Description

The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches.

Key features:

  • Highlights signal processing and machine learning as key approaches to quantitative finance.
  • Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems.
  • Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques.
  • Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.

Financial Signal Processing and Machine Learning

Product form

£87.95

Includes FREE delivery
Usually despatched within 5 days
Hardback by Ali N. Akansu , Sanjeev R. Kulkarni

1 in stock

Short Description:

The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes... Read more

    Publisher: John Wiley & Sons Inc
    Publication Date: 27/05/2016
    ISBN13: 9781118745670, 978-1118745670
    ISBN10: 1118745671

    Number of Pages: 320

    Non Fiction , Technology, Engineering & Agriculture , Education

    Description

    The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches.

    Key features:

    • Highlights signal processing and machine learning as key approaches to quantitative finance.
    • Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems.
    • Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques.
    • Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account