Description

Book Synopsis
Using examples from across the sub-disciplines of physics, this introduction shows why effective field theories are the language in which physical laws are written. The tools of effective field theory are demonstrated using worked examples from areas including particle, nuclear, atomic, condensed matter and gravitational physics. To bring the subject within reach of scientists with a wide variety of backgrounds and interests, there are clear physical explanations, rigorous derivations, and extensive appendices on background material, such as quantum field theory. Starting from undergraduate-level quantum mechanics, the book gets to state-of-the-art calculations using both relativistic and nonrelativistic few-body and many-body examples, and numerous end-of-chapter problems derive classic results not covered in the main text. Graduate students and researchers in particle physics, condensed matter physics, nuclear physics, string theory, and mathematical physics more generally, will find this book ideal for both self-study and for organized courses on effective field theory.

Trade Review
'This book can serve as a reference work for graduate students of theoretical physics as well as a professional reference … Recommended.' M. O. Farooq, Choice

Table of Contents
Part I. Theoretical framework; 1. Decoupling and hierarchies of scale; 2. Effective actions; 3. Power counting and matching; 4. Symmetries; 5. Boundaries; Part II. Relativistic applications; 7. Conceptual issues (relativistic systems); 8. QCD and chiral perturbation theory; 9. The Standard Model as an effective theory; 10. General Relativity as an effective theory; Part III. Nonrelativistic Applications; 11. Conceptual issues (nonrelativistic systems); 12. Electrodynamics of non-relativistic particles; 13. First-quantized methods; Part IV. Many-body applications; 14. Goldstone bosons again; 15. Degenerate systems; 16. EFTs and open systems; Appendix A Conventions and units; Appendix B Momentum eigenstates and scattering; Appendix C Quantum field theory: a cartoon; Appendix D Further reading; References; Index.

Introduction to Effective Field Theory

Product form

£71.99

Includes FREE delivery

Order before 4pm today for delivery by Thu 18 Dec 2025.

A Hardback by C. P. Burgess

15 in stock


    View other formats and editions of Introduction to Effective Field Theory by C. P. Burgess

    Publisher: Cambridge University Press
    Publication Date: 12/10/2020 12:00:00 AM
    ISBN13: 9780521195478, 978-0521195478
    ISBN10: 0521195470

    Description

    Book Synopsis
    Using examples from across the sub-disciplines of physics, this introduction shows why effective field theories are the language in which physical laws are written. The tools of effective field theory are demonstrated using worked examples from areas including particle, nuclear, atomic, condensed matter and gravitational physics. To bring the subject within reach of scientists with a wide variety of backgrounds and interests, there are clear physical explanations, rigorous derivations, and extensive appendices on background material, such as quantum field theory. Starting from undergraduate-level quantum mechanics, the book gets to state-of-the-art calculations using both relativistic and nonrelativistic few-body and many-body examples, and numerous end-of-chapter problems derive classic results not covered in the main text. Graduate students and researchers in particle physics, condensed matter physics, nuclear physics, string theory, and mathematical physics more generally, will find this book ideal for both self-study and for organized courses on effective field theory.

    Trade Review
    'This book can serve as a reference work for graduate students of theoretical physics as well as a professional reference … Recommended.' M. O. Farooq, Choice

    Table of Contents
    Part I. Theoretical framework; 1. Decoupling and hierarchies of scale; 2. Effective actions; 3. Power counting and matching; 4. Symmetries; 5. Boundaries; Part II. Relativistic applications; 7. Conceptual issues (relativistic systems); 8. QCD and chiral perturbation theory; 9. The Standard Model as an effective theory; 10. General Relativity as an effective theory; Part III. Nonrelativistic Applications; 11. Conceptual issues (nonrelativistic systems); 12. Electrodynamics of non-relativistic particles; 13. First-quantized methods; Part IV. Many-body applications; 14. Goldstone bosons again; 15. Degenerate systems; 16. EFTs and open systems; Appendix A Conventions and units; Appendix B Momentum eigenstates and scattering; Appendix C Quantum field theory: a cartoon; Appendix D Further reading; References; Index.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account