Description

Book Synopsis
The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available.

Table of Contents

List of Contributors xiii

Preface xv

1 Overview 1
Ali N. Akansu, Sanjeev R. Kulkarni, and Dmitry Malioutov

1.1 Introduction 1

1.2 A Bird’s-Eye View of Finance 2

1.2.1 Trading and Exchanges 4

1.2.2 Technical Themes in the Book 5

1.3 Overview of the Chapters 6

1.3.1 Chapter 2: “Sparse Markowitz Portfolios” by Christine De Mol 6

1.3.2 Chapter 3: “Mean-Reverting Portfolios: Tradeoffs between Sparsity and Volatility” by Marco Cuturi and Alexandre d’Aspremont 7

1.3.3 Chapter 4: “Temporal Causal Modeling” by Prabhanjan Kambadur, Aurélie C. Lozano, and Ronny Luss 7

1.3.4 Chapter 5: “Explicit Kernel and Sparsity of Eigen Subspace for the AR(1) Process” by Mustafa U. Torun, Onur Yilmaz and Ali N. Akansu 7

1.3.5 Chapter 6: “Approaches to High-Dimensional Covariance and Precision Matrix Estimation” by Jianqing Fan, Yuan Liao, and Han Liu 7

1.3.6 Chapter 7: “Stochastic Volatility: Modeling and Asymptotic Approaches to Option Pricing and Portfolio Selection” by Matthew Lorig and Ronnie Sircar 7

1.3.7 Chapter 8: “Statistical Measures of Dependence for Financial Data” by David S. Matteson, Nicholas A. James, and William B. Nicholson 8

1.3.8 Chapter 9: “Correlated Poisson Processes and Their Applications in Financial Modeling” by Alexander Kreinin 8

1.3.9 Chapter 10: “CVaR Minimizations in Support Vector Machines” by Junya Gotoh and Akiko Takeda 8

1.3.10 Chapter 11: “Regression Models in Risk Management” by Stan Uryasev 8

1.4 Other Topics in Financial Signal Processing and Machine Learning 9

References 9

2 Sparse Markowitz Portfolios 11
ChristineDeMol

2.1 Markowitz Portfolios 11

2.2 Portfolio Optimization as an Inverse Problem: The Need for Regularization 13

2.3 Sparse Portfolios 15

2.4 Empirical Validation 17

2.5 Variations on the Theme 18

2.5.1 Portfolio Rebalancing 18

2.5.2 Portfolio Replication or Index Tracking 19

2.5.3 Other Penalties and Portfolio Norms 19

2.6 Optimal Forecast Combination 20

Acknowlegments 21

References 21

3 Mean-Reverting Portfolios 23
Marco Cuturi and Alexandre d’Aspremont

3.1 Introduction 23

3.1.1 Synthetic Mean-Reverting Baskets 24

3.1.2 Mean-Reverting Baskets with Sufficient Volatility and Sparsity 24

3.2 Proxies for Mean Reversion 25

3.2.1 Related Work and Problem Setting 25

3.2.2 Predictability 26

3.2.3 Portmanteau Criterion 27

3.2.4 Crossing Statistics 28

3.3 Optimal Baskets 28

3.3.1 Minimizing Predictability 29

3.3.2 Minimizing the Portmanteau Statistic 29

3.3.3 Minimizing the Crossing Statistic 29

3.4 Semidefinite Relaxations and Sparse Components 30

3.4.1 A Semidefinite Programming Approach to Basket Estimation 30

3.4.2 Predictability 30

3.4.3 Portmanteau 31

3.4.4 Crossing Stats 31

3.5 Numerical Experiments 32

3.5.1 Historical Data 32

3.5.2 Mean-reverting Basket Estimators 33

3.5.3 Jurek and Yang (2007) Trading Strategy 33

3.5.4 Transaction Costs 33

3.5.5 Experimental Setup 36

3.5.6 Results 36

3.6 Conclusion 39

References 39

4 Temporal Causal Modeling 41
Prabhanjan Kambadur, Aurélie C. Lozano, and Ronny Luss

4.1 Introduction 41

4.2 TCM 46

4.2.1 Granger Causality and Temporal Causal Modeling 46

4.2.2 Grouped Temporal Causal Modeling Method 47

4.2.3 Synthetic Experiments 49

4.3 Causal Strength Modeling 51

4.4 Quantile TCM (Q-TCM) 52

4.4.1 Modifying Group OMP for Quantile Loss 52

4.4.2 Experiments 53

4.5 TCM with Regime Change Identification 55

4.5.1 Model 56

4.5.2 Algorithm 58

4.5.3 Synthetic Experiments 60

4.5.4 Application: Analyzing Stock Returns 62

4.6 Conclusions 63

References 64

5 Explicit Kernel and Sparsity of Eigen Subspace for the AR(1) Process 67
Mustafa U. Torun, Onur Yilmaz, and Ali N. Akansu

