Description

Book Synopsis

Branislav M. Notaroš received the Dipl.Ing. (B.Sc.), M.Sc., and Ph.D. degrees in electrical engineering from the University of Belgrade, Belgrade, Yugoslavia, in 1988, 1992, and 1995, respectively. From 1996 to 1998, he was an Assistant Professor in the Department of Electrical Engineering at the University of Belgrade, and before that, from 1989 to 1996, a Teaching and Research Assistant (faculty position) in the same department.  He spent the 1998-1999 academic year as a Research Associate at the University of Colorado at Boulder. He was an Assistant Professor, from 1999 to 2004, and Associate Professor (with Tenure), from 2004 to 2006, in the Department of Electrical and Computer Engineering at the University of Massachusetts Dartmouth. He is currently an Associate Professor (with Tenure) of electrical and computer engineering at Colorado State University.

 

Research activities of Prof. Notaroš

Table of Contents
1 Electrostatic Field in Free Space 1
1.1 Coulomb’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Electric Field Intensity Vector Due to Given Charge Distributions . . . . . . . . . 9
1.3 Electric Scalar Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4 Differential Relationship Between the Field and Potential in Electrostatics, Gradient 26
1.5 Electric Dipole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6 Gauss’ Law in Integral Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.7 Differential Form of Gauss’ Law, Divergence . . . . . . . . . . . . . . . . . . . . . . 31
1.8 Method of Moments for Numerical Analysis of Charged Metallic Bodies . . . . . . 33
2 Electrostatic Field in Dielectrics 41
2.1 Characterization of Dielectric Materials . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2 Dielectric—Dielectric Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . 46
2.3 Poisson’s and Laplace’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4 Finite-Difference Method for Numerical Solution of Laplace’s Equation . . . . . . . 51
2.5 Evaluation of Capacitances of Capacitors and Transmission Lines . . . . . . . . . . 59
2.6 Capacitors with Inhomogeneous Dielectrics . . . . . . . . . . . . . . . . . . . . . . 69
2.7 Dielectric Breakdown in Electrostatic Systems . . . . . . . . . . . . . . . . . . . . . 70
3 Steady Electric Currents 73
3.1 Continuity Equation, Conductivity, and Ohm’s Law in Local Form . . . . . . . . . 73
3.2 Boundary Conditions for Steady Currents . . . . . . . . . . . . . . . . . . . . . . . 79
3.3 Relaxation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.4 Resistance and Ohm’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4 Magnetostatic Field in Free Space 86
4.1 Magnetic Force and Magnetic Flux Density Vector . . . . . . . . . . . . . . . . . . 86
4.2 Magnetic Field Computation Using Biot—Savart Law . . . . . . . . . . . . . . . . . 92
4.3 Ampere’s Law in Integral Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4 Differential Form of Ampere’s Law, Curl . . . . . . . . . . . . . . . . . . . . . . . . 102
4.5 Magnetic Vector Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.6 Magnetic Dipole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5 Magnetostatic Field in Material Media 106
5.1 Permeability of Magnetic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2 Boundary Conditions for the Magnetic Field . . . . . . . . . . . . . . . . . . . . . . 108
5.3 Magnetic Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
vi Contents, Preface, and m Files on Instructor Resources
6 Time-Varying Electromagnetic Field 118
6.1 Faraday’s Law of Electromagnetic Induction . . . . . . . . . . . . . . . . . . . . . . 118
6.2 Self-Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3 Mutual Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.4 Displacement Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.5 Maxwell’s Equations for the Time-Varying Electromagnetic Field . . . . . . . . . . 130
6.6 Boundary Conditions for the Time-Varying Electromagnetic Field . . . . . . . . . . 132
6.7 Time-Harmonic Electromagnetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.8 Complex Representatives of Time-Harmonic Field and Circuit Quantities . . . . . 137
6.9 Instantaneous and Complex Poynting Vector . . . . . .

MATLABBased Electromagnetics

Product form

£96.67

Includes FREE delivery

Order before 4pm tomorrow for delivery by Sat 10 Jan 2026.

