12.1 Introduction 241

    12.1.1 Overview 241

    12.1.2 History 243

    12.2 Basic Principles 244

    12.2.1 Optimization for Strength and Stiffness 245

    12.2.2 Maximization of Implant Fixation to Host Bone 250

    12.2.3 Minimization of Degradation 251

    12.2.4 Sterilization of Implants and Instrumentation 253

    12.3 Implant Technologies 253

    12.3.1 Total Hip Replacement 254

    12.3.2 Technology in Total Knee Replacement 263

    12.3.3 Technology in Spine Surgery 268

    12.4 Summary 272

    PART V IMAGING AND IMAGE-GUIDED TECHNIQUES 275

    13. Endoscopy 277
    Gregory Nighswonger

    13.1 Introduction 277

    13.2 Ancient Origins 278

    13.3 Modern Endoscopy 280

    13.3.1 Creating Cold Light 280

    13.3.2 Introduction of Rod-Lens Technology 280

    13.4 Principles of Modern Endoscopy 283

    13.4.1 Optics 284

    13.4.2 Mechanics 284

    13.4.3 Electronics 284

    13.4.4 Software 285

    13.5 The Imaging Chain 285

    13.5.1 Light Source (1) 286

    13.5.2 Telescope (2) 286

    13.5.3 Camera Head (3) 287

    13.5.4 Camera CCU (4) 287

    13.5.5 Video Cables (5) 287

    13.5.6 Monitor (6) 287

    13.5.7 Image Management Systems (7) 288

    13.6 Endoscopes for Today 288

    13.6.1 Rigid Endoscopes—Designs to Enhance Functionality 289

    13.6.2 Less Traumatic Ureterorenoscopes 290

    13.6.3 Advances in Flexible Endoscope Design 291

    13.6.4 Broader Functionality with New Technologies 294

    13.6.5 Enhancing Video Capabilities 299

    13.7 Endoscopy’s Future 301

    14. Medical Ultrasound Devices 303
    Rahul Singh and Martin Culjat

    14.1 Introduction 303

    14.2 Basic Principles of Ultrasound 304

    14.2.1 Basic Acoustic Physics 304

    14.2.2 Reflection and Refraction 307

    14.2.3 Attenuation 307

    14.2.4 Piezoelectricity 308

    14.2.5 Ultrasound Systems 310

    14.2.6 Resolution and Bandwidth 312

    14.2.7 Beam Characteristics 314

    14.3 Ultrasound Transducer Design 316

    14.3.1 Piezoelectric Material 317

    14.3.2 Backing Layers and Damping 318

    14.3.3 Matching Layers 318

    14.3.4 Mechanical Focusing 319

    14.3.5 Electrical Matching 320

    14.3.6 Sector Scanners 320

    14.3.7 Array Transducers 322

    14.3.8 Transducer Array Fabrication 325

    14.3.9 Regulatory Considerations 327

    14.4 Applications of Medical Ultrasound 329

    14.4.1 Image Guidance Applications 330

    14.4.2 Intravascular and Intracardiac Applications 332

    14.4.3 Intraoral and Endocavity Applications 333

    14.4.4 Surgical Applications 334

    14.4.5 Ophthalmic Ultrasound 335

    14.4.6 Doppler and Doppler Applications 336

    14.4.7 Therapeutic Applications 336

    14.5 The Future of Medical Ultrasound 338

    15. Medical X-ray Imaging 341
    Mark Roden

    15.1 Introduction 341

    15.2 X-ray Physics 342

    15.2.1 Photon Interactions with Matter 342

    15.2.2 Clinical Production of X-rays 343

