Description

Book Synopsis
The birth of analytical electron microscopy (AEM) is somewhat obscure. Was it the recognition of the power and the development of STEM that signaled its birth? Was AEM born with the attachment of a crystal spectrometer to an otherwise conventional TEM? Or was it born earlier with the first analysis of electron loss spectra? It''s not likely that any of these developments alone would have been sufficient and there have been many others (microdiffraction, EDS, microbeam fabrication, etc.) that could equally lay claim to being critical to the establishment of true AEM. It is probably more accurate to simply ascribe the present rapid development to the obvious: a combination of ideas whose time has come. Perhaps it is difficult to trace the birth of AEM simply because it remains a point of contention to even define its true scope. For example, the topics in this book, even though ver

Table of Contents
Chpater 1 Principles of Image Formation.- Chpater 2 Introductory Electron Optics.- Chpater 3 Principles of Thin Film X-Ray Microanalysis.- Chpater 4 Quantitative X-Ray Microanalysis: Insturmental Considerations and Applications to Materials Science.- Chpater 5 EDS Quantitation and Application to Biology.- Chpater 6 Monte Carlo Simulation in Analytical Electron Microscopy.- Chpater 7 The Basic Principles of Electron Energy Loss Spectroscopy.- Chpater 8 Energy Loss Spectrometry for Biological Research.- Chpater 9 Elemental Analysis Using Inner-Shell Excitations: A Microanalytical Technique for materials Characterization.- Chpater 10 Analysis of the Electronic Structure of Solids.- Chpater 11 Stem Imaging of Crystals and Defects.- Chpater 12 Biological Scanning Transmission Electron Microscopy.- Chpater 13 Electron Microscopy of Individual Atoms.- Chpater 14 microdiffraction.- Chpater 15 Convergent Beam Electron Diffraction.- Chpater 16 Radiation Damage with Biological Specimens and Organic Materials.- Chpater 17 Radiation Effects in Analysis of Inorganic Specimens by TEM.- Chpater 18 Barriers to AEM: Contamination and Etching.- Chpater 19 Microanalysis by Lattice Imaging.- Chpater 20 Weak-Beam Microscopy.- Chpater 21 The Analysis of Defects Using Computer Simulated Images.- Chpater 22 The Strategy of Analysis.

Introduction to Analytical Electron Microscopy

Product form

£132.99

Includes FREE delivery

RRP £139.99 – you save £7.00 (5%)

Order before 4pm today for delivery by Fri 19 Dec 2025.

A Paperback / softback by John Hren

Out of stock


    View other formats and editions of Introduction to Analytical Electron Microscopy by John Hren

    Publisher: Springer-Verlag New York Inc.
    Publication Date: 03/03/2013
    ISBN13: 9781475755831, 978-1475755831
    ISBN10: 147575583X

    Description

    Book Synopsis
    The birth of analytical electron microscopy (AEM) is somewhat obscure. Was it the recognition of the power and the development of STEM that signaled its birth? Was AEM born with the attachment of a crystal spectrometer to an otherwise conventional TEM? Or was it born earlier with the first analysis of electron loss spectra? It''s not likely that any of these developments alone would have been sufficient and there have been many others (microdiffraction, EDS, microbeam fabrication, etc.) that could equally lay claim to being critical to the establishment of true AEM. It is probably more accurate to simply ascribe the present rapid development to the obvious: a combination of ideas whose time has come. Perhaps it is difficult to trace the birth of AEM simply because it remains a point of contention to even define its true scope. For example, the topics in this book, even though ver

    Table of Contents
    Chpater 1 Principles of Image Formation.- Chpater 2 Introductory Electron Optics.- Chpater 3 Principles of Thin Film X-Ray Microanalysis.- Chpater 4 Quantitative X-Ray Microanalysis: Insturmental Considerations and Applications to Materials Science.- Chpater 5 EDS Quantitation and Application to Biology.- Chpater 6 Monte Carlo Simulation in Analytical Electron Microscopy.- Chpater 7 The Basic Principles of Electron Energy Loss Spectroscopy.- Chpater 8 Energy Loss Spectrometry for Biological Research.- Chpater 9 Elemental Analysis Using Inner-Shell Excitations: A Microanalytical Technique for materials Characterization.- Chpater 10 Analysis of the Electronic Structure of Solids.- Chpater 11 Stem Imaging of Crystals and Defects.- Chpater 12 Biological Scanning Transmission Electron Microscopy.- Chpater 13 Electron Microscopy of Individual Atoms.- Chpater 14 microdiffraction.- Chpater 15 Convergent Beam Electron Diffraction.- Chpater 16 Radiation Damage with Biological Specimens and Organic Materials.- Chpater 17 Radiation Effects in Analysis of Inorganic Specimens by TEM.- Chpater 18 Barriers to AEM: Contamination and Etching.- Chpater 19 Microanalysis by Lattice Imaging.- Chpater 20 Weak-Beam Microscopy.- Chpater 21 The Analysis of Defects Using Computer Simulated Images.- Chpater 22 The Strategy of Analysis.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account