Description

Book Synopsis
Skillfully introducing the basic concepts of nanomaterials and devices fabricated from these nanomaterials, Introduction to Semiconductor Nanomaterials and Devices applies traditional physics concepts to explain new phenomena encountered in cutting-edge research fields, such as plasmon-photon interaction, in nanotechnology and nanoscience.

Table of Contents
Preface xiii

Fundamental Constants xvii

1 Growth of Bulk, Thin Films, and Nanomaterials 1

1.1 Introduction, 1

1.2 Growth of Bulk Semiconductors, 5

1.2.1 Liquid-Encapsulated Czochralski (LEC) Method, 5

1.2.2 Horizontal Bridgman Method, 11

1.2.3 Float-Zone Growth Method, 14

1.2.4 Lely Growth Method, 16

1.3 Growth of Semiconductor Thin Films, 18

1.3.1 Liquid-Phase Epitaxy Method, 19

1.3.2 Vapor-Phase Epitaxy Method, 20

1.3.3 Hydride Vapor-Phase Epitaxial Growth of Thick GaN Layers, 22

1.3.4 Pulsed Laser Deposition Technique, 25

1.3.5 Molecular Beam Epitaxy Growth Technique, 27

1.4 Fabrication and Growth of Semiconductor Nanomaterials, 46

1.4.1 Nucleation, 47

1.4.2 Fabrications of Quantum Dots, 55

1.4.3 Epitaxial Growth of Self-Assembly Quantum Dots, 56

1.5 Colloidal Growth of Nanocrystals, 61

1.6 Summary, 63

Problems, 64

Bibliography, 67

2 Application of Quantum Mechanics to Nanomaterial Structures 68

2.1 Introduction, 68

2.2 The de Broglie Relation, 71

2.3 Wave Functions and Schr¨odinger Equation, 72

2.4 Dirac Notation, 74

2.4.1 Action of a Linear Operator on a Bra, 77

2.4.2 Eigenvalues and Eigenfunctions of an Operator, 78

2.4.3 The Dirac δ-Function, 78

2.4.4 Fourier Series and Fourier Transform in Quantum Mechanics, 81

2.5 Variational Method, 82

2.6 Stationary States of a Particle in a Potential Step, 83

2.7 Potential Barrier with a Finite Height, 88

2.8 Potential Well with an Infinite Depth, 92

2.9 Finite Depth Potential Well, 94

2.10 Unbound Motion of a Particle (E > V0) in a Potential Well With a Finite Depth, 98

2.11 Triangular Potential Well, 100

2.12 Delta Function Potentials, 103

2.13 Transmission in Finite Double Barrier Potential Wells, 108

2.14 Envelope Function Approximation, 112

2.15 Periodic Potential, 117

2.15.1 Bloch’s Theorem, 119

2.15.2 The Kronig–Penney Model, 119

2.15.3 One-Electron Approximation in a Periodic Dirac δ-Function, 123

2.15.4 Superlattices, 126

2.16 Effective Mass, 130

2.17 Summary, 131

Problems, 132

Bibliography, 134

3 Density of States in Semiconductor Materials 135

3.1 Introduction, 135

3.2 Distribution Functions, 138

3.3 Maxwell–Boltzmann Statistic, 139

3.4 Fermi–Dirac Statistics, 142

3.5 Bose–Einstein Statistics, 145

3.6 Density of States, 146

3.7 Density of States of Quantum Wells, Wires, and Dots, 152

3.7.1 Quantum Wells, 152

3.7.2 Quantum Wires, 155