    15.2.3 Patient Dose Considerations 346

    15.3 Two-Dimensional Image Acquisition 348

    15.4 Image Acquisition Technologies and Techniques 351

    15.4.1 Film 351

    15.4.2 Computed Radiography 354

    15.4.3 Digital Radiography 358

    15.4.4 Clinical Applications of 2D X-ray Techniques 360

    15.5 Basic 2D Processing Techniques 361

    15.5.1 Independent Pixel Operations 362

    15.5.2 Grouped Pixel Operations 363

    15.5.3 Image Transformation Operations 366

    15.6 Real-Time X-ray Imaging 367

    15.6.1 Fluoroscopy Technology 367

    15.6.2 Angiography 370

    15.7 Three-Dimensional X-ray Imaging 372

    15.8 Conclusion 373

    16. Navigation in Neurosurgery 375
    Jean-Jacques Lemaire, Eric J. Behnke, Andrew J. Frew, and Antonio A. F. DeSalles

    16.1 Basics of Neurosurgery 375

    16.1.1 General Technical Issues in Neurosurgery 375

    16.1.2 Instrumentation in Neurosurgery 376

    16.1.3 Complications 377

    16.1.4 Functional Neurosurgery 378

    16.1.5 Stereotactic Neurosurgery 378

    16.1.6 Neuroimaging for Neurosurgery 379

    16.2 Introduction to Neuronavigation 381

    16.3 Neuronavigation Systems 381

    16.3.1 The Tracking System 382

    16.3.2 The Display Unit 383

    16.3.3 The Control Unit 385

    16.4 Implementation of Neuronavigation 386

    16.4.1 Surgical Planning 386

    16.4.2 Patient Registration 387

    16.4.3 Navigation 389

    16.5 Augmented Reality and Virtual Reality 390

    16.6 Summary/Future 391

    REFERENCES 395

    INDEX 425

Medical Devices

Product form

£121.46

Includes FREE delivery

RRP £134.95 – you save £13.49 (9%)

Order before 4pm tomorrow for delivery by Sat 27 Dec 2025.

A Hardback by Martin Culjat, Rahul Singh, Hua Lee

15 in stock


    View other formats and editions of Medical Devices by Martin Culjat

    Publisher: John Wiley & Sons Inc
    Publication Date: 11/12/2012
    ISBN13: 9780470549186, 978-0470549186
    ISBN10: 0470549181

    Description

    Book Synopsis

    Addressing the exploding interest in bioengineering for healthcare applications, this book provides readers with detailed yet easy-to-understand guidance on biomedical device engineering. Written by prominent physicians and engineers, Medical Devices: Surgical and Image-Guided Technologies is organized into stand-alone chapters covering devices and systems in diagnostic, surgical, and implant procedures.

    Assuming only basic background in math and science, the authors clearly explain the fundamentals for different systems along with such topics as engineering considerations, therapeutic techniques and applications, future trends, and more. After describing how to manage a design project for medical devices, the book examines the following:

    • Instruments for laparoscopic and ophthalmic surgery, plus surgical robotics
    • Catheters in vascular therapy and energy-based hemostatic surgical devices
    • Tissue ablation systems and the varied uses of laser

