Description

A vast number of neural cell surface glycoproteins belonging to the immunoglobulin superfamily have been isolated over the past two decades. In functional studies, many of them have been shown to confer adhesive properties to cells and to play an important role in developmental processes such as cell migration and axon outgrowth. Recent observations implicate Ig superfamily adhesion molecules in the regulation of activity-dependent synaptic plasticity, in regeneration after neural trauma, as well as in the pathogenesis of malformations in the developing nervous systems.
This book summarizes the molecular features and some of the cellular functions of this important class of cell surface molecules. It includes detailed information on the molecular structure of the immunoglobulin fold, the common domain of these proteins, the molecular interactions between various neural Ig superfamily members and their role in signal transduction, as well as the role of Ig superfamily adhesion molecules in axon guidance during both vertebrate and invertebrate neurogenesis. Recent observations on a role for these molecules in activity-dependent synaptic plasticity and in the regeneration of injured axons in the peripheral and central nervous system are described. A discussion on the connection between Ig superfamily adhesion molecules and medical genetics is also provided.

Ig Superfamily Molecules in the Nervous System

Product form

£240.00

Includes FREE delivery
Usually despatched within 4 days
Hardback by Peter Sonderegger

1 in stock

Short Description:

A vast number of neural cell surface glycoproteins belonging to the immunoglobulin superfamily have been isolated over the past two... Read more

    Publisher: Taylor & Francis Ltd
    Publication Date: 18/01/1999
    ISBN13: 9789057024115, 978-9057024115
    ISBN10: 905702411X

    Number of Pages: 326

    Non Fiction , Mathematics & Science , Education

    Description

    A vast number of neural cell surface glycoproteins belonging to the immunoglobulin superfamily have been isolated over the past two decades. In functional studies, many of them have been shown to confer adhesive properties to cells and to play an important role in developmental processes such as cell migration and axon outgrowth. Recent observations implicate Ig superfamily adhesion molecules in the regulation of activity-dependent synaptic plasticity, in regeneration after neural trauma, as well as in the pathogenesis of malformations in the developing nervous systems.
    This book summarizes the molecular features and some of the cellular functions of this important class of cell surface molecules. It includes detailed information on the molecular structure of the immunoglobulin fold, the common domain of these proteins, the molecular interactions between various neural Ig superfamily members and their role in signal transduction, as well as the role of Ig superfamily adhesion molecules in axon guidance during both vertebrate and invertebrate neurogenesis. Recent observations on a role for these molecules in activity-dependent synaptic plasticity and in the regeneration of injured axons in the peripheral and central nervous system are described. A discussion on the connection between Ig superfamily adhesion molecules and medical genetics is also provided.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account