3.7.3 Quantum Dots, 158

3.8 Density of States of Other Systems, 159

3.8.1 Superlattices, 160

3.8.2 Density of States of Bulk Electrons in the Presence of a Magnetic Field, 161

3.8.3 Density of States in the Presence of an Electric Field, 163

3.9 Summary, 168

Problems, 168

Bibliography, 170

4 Optical Properties 171

4.1 Fundamentals, 172

4.2 Lorentz and Drude Models, 176

4.3 The Optical Absorption Coefficient of the Interband Transition in Direct Band Gap Semiconductors, 179

4.4 The Optical Absorption Coefficient of the Interband Transition in Indirect Band Gap Semiconductors, 185

4.5 The Optical Absorption Coefficient of the Interband Transition in Quantum Wells, 186

4.6 The Optical Absorption Coefficient of the Interband Transition in Type II Superlattices, 189

4.7 The Optical Absorption Coefficient of the Intersubband Transition in Multiple Quantum Wells, 191

4.8 The Optical Absorption Coefficient of the Intersubband Transition in GaN/AlGaN Multiple Quantum Wells, 196

4.9 Electronic Transitions in Multiple Quantum Dots, 197

4.10 Selection Rules, 201

4.10.1 Electron–Photon Coupling of Intersubband Transitions in Multiple Quantum Wells, 201

4.10.2 Intersubband Transition in Multiple Quantum Wells, 202

4.10.3 Interband Transition, 202

4.11 Excitons, 204

4.11.1 Excitons in Bulk Semiconductors, 205

4.11.2 Excitons in Quantum Wells, 211

4.11.3 Excitons in Quantum Dots, 213

4.12 Cyclotron Resonance, 214

4.13 Photoluminescence, 220

4.14 Basic Concepts of Photoconductivity, 225

4.15 Summary, 229

Problems, 230

Bibliography, 232

5 Electrical and Transport Properties 233

5.1 Introduction, 233

5.2 The Hall Effect, 237

5.3 Quantum Hall and Shubnikov-de Haas Effects, 241

5.3.1 Shubnikov-de Haas Effect, 243

5.3.2 Quantum Hall Effect, 246

5.4 Charge Carrier Transport in Bulk Semiconductors, 249

5.4.1 Drift Current Density, 249

5.4.2 Diffusion Current Density, 254

5.4.3 Generation and Recombination, 257

5.4.4 Continuity Equation, 259

5.5 Boltzmann Transport Equation, 264

5.6 Derivation of Transport Coefficients Using the Boltzmann Transport Equation, 268

5.6.1 Electrical Conductivity and Mobility in n-type Semiconductors, 270

5.6.2 Hall Coefficient, RH, 273

5.7 Scattering Mechanisms in Bulk Semiconductors, 274

5.7.1 Scattering from an Ionized Impurity, 276

5.7.2 Scattering from a Neutral Impurity, 277

5.7.3 Scattering from Acoustic Phonons: Deformation Potential, 277

5.7.4 Scattering from Acoustic Phonons: Piezoelectric Potential, 278

5.7.5 Optical Phonon Scattering: Polar and Nonpolar, 278

5.7.6 Scattering from Short-Range Potentials, 279

5.7.7 Scattering from Dipoles, 281

5.8 Scattering in a Two-Dimensional Electron Gas, 281

5.8.1 Scattering by Remote Ionized Impurities, 283