      Table of Contents
      PREFACE xvii

      CONTRIBUTORS xix

      PART I INTRODUCTION TO MEDICAL DEVICES 1

      1. Introduction 3
      Martin Culjat

      1.1 History of Medical Devices 3

      1.2 Medical Device Terminology 6

      1.3 Purpose of the Book 10

      2. Design of Medical Devices 11
      Gregory Nighswonger

      2.1 Introduction 11

      2.2 The Medical Device Design Environment 11

      2.2.1 US Regulation 12

      2.2.2 Differences in European Regulation 13

      2.2.3 Standards 14

      2.3 Basic Design Phases 15

      2.3.1 Feasibility 15

      2.3.2 Planning and Organization—Assembling the Design Team 16

      2.3.3 When to Involve Regulatory Affairs 17

      2.3.4 Conceptualizing and Review 17

      2.3.5 Testing and Refinement 20

      2.3.6 Proving the Concept 20

      2.3.7 Pilot Testing and Release to Manufacturing 22

      2.4 Postmarket Activities 25

      2.5 Final Note 25

      PART II MINIMALLY INVASIVE DEVICES AND TECHNIQUES 27

      3. Instrumentation for Laparoscopic Surgery 29
      Camellia Racu-Keefer, Scott Um, Martin Culjat, and Erik Dutson

      3.1 Introduction 29

      3.2 Basic Principles 31

      3.3 Laparoscopic Instrumentation 34

      3.3.1 Trocars 34

      3.3.2 Standard Laparoscopic Instruments 37

      3.3.3 Additional Laparoscopic Instruments 42

      3.3.4 Specimen Retrieval Bags 44

      3.3.5 Disposable Instruments 44

      3.4 Innovative Applications 45

      3.5 Summary and Future Applications 46

      4. Surgical Instruments in Ophthalmology 49
      Allen Y. Hu, Robert M. Beardsley, and Jean-Pierre Hubschman

      4.1 Introduction 49

      4.2 Cataract Surgery 51

      4.2.1 Basic Technique 51

      4.2.2 Principles of Phacoemulsification 52

      4.2.3 Phacoemulsification Instruments 54

      4.2.4 Phacoemulsification Systems 55

      4.2.5 Future Directions 56

      4.3 Vitreoretinal Surgery 56

      4.3.1 Basic Techniques 56

      4.3.2 Principles of Vitrectomy 57

      4.3.3 Vitrectomy Instruments 58

      4.3.4 Vitrectomy Systems 60

      4.3.5 Future Directions 60

      4.4 Other Ophthalmic Surgical Procedures 61

      4.5 Conclusion 62

      5. Surgical Robotics 63
      Jacob Rosen

      5.1 Introduction 63

      5.2 Background and Leading Concepts 63

      5.2.1 Human–Machine Interfaces: System Approach 65

      5.2.2 Tissue Biomechanics 70

      5.2.3 Teleoperation 72

      5.2.4 Image-Guided Surgery 78

      5.2.5 Objective Assessment of Skill 79

      5.3 Commercial Systems 80

      5.3.1 ROBODOC® (Curexo Technology Corporation) 80

      5.3.2 daVinci (Intuitive Surgical) 83

      5.3.3 Sensei® X (Hansen Medical) 84

      5.3.4 RIO® MAKOplasty (MAKO Surgical Corporation) 86

      5.3.5 CyberKnife (Accuray) 89

      5.3.6 Renaissance™ (Mazor Robotics) 91

      5.3.7 ARTAS® System (Restoration Robotics, Inc.) 92

      5.4 Trends and Future Directions 93

      6. Catheters in Vascular Therapy 99
      Axel Boese

      6.1 Introduction 99

      6.2 Historic Overview 100

      6.3 Catheter Interventions 102

      6.4 Catheter and Guide Wire Shapes and Configurations 105

      6.4.1 Catheters 105

      6.4.2 Guide Wires 113

      6.5 Conclusion 116

      PART III ENERGY DELIVERY DEVICES AND SYSTEMS 119

      7. Energy-Based Hemostatic Surgical Devices 121
      Amit P. Mulgaonkar, Warren Grundfest, and Rahul Singh

      7.1 Introduction 121

      7.2 History of Energy-Based Hemostasis 122

      7.3 Energy-Based Surgical Methods and Their Effects on Tissues 125

      7.3.1 Disambiguation 126

      7.3.2 Thermal Effects on Tissues 127

      7.4 Electrosurgery 128

      7.4.1 Electrosurgical Theory 128

      7.4.2 Cutting and Coagulation Techniques 130

      7.4.3 Equipment 131

      7.4.4 Considerations and Complications 133

      7.5 Future Of Electrosurgery 134

      7.6 Conclusion 135

      8. Tissue Ablation Systems 137
      Michael Douek, Justin McWilliams, and David Lu

      8.1 Introduction 137

      8.2 Evolving Paradigms in Cancer Therapy 138

      8.3 Basic Ablation Categories and Nomenclature 140

      8.4 Hyperthermic Ablation 140

      8.5 Fundamentals of In Vivo Energy Deposition 141

      8.6 Hyperthermic Ablation: Optimizing Tissue Ablation 143