5.1 Introduction 67

5.2 Mathematical Definitions 68

5.2.1 Discrete AR(1) Stochastic Signal Model 68

5.2.2 Orthogonal Subspace 69

5.3 Derivation of Explicit KLT Kernel for a Discrete AR(1) Process 72

5.3.1 A Simple Method for Explicit Solution of a Transcendental Equation 73

5.3.2 Continuous Process with Exponential Autocorrelation 74

5.3.3 Eigenanalysis of a Discrete AR(1) Process 76

5.3.4 Fast Derivation of KLT Kernel for an AR(1) Process 79

5.4 Sparsity of Eigen Subspace 82

5.4.1 Overview of Sparsity Methods 83

5.4.2 pdf-Optimized Midtread Quantizer 84

5.4.3 Quantization of Eigen Subspace 86

5.4.4 pdf of Eigenvector 87

5.4.5 Sparse KLT Method 89

5.4.6 Sparsity Performance 91

5.5 Conclusions 97

References 97

6 Approaches to High-Dimensional Covariance and Precision Matrix Estimations 100
Jianqing Fan, Yuan Liao, and Han Liu

6.1 Introduction 100

6.2 Covariance Estimation via Factor Analysis 101

6.2.1 Known Factors 103

6.2.2 Unknown Factors 104

6.2.3 Choosing the Threshold 105

6.2.4 Asymptotic Results 105

6.2.5 A Numerical Illustration 107

6.3 Precision Matrix Estimation and Graphical Models 109

6.3.1 Column-wise Precision Matrix Estimation 110

6.3.2 The Need for Tuning-insensitive Procedures 111

6.3.3 TIGER: A Tuning-insensitive Approach for Optimal Precision Matrix Estimation 112

6.3.4 Computation 114

6.3.5 Theoretical Properties of TIGER 114

6.3.6 Applications to Modeling Stock Returns 115

6.3.7 Applications to Genomic Network 118

6.4 Financial Applications 119

6.4.1 Estimating Risks of Large Portfolios 119

6.4.2 Large Panel Test of Factor Pricing Models 121

6.5 Statistical Inference in Panel Data Models 126

6.5.1 Efficient Estimation in Pure Factor Models 126

6.5.2 Panel Data Model with Interactive Effects 127

6.5.3 Numerical Illustrations 130

6.6 Conclusions 131

References 131

7 Stochastic Volatility 135
Matthew Lorig and Ronnie Sircar

7.1 Introduction 135

7.1.1 Options and Implied Volatility 136

7.1.2 Volatility Modeling 137

7.2 Asymptotic Regimes and Approximations 141

7.2.1 Contract Asymptotics 142

7.2.2 Model Asymptotics 142

7.2.3 Implied Volatility Asymptotics 143

7.2.4 Tractable Models 145

7.2.5 Model Coefficient Polynomial Expansions 146

7.2.6 Small “Vol of Vol” Expansion 152

7.2.7 Separation of Timescales Approach 152

7.2.8 Comparison of the Expansion Schemes 154

7.3 Merton Problem with Stochastic Volatility: Model Coefficient Polynomial Expansions 155

7.3.1 Models and Dynamic Programming Equation 155

7.3.2 Asymptotic Approximation 157

7.3.3 Power Utility 159

7.4 Conclusions 160

Acknowledgements 160

References 160

8 Statistical Measures of Dependence for Financial Data 162
David S. Matteson, Nicholas A. James, and William B. Nicholson