5.8.2 Scattering by Interface Roughness, 285

5.8.3 Electron–Electron Scattering, 286

5.9 Coherence and Mesoscopic Systems, 287

5.10 Summary, 293

Problems, 294

Bibliography, 297

6 Electronic Devices 298

6.1 Introduction, 298

6.2 Schottky Diode, 301

6.3 Metal–Semiconductor Field-Effect Transistors (MESFETs), 305

6.4 Junction Field-Effect Transistor (JFET), 314

6.5 Heterojunction Field-Effect Transistors (HFETs), 318

6.6 GaN/AlGaN Heterojunction Field-Effect Transistors (HFETs), 322

6.7 Heterojunction Bipolar Transistors (HBTs), 325

6.8 Tunneling Electron Transistors, 328

6.9 The p–n Junction Tunneling Diode, 329

6.10 Resonant Tunneling Diodes, 334

6.11 Coulomb Blockade, 338

6.12 Single-Electron Transistor, 340

6.13 Summary, 353

Problems, 354

Bibliography, 357

7 Optoelectronic Devices 359

7.1 Introduction, 359

7.2 Infrared Quantum Detectors, 361

7.2.1 Figures of Merit, 361

7.2.2 Noise in Photodetectors, 366

7.2.3 Multiple Quantum Well Infrared Photodetectors (QWIPs), 369

7.2.4 Infrared Photodetectors Based on Multiple Quantum Dots, 380

7.3 Light-Emitting Diodes, 387

7.4 Semiconductor Lasers, 392

7.4.1 Basic Principles, 392

7.4.2 Semiconductor Heterojunction Lasers, 399

7.4.3 Quantum Well Edge-Emitting Lasers, 403

7.4.4 Vertical Cavity Surface-Emitting Lasers, 406

7.4.5 Quantum Cascade Lasers, 409

7.4.6 Quantum Dots Lasers, 412

7.5 Summary, 416

Problems, 418

Bibliography, 419

Appendix A Derivation of Heisenberg Uncertainty Principle 420

Appendix B Perturbation 424

Bibliography, 428

Appendix C Angular Momentum 429

Appendix D Wentzel-Kramers-Brillouin (WKB) Approximation 431

Bibliography, 436

Appendix E Parabolic Potential Well 437

Bibliography, 441

Appendix F Transmission Coefficient in Superlattices 442

Appendix G Lattice Vibrations and Phonons 445

Bibliography, 455

Appendix H Tunneling Through Potential Barriers 456

Bibliography, 461

Index 463

Introduction to Nanomaterials and Devices

Product form

£98.96

Includes FREE delivery

RRP £109.95 – you save £10.99 (9%)

Order before 4pm today for delivery by Tue 23 Dec 2025.

A Hardback by Omar Manasreh

15 in stock


    View other formats and editions of Introduction to Nanomaterials and Devices by Omar Manasreh

    Publisher: John Wiley & Sons Inc
    Publication Date: 06/01/2012
    ISBN13: 9780470927076, 978-0470927076
    ISBN10: 0470927070

    Description

    Book Synopsis
    Skillfully introducing the basic concepts of nanomaterials and devices fabricated from these nanomaterials, Introduction to Semiconductor Nanomaterials and Devices applies traditional physics concepts to explain new phenomena encountered in cutting-edge research fields, such as plasmon-photon interaction, in nanotechnology and nanoscience.