      8.7 Radiofrequency Ablation 144

      8.8 RFA: Basic Principles 145

      8.9 RFA: In Vivo Energy Deposition 145

      8.10 Optimizing RFA 147

      8.11 Other Hyperthermic Ablation Techniques 149

      8.11.1 Microwave Ablation (MWA) 149

      8.11.2 MWA: Basic Principles 149

      8.11.3 MWA: In Vivo Energy Deposition 151

      8.11.4 Optimizing MWA 152

      8.12 Laser Ablation 153

      8.13 Hypothermic Ablation 154

      8.13.1 Cryoablation: Basic Concepts 154

      8.13.2 Cryoablation: In Vivo Considerations 154

      8.13.3 Optimizing Cryoablation Systems 154

      8.14 Chemical Ablation 157

      8.15 Novel Techniques 158

      8.15.1 High Intensity Focused Ultrasound (HIFU) 158

      8.15.2 Irreversible Electroporation (IRE) 159

      8.16 Tumor Ablation and Beyond 160

      9. Lasers in Medicine 163
      Zachary Taylor, Asael Papour, Oscar Stafsudd, and Warren Grundfest

      9.1 Introduction 163

      9.1.1 Historical Perspective 164

      9.1.2 Basic Operational Concepts 165

      9.1.3 First Experimental MASER (Microwave Amplification by Stimulated Emission of Radiation) 166

      9.2 Laser Fundamentals 167

      9.2.1 Two-Level Systems and Population Inversion 167

      9.2.2 Multiple Energy Levels 167

      9.2.3 Mode of Operation 169

      9.2.4 Beams and Optics 171

      9.3 Laser Light Compared to Other Sources of Light 174

      9.3.1 Temporal Coherence 174

      9.3.2 Spectral Coherence (Line Width) 175

      9.3.3 Beam Collimation 177

      9.3.4 Short Pulse Duration 177

      9.3.5 Summary 178

      9.4 Laser–Tissue Interactions 178

      9.4.1 Biostimulation 178

      9.4.2 Photochemical Interactions 179

      9.4.3 Photothermal Interactions 180

      9.4.4 Ablation 180

      9.4.5 Photodisruption 181

      9.5 Lasers in Diagnostics 181

      9.5.1 Optical Coherence Tomography 181

      9.5.2 Fluorescence Angiography 184

      9.5.3 Near Infrared Spectroscopy 185

      9.6 Laser Treatments and Therapy 186

      9.6.1 Overview of Current Medical Applications of Laser Technology 186

      9.6.2 Retinal Photodynamic Therapy (Photochemical) 188

      9.6.3 Transpupillary Thermal Therapy (TTT) (Photothermal) 188

      9.6.4 Vascular Birth Marks (Photocoagulation) 190

      9.6.5 Laser Assisted Corneal Refractive Surgery (Ablation) 191

      9.7 Conclusions 196

      PART IV IMPLANTABLE DEVICES AND SYSTEMS 197

      10. Vascular and Cardiovascular Devices 199
      Dan Levi, Allan Tulloch, John Ho, Colin Kealey, and David Rigberg

      10.1 Introduction 199

      10.2 Biocompatibility Considerations 200

      10.3 Materials 202

      10.3.1 316L Stainless Steel 203

      10.3.2 Nitinol 203

      10.3.3 Cobalt–Chromium Alloys 204

      10.4 Stents 204

      10.5 Closure Devices 206

      10.6 Transcatheter Heart Valves 208

      10.7 Inferior Vena Cava Filters 212

      10.8 Future Directions–Thin Film Nitinol 214

      10.9 Conclusion 216

      11. Mechanical Circulatory Support Devices 219
      Colin Kealey, Paymon Rahgozar, and Murray Kwon

      11.1 Introduction 219

      11.2 History 220

      11.3 Basic Principles 221

      11.3.1 Biocompatibility and Mechanical Circulatory Support Devices 221

      11.3.2 Hemocompatibility: Microscopic Considerations 222

      11.3.3 Hemocompatibility: Macroscopic Considerations 223

      11.4 Engineering Considerations in Mechanical Circulatory Support 223

      11.4.1 Overview 223

      11.4.2 Pump Design 225

      11.4.3 Positive Displacement Pumps 225

      11.4.4 Rotary Pumps 226

      11.4.5 Pulsatile Versus Nonpulsatile Flow 228

      11.5 Devices 228

      11.5.1 The HeartMate XVE Left Ventricular Assist System 228

      11.5.2 The HeartMate II Left Ventricular Assist System 231

      11.5.3 Short-Term Mechanical Circulatory Support: The Intraaortic Balloon Pump 234

      11.5.4 Pediatric Mechanical Circulatory Support: The Berlin Heart 237

      11.6 The Future of MCS Devices 239

      11.6.1 CorAide 239

      11.6.2 HeartMate III 239

      11.6.3 HeartWare 240

      11.6.4 VentrAssist 240

      11.7 Summary 240

      12. Orthopedic Implants 241
      Sophia N. Sangiorgio, Todd S. Johnson, Jon Moseley, G. Bryan Cornwall, and Edward Ebramzadeh