8.1 Introduction 162

8.2 Robust Measures of Correlation and Autocorrelation 164

8.2.1 Transformations and Rank-Based Methods 166

8.2.2 Inference 169

8.2.3 Misspecification Testing 171

8.3 Multivariate Extensions 174

8.3.1 Multivariate Volatility 175

8.3.2 Multivariate Misspecification Testing 176

8.3.3 Granger Causality 176

8.3.4 Nonlinear Granger Causality 177

8.4 Copulas 179

8.4.1 Fitting Copula Models 180

8.4.2 Parametric Copulas 181

8.4.3 Extending beyond Two Random Variables 183

8.4.4 Software 185

8.5 Types of Dependence 185

8.5.1 Positive and Negative Dependence 185

8.5.2 Tail Dependence 187

References 188

9 Correlated Poisson Processes and Their Applications in Financial Modeling 191
Alexander Kreinin

9.1 Introduction 191

9.2 Poisson Processes and Financial Scenarios 193

9.2.1 Integrated Market–Credit Risk Modeling 193

9.2.2 Market Risk and Derivatives Pricing 194

9.2.3 Operational Risk Modeling 194

9.2.4 Correlation of Operational Events 195

9.3 Common Shock Model and Randomization of Intensities 196

9.3.1 Common Shock Model 196

9.3.2 Randomization of Intensities 196

9.4 Simulation of Poisson Processes 197

9.4.1 Forward Simulation 197

9.4.2 Backward Simulation 200

9.5 Extreme Joint Distribution 207

9.5.1 Reduction to Optimization Problem 207

9.5.2 Monotone Distributions 208

9.5.3 Computation of the Joint Distribution 214

9.5.4 On the Frechet–Hoeffding Theorem 215

9.5.5 Approximation of the Extreme Distributions 217

9.6 Numerical Results 219

9.6.1 Examples of the Support 219

9.6.2 Correlation Boundaries 221

9.7 Backward Simulation of the Poisson-Wiener Process 222

9.8 Concluding Remarks 227

Acknowledgments 228

Appendix A 229

A. 1 Proof of Lemmas 9.2 and 9.3 229

A.1.1 Proof of Lemma 9.2 229

A.1.2 Proof of Lemma 9.3 230

References 231

10 CVaR Minimizations in Support Vector Machines 233
Jun-ya Gotoh and Akiko Takeda

10.1 What Is CVaR? 234

10.1.1 Definition and Interpretations 234

10.1.2 Basic Properties of CVaR 238

10.1.3 Minimization of CVaR 240

10.2 Support Vector Machines 242

10.2.1 Classification 242

10.2.2 Regression 246

10.3 ν-SVMs as CVaR Minimizations 247

10.3.1 ν-SVMs as CVaR Minimizations with Homogeneous Loss 247

10.3.2 ν-SVMs as CVaR Minimizations with Nonhomogeneous Loss 251

10.3.3 Refining the ν-Property 253

10.4 Duality 256

10.4.1 Binary Classification 256

10.4.2 Geometric Interpretation of ν-SVM 257

10.4.3 Geometric Interpretation of the Range of ν for ν-SVC 258

10.4.4 Regression 259

10.4.5 One-class Classification and SVDD 259

10.5 Extensions to Robust Optimization Modelings 259

10.5.1 Distributionally Robust Formulation 259

10.5.2 Measurement-wise Robust Formulation 261

10.6 Literature Review 262

10.6.1 CVaR as a Risk Measure 263

10.6.2 From CVaR Minimization to SVM 263

10.6.3 From SVM to CVaR Minimization 263

10.6.4 Beyond CVaR 263

References 264

11 Regression Models in Risk Management 266
Stan Uryasev

11.1 Introduction 267

11.2 Error and Deviation Measures 268

11.3 Risk Envelopes and Risk Identifiers 271

11.3.1 Examples of Deviation Measures D, Corresponding Risk Envelopes Q, and Sets of Risk Identifiers QD(X) 272

11.4 Error Decomposition in Regression 273

11.5 Least-Squares Linear Regression 275

11.6 Median Regression 277

11.7 Quantile Regression and Mixed Quantile Regression 281

11.8 Special Types of Linear Regression 283

11.9 Robust Regression 284

References, Further Reading, and Bibliography 287

Index 289

Financial Signal Processing and Machine Learning

Product form

£79.16

Includes FREE delivery

RRP £87.95 – you save £8.79 (9%)

Order before 4pm today for delivery by Thu 22 Jan 2026.

A Hardback by Ali N. Akansu, Sanjeev R. Kulkarni, Dmitry M. Malioutov

15 in stock


    View other formats and editions of Financial Signal Processing and Machine Learning by Ali N. Akansu

    Publisher: John Wiley & Sons Inc
    Publication Date: 27/05/2016
    ISBN13: 9781118745670, 978-1118745670
    ISBN10: 1118745671

    Description

    Book Synopsis
    The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available.