    Table of Contents
    Preface xiii

    Fundamental Constants xvii

    1 Growth of Bulk, Thin Films, and Nanomaterials 1

    1.1 Introduction, 1

    1.2 Growth of Bulk Semiconductors, 5

    1.2.1 Liquid-Encapsulated Czochralski (LEC) Method, 5

    1.2.2 Horizontal Bridgman Method, 11

    1.2.3 Float-Zone Growth Method, 14

    1.2.4 Lely Growth Method, 16

    1.3 Growth of Semiconductor Thin Films, 18

    1.3.1 Liquid-Phase Epitaxy Method, 19

    1.3.2 Vapor-Phase Epitaxy Method, 20

    1.3.3 Hydride Vapor-Phase Epitaxial Growth of Thick GaN Layers, 22

    1.3.4 Pulsed Laser Deposition Technique, 25

    1.3.5 Molecular Beam Epitaxy Growth Technique, 27

    1.4 Fabrication and Growth of Semiconductor Nanomaterials, 46

    1.4.1 Nucleation, 47

    1.4.2 Fabrications of Quantum Dots, 55

    1.4.3 Epitaxial Growth of Self-Assembly Quantum Dots, 56

    1.5 Colloidal Growth of Nanocrystals, 61

    1.6 Summary, 63

    Problems, 64

    Bibliography, 67

    2 Application of Quantum Mechanics to Nanomaterial Structures 68

    2.1 Introduction, 68

    2.2 The de Broglie Relation, 71

    2.3 Wave Functions and Schr¨odinger Equation, 72

    2.4 Dirac Notation, 74

    2.4.1 Action of a Linear Operator on a Bra, 77

    2.4.2 Eigenvalues and Eigenfunctions of an Operator, 78

    2.4.3 The Dirac δ-Function, 78

    2.4.4 Fourier Series and Fourier Transform in Quantum Mechanics, 81

    2.5 Variational Method, 82

    2.6 Stationary States of a Particle in a Potential Step, 83

    2.7 Potential Barrier with a Finite Height, 88

    2.8 Potential Well with an Infinite Depth, 92

    2.9 Finite Depth Potential Well, 94

    2.10 Unbound Motion of a Particle (E > V0) in a Potential Well With a Finite Depth, 98

    2.11 Triangular Potential Well, 100

    2.12 Delta Function Potentials, 103

    2.13 Transmission in Finite Double Barrier Potential Wells, 108

    2.14 Envelope Function Approximation, 112

    2.15 Periodic Potential, 117

    2.15.1 Bloch’s Theorem, 119

    2.15.2 The Kronig–Penney Model, 119

    2.15.3 One-Electron Approximation in a Periodic Dirac δ-Function, 123

    2.15.4 Superlattices, 126

    2.16 Effective Mass, 130

    2.17 Summary, 131

    Problems, 132

    Bibliography, 134

    3 Density of States in Semiconductor Materials 135

    3.1 Introduction, 135

    3.2 Distribution Functions, 138

    3.3 Maxwell–Boltzmann Statistic, 139

    3.4 Fermi–Dirac Statistics, 142

    3.5 Bose–Einstein Statistics, 145

    3.6 Density of States, 146

    3.7 Density of States of Quantum Wells, Wires, and Dots, 152

    3.7.1 Quantum Wells, 152

    3.7.2 Quantum Wires, 155

    3.7.3 Quantum Dots, 158

    3.8 Density of States of Other Systems, 159

    3.8.1 Superlattices, 160

    3.8.2 Density of States of Bulk Electrons in the Presence of a Magnetic Field, 161

    3.8.3 Density of States in the Presence of an Electric Field, 163

    3.9 Summary, 168

    Problems, 168

    Bibliography, 170

    4 Optical Properties 171

    4.1 Fundamentals, 172

    4.2 Lorentz and Drude Models, 176

    4.3 The Optical Absorption Coefficient of the Interband Transition in Direct Band Gap Semiconductors, 179

    4.4 The Optical Absorption Coefficient of the Interband Transition in Indirect Band Gap Semiconductors, 185

    4.5 The Optical Absorption Coefficient of the Interband Transition in Quantum Wells, 186

    4.6 The Optical Absorption Coefficient of the Interband Transition in Type II Superlattices, 189

    4.7 The Optical Absorption Coefficient of the Intersubband Transition in Multiple Quantum Wells, 191

    4.8 The Optical Absorption Coefficient of the Intersubband Transition in GaN/AlGaN Multiple Quantum Wells, 196

    4.9 Electronic Transitions in Multiple Quantum Dots, 197

    4.10 Selection Rules, 201

    4.10.1 Electron–Photon Coupling of Intersubband Transitions in Multiple Quantum Wells, 201

