Description
Book SynopsisFundamentals of Crystalline State and Crystal Lattice.- Finite Symmetry Elements and Crystallographic Point Groups.- Infinite Symmetry Elements and Crystallographic Space Groups.- Formalization of Symmetry.- Nonconventional Symmetry.- Properties, Sources, and Detection of Radiation.- Fundamentals of Diffraction.- The Powder Diffraction Pattern.- Structure Factor.- Solving the Crystal Structure.- Powder Diffractometry.- Collecting Quality Powder Diffraction Data.- Preliminary Data Processing and Phase Analysis.- Determination and Refinement of the Unit Cell.- Solving Crystal Structure from Powder Diffraction Data.- Crystal Structure of LaNi4.85Sn0.15.- Crystal Structure of CeRhGe3.- Crystal Structure of Nd5Si4.- Empirical Methods of Solving Crystal Structures.- Crystal Structure of NiMnO2(OH).- Crystal Structure of ,i.tma V3O71.- Crystal Structure of ma2Mo7O221.- Crystal Structure of Mn7(OH)3(VO4)41.- Crystal Structure of FePO4.- Crystal Structure of Acetaminophen, C8H9NO2.
Trade ReviewFrom a review of the first edition:
“The book is well written and organized. The authors’ enthusiasm and dedication to the subject matter are clearly evident. I find the book to be not only an excellent introduction to structural characterization, but also a valuable introduction to the world of the working crystallographer. The text is rich in references to internet resources, software, literature, organizations, databases, and institutions that x-ray researchers employ routinely. As a class text the book could be used in an introductory course for third or fourth year undergraduates in materials science, chemistry, physics, or geochemistry. The detailed structural treatments may be too much for the typical introductory x-ray diffraction course, but students would be adding a valuable text for future reference to their libraries. The sections are also ideal for more advanced coursework at the graduate level. Beyond the classroom, any researcher desiring structural information on materials would benefit from this book.” - Materials Today, July/August 2004
Amazon.com readers:
http://www.amazon.com/Fundamentals-Diffraction-Structural-Characterization-Materials/dp/0387241477/ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1229536007&sr=8-1
Table of ContentsFundamentals of Crystalline State and Crystal Lattice.- Finite Symmetry Elements and Crystallographic Point Groups.- Infinite Symmetry Elements and Crystallographic Space Groups.- Formalization of Symmetry.- Nonconventional Symmetry.- Properties, Sources, and Detection of Radiation.- Fundamentals of Diffraction.- The Powder Diffraction Pattern.- Structure Factor.- Solving the Crystal Structure.- Powder Diffractometry.- Collecting Quality Powder Diffraction Data.- Preliminary Data Processing and Phase Analysis.- Determination and Refinement of the Unit Cell.- Solving Crystal Structure from Powder Diffraction Data.- Crystal Structure of LaNi4.85Sn0.15.- Crystal Structure of CeRhGe3.- Crystal Structure of Nd5Si4.- Empirical Methods of Solving Crystal Structures.- Crystal Structure of NiMnO2(OH).- Crystal Structure of ,i.tma V3O71.- Crystal Structure of ma2Mo7O221.- Crystal Structure of Mn7(OH)3(VO4)41.- Crystal Structure of FePO4.- Crystal Structure of Acetaminophen, C8H9NO2.