    Table of Contents

    List of Contributors xiii

    Preface xv

    1 Overview 1
    Ali N. Akansu, Sanjeev R. Kulkarni, and Dmitry Malioutov

    1.1 Introduction 1

    1.2 A Bird’s-Eye View of Finance 2

    1.2.1 Trading and Exchanges 4

    1.2.2 Technical Themes in the Book 5

    1.3 Overview of the Chapters 6

    1.3.1 Chapter 2: “Sparse Markowitz Portfolios” by Christine De Mol 6

    1.3.2 Chapter 3: “Mean-Reverting Portfolios: Tradeoffs between Sparsity and Volatility” by Marco Cuturi and Alexandre d’Aspremont 7

    1.3.3 Chapter 4: “Temporal Causal Modeling” by Prabhanjan Kambadur, Aurélie C. Lozano, and Ronny Luss 7

    1.3.4 Chapter 5: “Explicit Kernel and Sparsity of Eigen Subspace for the AR(1) Process” by Mustafa U. Torun, Onur Yilmaz and Ali N. Akansu 7

    1.3.5 Chapter 6: “Approaches to High-Dimensional Covariance and Precision Matrix Estimation” by Jianqing Fan, Yuan Liao, and Han Liu 7

    1.3.6 Chapter 7: “Stochastic Volatility: Modeling and Asymptotic Approaches to Option Pricing and Portfolio Selection” by Matthew Lorig and Ronnie Sircar 7

    1.3.7 Chapter 8: “Statistical Measures of Dependence for Financial Data” by David S. Matteson, Nicholas A. James, and William B. Nicholson 8