    4.10.2 Intersubband Transition in Multiple Quantum Wells, 202

    4.10.3 Interband Transition, 202

    4.11 Excitons, 204

    4.11.1 Excitons in Bulk Semiconductors, 205

    4.11.2 Excitons in Quantum Wells, 211

    4.11.3 Excitons in Quantum Dots, 213

    4.12 Cyclotron Resonance, 214

    4.13 Photoluminescence, 220

    4.14 Basic Concepts of Photoconductivity, 225

    4.15 Summary, 229

    Problems, 230

    Bibliography, 232

    5 Electrical and Transport Properties 233

    5.1 Introduction, 233

    5.2 The Hall Effect, 237

    5.3 Quantum Hall and Shubnikov-de Haas Effects, 241

    5.3.1 Shubnikov-de Haas Effect, 243

    5.3.2 Quantum Hall Effect, 246

    5.4 Charge Carrier Transport in Bulk Semiconductors, 249

    5.4.1 Drift Current Density, 249

    5.4.2 Diffusion Current Density, 254

    5.4.3 Generation and Recombination, 257

    5.4.4 Continuity Equation, 259

    5.5 Boltzmann Transport Equation, 264

    5.6 Derivation of Transport Coefficients Using the Boltzmann Transport Equation, 268

    5.6.1 Electrical Conductivity and Mobility in n-type Semiconductors, 270

    5.6.2 Hall Coefficient, RH, 273

    5.7 Scattering Mechanisms in Bulk Semiconductors, 274

    5.7.1 Scattering from an Ionized Impurity, 276

    5.7.2 Scattering from a Neutral Impurity, 277

    5.7.3 Scattering from Acoustic Phonons: Deformation Potential, 277

    5.7.4 Scattering from Acoustic Phonons: Piezoelectric Potential, 278

    5.7.5 Optical Phonon Scattering: Polar and Nonpolar, 278

    5.7.6 Scattering from Short-Range Potentials, 279

    5.7.7 Scattering from Dipoles, 281

    5.8 Scattering in a Two-Dimensional Electron Gas, 281

    5.8.1 Scattering by Remote Ionized Impurities, 283

    5.8.2 Scattering by Interface Roughness, 285

    5.8.3 Electron–Electron Scattering, 286

    5.9 Coherence and Mesoscopic Systems, 287

    5.10 Summary, 293

    Problems, 294

    Bibliography, 297

    6 Electronic Devices 298

    6.1 Introduction, 298

    6.2 Schottky Diode, 301

    6.3 Metal–Semiconductor Field-Effect Transistors (MESFETs), 305

    6.4 Junction Field-Effect Transistor (JFET), 314

    6.5 Heterojunction Field-Effect Transistors (HFETs), 318

    6.6 GaN/AlGaN Heterojunction Field-Effect Transistors (HFETs), 322

    6.7 Heterojunction Bipolar Transistors (HBTs), 325

    6.8 Tunneling Electron Transistors, 328

    6.9 The p–n Junction Tunneling Diode, 329

    6.10 Resonant Tunneling Diodes, 334

    6.11 Coulomb Blockade, 338

    6.12 Single-Electron Transistor, 340

    6.13 Summary, 353

    Problems, 354

    Bibliography, 357

    7 Optoelectronic Devices 359

    7.1 Introduction, 359

    7.2 Infrared Quantum Detectors, 361

    7.2.1 Figures of Merit, 361

    7.2.2 Noise in Photodetectors, 366

    7.2.3 Multiple Quantum Well Infrared Photodetectors (QWIPs), 369

    7.2.4 Infrared Photodetectors Based on Multiple Quantum Dots, 380

    7.3 Light-Emitting Diodes, 387

    7.4 Semiconductor Lasers, 392

    7.4.1 Basic Principles, 392

    7.4.2 Semiconductor Heterojunction Lasers, 399

    7.4.3 Quantum Well Edge-Emitting Lasers, 403

    7.4.4 Vertical Cavity Surface-Emitting Lasers, 406

    7.4.5 Quantum Cascade Lasers, 409

    7.4.6 Quantum Dots Lasers, 412

    7.5 Summary, 416

    Problems, 418

    Bibliography, 419

    Appendix A Derivation of Heisenberg Uncertainty Principle 420

    Appendix B Perturbation 424

    Bibliography, 428

    Appendix C Angular Momentum 429

    Appendix D Wentzel-Kramers-Brillouin (WKB) Approximation 431

    Bibliography, 436

    Appendix E Parabolic Potential Well 437

    Bibliography, 441

    Appendix F Transmission Coefficient in Superlattices 442

    Appendix G Lattice Vibrations and Phonons 445

    Bibliography, 455

    Appendix H Tunneling Through Potential Barriers 456

    Bibliography, 461

    Index 463

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account