      12.1 Introduction 241

      12.1.1 Overview 241

      12.1.2 History 243

      12.2 Basic Principles 244

      12.2.1 Optimization for Strength and Stiffness 245

      12.2.2 Maximization of Implant Fixation to Host Bone 250

      12.2.3 Minimization of Degradation 251

      12.2.4 Sterilization of Implants and Instrumentation 253

      12.3 Implant Technologies 253

      12.3.1 Total Hip Replacement 254

      12.3.2 Technology in Total Knee Replacement 263

      12.3.3 Technology in Spine Surgery 268

      12.4 Summary 272

      PART V IMAGING AND IMAGE-GUIDED TECHNIQUES 275

      13. Endoscopy 277
      Gregory Nighswonger

      13.1 Introduction 277

      13.2 Ancient Origins 278

      13.3 Modern Endoscopy 280

      13.3.1 Creating Cold Light 280

      13.3.2 Introduction of Rod-Lens Technology 280

      13.4 Principles of Modern Endoscopy 283

      13.4.1 Optics 284

      13.4.2 Mechanics 284

      13.4.3 Electronics 284

      13.4.4 Software 285

      13.5 The Imaging Chain 285

      13.5.1 Light Source (1) 286

      13.5.2 Telescope (2) 286

      13.5.3 Camera Head (3) 287

      13.5.4 Camera CCU (4) 287

      13.5.5 Video Cables (5) 287

      13.5.6 Monitor (6) 287

      13.5.7 Image Management Systems (7) 288

      13.6 Endoscopes for Today 288

      13.6.1 Rigid Endoscopes—Designs to Enhance Functionality 289

      13.6.2 Less Traumatic Ureterorenoscopes 290

      13.6.3 Advances in Flexible Endoscope Design 291

      13.6.4 Broader Functionality with New Technologies 294

      13.6.5 Enhancing Video Capabilities 299

      13.7 Endoscopy’s Future 301

      14. Medical Ultrasound Devices 303
      Rahul Singh and Martin Culjat

      14.1 Introduction 303

      14.2 Basic Principles of Ultrasound 304

      14.2.1 Basic Acoustic Physics 304

      14.2.2 Reflection and Refraction 307

      14.2.3 Attenuation 307

      14.2.4 Piezoelectricity 308

      14.2.5 Ultrasound Systems 310

      14.2.6 Resolution and Bandwidth 312

      14.2.7 Beam Characteristics 314

      14.3 Ultrasound Transducer Design 316

      14.3.1 Piezoelectric Material 317

      14.3.2 Backing Layers and Damping 318

      14.3.3 Matching Layers 318

      14.3.4 Mechanical Focusing 319

      14.3.5 Electrical Matching 320

      14.3.6 Sector Scanners 320

      14.3.7 Array Transducers 322

      14.3.8 Transducer Array Fabrication 325

      14.3.9 Regulatory Considerations 327

      14.4 Applications of Medical Ultrasound 329

      14.4.1 Image Guidance Applications 330

      14.4.2 Intravascular and Intracardiac Applications 332

      14.4.3 Intraoral and Endocavity Applications 333

      14.4.4 Surgical Applications 334

      14.4.5 Ophthalmic Ultrasound 335

      14.4.6 Doppler and Doppler Applications 336

      14.4.7 Therapeutic Applications 336

      14.5 The Future of Medical Ultrasound 338

      15. Medical X-ray Imaging 341
      Mark Roden

      15.1 Introduction 341

      15.2 X-ray Physics 342

      15.2.1 Photon Interactions with Matter 342

      15.2.2 Clinical Production of X-rays 343

      15.2.3 Patient Dose Considerations 346

      15.3 Two-Dimensional Image Acquisition 348

      15.4 Image Acquisition Technologies and Techniques 351

      15.4.1 Film 351

      15.4.2 Computed Radiography 354

      15.4.3 Digital Radiography 358

      15.4.4 Clinical Applications of 2D X-ray Techniques 360

      15.5 Basic 2D Processing Techniques 361

      15.5.1 Independent Pixel Operations 362

      15.5.2 Grouped Pixel Operations 363

      15.5.3 Image Transformation Operations 366

      15.6 Real-Time X-ray Imaging 367

      15.6.1 Fluoroscopy Technology 367

      15.6.2 Angiography 370

      15.7 Three-Dimensional X-ray Imaging 372

      15.8 Conclusion 373

      16. Navigation in Neurosurgery 375
      Jean-Jacques Lemaire, Eric J. Behnke, Andrew J. Frew, and Antonio A. F. DeSalles

      16.1 Basics of Neurosurgery 375

      16.1.1 General Technical Issues in Neurosurgery 375

      16.1.2 Instrumentation in Neurosurgery 376

      16.1.3 Complications 377

      16.1.4 Functional Neurosurgery 378

      16.1.5 Stereotactic Neurosurgery 378

      16.1.6 Neuroimaging for Neurosurgery 379

      16.2 Introduction to Neuronavigation 381

      16.3 Neuronavigation Systems 381

      16.3.1 The Tracking System 382

      16.3.2 The Display Unit 383

      16.3.3 The Control Unit 385

      16.4 Implementation of Neuronavigation 386

      16.4.1 Surgical Planning 386

      16.4.2 Patient Registration 387

      16.4.3 Navigation 389

      16.5 Augmented Reality and Virtual Reality 390

      16.6 Summary/Future 391

      REFERENCES 395

      INDEX 425

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account