    1.3.8 Chapter 9: “Correlated Poisson Processes and Their Applications in Financial Modeling” by Alexander Kreinin 8

    1.3.9 Chapter 10: “CVaR Minimizations in Support Vector Machines” by Junya Gotoh and Akiko Takeda 8

    1.3.10 Chapter 11: “Regression Models in Risk Management” by Stan Uryasev 8

    1.4 Other Topics in Financial Signal Processing and Machine Learning 9

    References 9

    2 Sparse Markowitz Portfolios 11
    ChristineDeMol

    2.1 Markowitz Portfolios 11

    2.2 Portfolio Optimization as an Inverse Problem: The Need for Regularization 13

    2.3 Sparse Portfolios 15

    2.4 Empirical Validation 17

    2.5 Variations on the Theme 18

    2.5.1 Portfolio Rebalancing 18

    2.5.2 Portfolio Replication or Index Tracking 19

    2.5.3 Other Penalties and Portfolio Norms 19

    2.6 Optimal Forecast Combination 20

    Acknowlegments 21

    References 21

    3 Mean-Reverting Portfolios 23
    Marco Cuturi and Alexandre d’Aspremont

    3.1 Introduction 23

    3.1.1 Synthetic Mean-Reverting Baskets 24

    3.1.2 Mean-Reverting Baskets with Sufficient Volatility and Sparsity 24

    3.2 Proxies for Mean Reversion 25

    3.2.1 Related Work and Problem Setting 25

    3.2.2 Predictability 26

    3.2.3 Portmanteau Criterion 27

    3.2.4 Crossing Statistics 28

    3.3 Optimal Baskets 28

    3.3.1 Minimizing Predictability 29

    3.3.2 Minimizing the Portmanteau Statistic 29

    3.3.3 Minimizing the Crossing Statistic 29

    3.4 Semidefinite Relaxations and Sparse Components 30

    3.4.1 A Semidefinite Programming Approach to Basket Estimation 30

    3.4.2 Predictability 30

    3.4.3 Portmanteau 31

    3.4.4 Crossing Stats 31

    3.5 Numerical Experiments 32

    3.5.1 Historical Data 32

    3.5.2 Mean-reverting Basket Estimators 33

    3.5.3 Jurek and Yang (2007) Trading Strategy 33

    3.5.4 Transaction Costs 33

    3.5.5 Experimental Setup 36

    3.5.6 Results 36

    3.6 Conclusion 39

    References 39

    4 Temporal Causal Modeling 41
    Prabhanjan Kambadur, Aurélie C. Lozano, and Ronny Luss

    4.1 Introduction 41

    4.2 TCM 46

    4.2.1 Granger Causality and Temporal Causal Modeling 46

    4.2.2 Grouped Temporal Causal Modeling Method 47

    4.2.3 Synthetic Experiments 49

    4.3 Causal Strength Modeling 51

    4.4 Quantile TCM (Q-TCM) 52

    4.4.1 Modifying Group OMP for Quantile Loss 52

    4.4.2 Experiments 53

    4.5 TCM with Regime Change Identification 55

    4.5.1 Model 56

    4.5.2 Algorithm 58

    4.5.3 Synthetic Experiments 60

    4.5.4 Application: Analyzing Stock Returns 62

    4.6 Conclusions 63

    References 64

    5 Explicit Kernel and Sparsity of Eigen Subspace for the AR(1) Process 67
    Mustafa U. Torun, Onur Yilmaz, and Ali N. Akansu

    5.1 Introduction 67

    5.2 Mathematical Definitions 68

    5.2.1 Discrete AR(1) Stochastic Signal Model 68

    5.2.2 Orthogonal Subspace 69

    5.3 Derivation of Explicit KLT Kernel for a Discrete AR(1) Process 72

    5.3.1 A Simple Method for Explicit Solution of a Transcendental Equation 73

    5.3.2 Continuous Process with Exponential Autocorrelation 74

    5.3.3 Eigenanalysis of a Discrete AR(1) Process 76

    5.3.4 Fast Derivation of KLT Kernel for an AR(1) Process 79

    5.4 Sparsity of Eigen Subspace 82

    5.4.1 Overview of Sparsity Methods 83

    5.4.2 pdf-Optimized Midtread Quantizer 84

    5.4.3 Quantization of Eigen Subspace 86

    5.4.4 pdf of Eigenvector 87

    5.4.5 Sparse KLT Method 89

    5.4.6 Sparsity Performance 91

    5.5 Conclusions 97

    References 97

    6 Approaches to High-Dimensional Covariance and Precision Matrix Estimations 100
    Jianqing Fan, Yuan Liao, and Han Liu

    6.1 Introduction 100

    6.2 Covariance Estimation via Factor Analysis 101

    6.2.1 Known Factors 103

    6.2.2 Unknown Factors 104

    6.2.3 Choosing the Threshold 105

    6.2.4 Asymptotic Results 105

    6.2.5 A Numerical Illustration 107

    6.3 Precision Matrix Estimation and Graphical Models 109

    6.3.1 Column-wise Precision Matrix Estimation 110

    6.3.2 The Need for Tuning-insensitive Procedures 111

    6.3.3 TIGER: A Tuning-insensitive Approach for Optimal Precision Matrix Estimation 112

    6.3.4 Computation 114

    6.3.5 Theoretical Properties of TIGER 114

    6.3.6 Applications to Modeling Stock Returns 115

    6.3.7 Applications to Genomic Network 118

    6.4 Financial Applications 119

    6.4.1 Estimating Risks of Large Portfolios 119

    6.4.2 Large Panel Test of Factor Pricing Models 121

    6.5 Statistical Inference in Panel Data Models 126

    6.5.1 Efficient Estimation in Pure Factor Models 126

    6.5.2 Panel Data Model with Interactive Effects 127

    6.5.3 Numerical Illustrations 130

    6.6 Conclusions 131

    References 131

    7 Stochastic Volatility 135
    Matthew Lorig and Ronnie Sircar

    7.1 Introduction 135

    7.1.1 Options and Implied Volatility 136

    7.1.2 Volatility Modeling 137

    7.2 Asymptotic Regimes and Approximations 141

    7.2.1 Contract Asymptotics 142

    7.2.2 Model Asymptotics 142

    7.2.3 Implied Volatility Asymptotics 143

    7.2.4 Tractable Models 145

    7.2.5 Model Coefficient Polynomial Expansions 146

    7.2.6 Small “Vol of Vol” Expansion 152

    7.2.7 Separation of Timescales Approach 152

    7.2.8 Comparison of the Expansion Schemes 154

    7.3 Merton Problem with Stochastic Volatility: Model Coefficient Polynomial Expansions 155

    7.3.1 Models and Dynamic Programming Equation 155

    7.3.2 Asymptotic Approximation 157

    7.3.3 Power Utility 159

    7.4 Conclusions 160

    Acknowledgements 160

    References 160

    8 Statistical Measures of Dependence for Financial Data 162
    David S. Matteson, Nicholas A. James, and William B. Nicholson