A Hardback by Branislav Notaros

Out of stock


    View other formats and editions of MATLABBased Electromagnetics by Branislav Notaros

    Publisher: Pearson Education (US)
    Publication Date: 18/10/2013
    ISBN13: 9780132857949, 978-0132857949
    ISBN10: 0132857944

    Description

    Book Synopsis

    Branislav M. Notaroš received the Dipl.Ing. (B.Sc.), M.Sc., and Ph.D. degrees in electrical engineering from the University of Belgrade, Belgrade, Yugoslavia, in 1988, 1992, and 1995, respectively. From 1996 to 1998, he was an Assistant Professor in the Department of Electrical Engineering at the University of Belgrade, and before that, from 1989 to 1996, a Teaching and Research Assistant (faculty position) in the same department.  He spent the 1998-1999 academic year as a Research Associate at the University of Colorado at Boulder. He was an Assistant Professor, from 1999 to 2004, and Associate Professor (with Tenure), from 2004 to 2006, in the Department of Electrical and Computer Engineering at the University of Massachusetts Dartmouth. He is currently an Associate Professor (with Tenure) of electrical and computer engineering at Colorado State University.

     

    Research activities of Prof. Notaroš

    Table of Contents
    1 Electrostatic Field in Free Space 1
    1.1 Coulomb’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
    1.2 Electric Field Intensity Vector Due to Given Charge Distributions . . . . . . . . . 9
    1.3 Electric Scalar Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
    1.4 Differential Relationship Between the Field and Potential in Electrostatics, Gradient 26
    1.5 Electric Dipole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
    1.6 Gauss’ Law in Integral Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
    1.7 Differential Form of Gauss’ Law, Divergence . . . . . . . . . . . . . . . . . . . . . . 31
    1.8 Method of Moments for Numerical Analysis of Charged Metallic Bodies . . . . . . 33
    2 Electrostatic Field in Dielectrics 41
    2.1 Characterization of Dielectric Materials . . . . . . . . . . . . . . . . . . . . . . . . 41
    2.2 Dielectric—Dielectric Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . 46
    2.3 Poisson’s and Laplace’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
    2.4 Finite-Difference Method for Numerical Solution of Laplace’s Equation . . . . . . . 51
    2.5 Evaluation of Capacitances of Capacitors and Transmission Lines . . . . . . . . . . 59
    2.6 Capacitors with Inhomogeneous Dielectrics . . . . . . . . . . . . . . . . . . . . . . 69
    2.7 Dielectric Breakdown in Electrostatic Systems . . . . . . . . . . . . . . . . . . . . . 70
    3 Steady Electric Currents 73
    3.1 Continuity Equation, Conductivity, and Ohm’s Law in Local Form . . . . . . . . . 73
    3.2 Boundary Conditions for Steady Currents . . . . . . . . . . . . . . . . . . . . . . . 79
    3.3 Relaxation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
    3.4 Resistance and Ohm’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
    4 Magnetostatic Field in Free Space 86
    4.1 Magnetic Force and Magnetic Flux Density Vector . . . . . . . . . . . . . . . . . . 86
    4.2 Magnetic Field Computation Using Biot—Savart Law . . . . . . . . . . . . . . . . . 92
    4.3 Ampere’s Law in Integral Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
    4.4 Differential Form of Ampere’s Law, Curl . . . . . . . . . . . . . . . . . . . . . . . . 102
    4.5 Magnetic Vector Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
    4.6 Magnetic Dipole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
    5 Magnetostatic Field in Material Media 106
    5.1 Permeability of Magnetic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
    5.2 Boundary Conditions for the Magnetic Field . . . . . . . . . . . . . . . . . . . . . . 108
    5.3 Magnetic Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
    vi Contents, Preface, and m Files on Instructor Resources
    6 Time-Varying Electromagnetic Field 118
    6.1 Faraday’s Law of Electromagnetic Induction . . . . . . . . . . . . . . . . . . . . . . 118
    6.2 Self-Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
    6.3 Mutual Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
    6.4 Displacement Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
    6.5 Maxwell’s Equations for the Time-Varying Electromagnetic Field . . . . . . . . . . 130
    6.6 Boundary Conditions for the Time-Varying Electromagnetic Field . . . . . . . . . . 132
    6.7 Time-Harmonic Electromagnetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
    6.8 Complex Representatives of Time-Harmonic Field and Circuit Quantities . . . . . 137
    6.9 Instantaneous and Complex Poynting Vector . . . . . .

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account