Description

Book Synopsis

The book reviews inequalities for weighted entry sums of matrix powers. Applications range from mathematics and CS to pure sciences. It unifies and generalizes several results for products and powers of sesquilinear forms derived from powers of Hermitian, positive-semidefinite, as well as nonnegative matrices. It shows that some inequalities are valid only in specific cases. How to translate the Hermitian matrix results into results for alternating powers of general rectangular matrices? Inequalities that compare the powers of the row and column sums to the row and column sums of the matrix powers are refined for nonnegative matrices. Lastly, eigenvalue bounds and derive results for iterated kernels are improved.



Table of Contents

Introduction. Notation and Basic Facts. Motivation. Diagonalization and Spectral Decomposition. Undirected Graphs / Hermitian Matrices. General Results. Restricted Graph Classes. Directed Graphs / Nonsymmetric. Walks and Alternating Walks in Directed Graphs. Powers of Row and Column Sums. Applications. Bounds for the Largest Eigenvalue. Iterated Kernels. Conclusion. Bibliography. Index.

Matrix Inequalities for Iterative Systems

Product form

£142.50

Includes FREE delivery

RRP £150.00 – you save £7.50 (5%)

Order before 4pm today for delivery by Mon 19 Jan 2026.

A Hardback by Hanjo Taubig

1 in stock


    View other formats and editions of Matrix Inequalities for Iterative Systems by Hanjo Taubig

    Publisher: Taylor & Francis Inc
    Publication Date: 18/11/2016
    ISBN13: 9781498777773, 978-1498777773
    ISBN10: 1498777775

    Description

    Book Synopsis

    The book reviews inequalities for weighted entry sums of matrix powers. Applications range from mathematics and CS to pure sciences. It unifies and generalizes several results for products and powers of sesquilinear forms derived from powers of Hermitian, positive-semidefinite, as well as nonnegative matrices. It shows that some inequalities are valid only in specific cases. How to translate the Hermitian matrix results into results for alternating powers of general rectangular matrices? Inequalities that compare the powers of the row and column sums to the row and column sums of the matrix powers are refined for nonnegative matrices. Lastly, eigenvalue bounds and derive results for iterated kernels are improved.



    Table of Contents

    Introduction. Notation and Basic Facts. Motivation. Diagonalization and Spectral Decomposition. Undirected Graphs / Hermitian Matrices. General Results. Restricted Graph Classes. Directed Graphs / Nonsymmetric. Walks and Alternating Walks in Directed Graphs. Powers of Row and Column Sums. Applications. Bounds for the Largest Eigenvalue. Iterated Kernels. Conclusion. Bibliography. Index.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account