    8.1 Introduction 162

    8.2 Robust Measures of Correlation and Autocorrelation 164

    8.2.1 Transformations and Rank-Based Methods 166

    8.2.2 Inference 169

    8.2.3 Misspecification Testing 171

    8.3 Multivariate Extensions 174

    8.3.1 Multivariate Volatility 175

    8.3.2 Multivariate Misspecification Testing 176

    8.3.3 Granger Causality 176

    8.3.4 Nonlinear Granger Causality 177

    8.4 Copulas 179

    8.4.1 Fitting Copula Models 180

    8.4.2 Parametric Copulas 181

    8.4.3 Extending beyond Two Random Variables 183

    8.4.4 Software 185

    8.5 Types of Dependence 185

    8.5.1 Positive and Negative Dependence 185

    8.5.2 Tail Dependence 187

    References 188

    9 Correlated Poisson Processes and Their Applications in Financial Modeling 191
    Alexander Kreinin

    9.1 Introduction 191

    9.2 Poisson Processes and Financial Scenarios 193

    9.2.1 Integrated Market–Credit Risk Modeling 193

    9.2.2 Market Risk and Derivatives Pricing 194

    9.2.3 Operational Risk Modeling 194

    9.2.4 Correlation of Operational Events 195

    9.3 Common Shock Model and Randomization of Intensities 196

    9.3.1 Common Shock Model 196

    9.3.2 Randomization of Intensities 196

    9.4 Simulation of Poisson Processes 197

    9.4.1 Forward Simulation 197

    9.4.2 Backward Simulation 200

    9.5 Extreme Joint Distribution 207

    9.5.1 Reduction to Optimization Problem 207

    9.5.2 Monotone Distributions 208

    9.5.3 Computation of the Joint Distribution 214

    9.5.4 On the Frechet–Hoeffding Theorem 215

    9.5.5 Approximation of the Extreme Distributions 217

    9.6 Numerical Results 219

    9.6.1 Examples of the Support 219

    9.6.2 Correlation Boundaries 221

    9.7 Backward Simulation of the Poisson-Wiener Process 222

    9.8 Concluding Remarks 227

    Acknowledgments 228

    Appendix A 229

    A. 1 Proof of Lemmas 9.2 and 9.3 229

    A.1.1 Proof of Lemma 9.2 229

    A.1.2 Proof of Lemma 9.3 230

    References 231

    10 CVaR Minimizations in Support Vector Machines 233
    Jun-ya Gotoh and Akiko Takeda

    10.1 What Is CVaR? 234

    10.1.1 Definition and Interpretations 234

    10.1.2 Basic Properties of CVaR 238

    10.1.3 Minimization of CVaR 240

    10.2 Support Vector Machines 242

    10.2.1 Classification 242

    10.2.2 Regression 246

    10.3 ν-SVMs as CVaR Minimizations 247

    10.3.1 ν-SVMs as CVaR Minimizations with Homogeneous Loss 247

    10.3.2 ν-SVMs as CVaR Minimizations with Nonhomogeneous Loss 251

    10.3.3 Refining the ν-Property 253

    10.4 Duality 256

    10.4.1 Binary Classification 256

    10.4.2 Geometric Interpretation of ν-SVM 257

    10.4.3 Geometric Interpretation of the Range of ν for ν-SVC 258

    10.4.4 Regression 259

    10.4.5 One-class Classification and SVDD 259

    10.5 Extensions to Robust Optimization Modelings 259

    10.5.1 Distributionally Robust Formulation 259

    10.5.2 Measurement-wise Robust Formulation 261

    10.6 Literature Review 262

    10.6.1 CVaR as a Risk Measure 263

    10.6.2 From CVaR Minimization to SVM 263

    10.6.3 From SVM to CVaR Minimization 263

    10.6.4 Beyond CVaR 263

    References 264

    11 Regression Models in Risk Management 266
    Stan Uryasev

    11.1 Introduction 267

    11.2 Error and Deviation Measures 268

    11.3 Risk Envelopes and Risk Identifiers 271

    11.3.1 Examples of Deviation Measures D, Corresponding Risk Envelopes Q, and Sets of Risk Identifiers QD(X) 272

    11.4 Error Decomposition in Regression 273

    11.5 Least-Squares Linear Regression 275

    11.6 Median Regression 277

    11.7 Quantile Regression and Mixed Quantile Regression 281

    11.8 Special Types of Linear Regression 283

    11.9 Robust Regression 284

    References, Further Reading, and Bibliography 287

    Index 289

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account