Description

Book Synopsis

In our abundant computing infrastructure, performance improvements across most all application spaces are now severely limited by the energy dissipation involved in processing, storing, and moving data. The exponential increase in the volume of data to be handled by our computational infrastructure is driven in large part by unstructured data from countless sources. This book explores revolutionary device concepts, associated circuits, and architectures that will greatly extend the practical engineering limits of energy-efficient computation from device to circuit to system level. With chapters written by international experts in their corresponding field, the text investigates new approaches to lower energy requirements in computing.

Features

Has a comprehensive coverage of various technologies

Written by international experts in their corresponding field

Covers revolutionary concepts at the device, circuit, and system levels



Trade Review

The book Energy Efficient Computing & Electronics: Devices to Systems contains a wealth of valuable resources being of paramount importance for graduated students, engineers, researchers and scientists willing to start exploring energy efficient designs of electronic devices, sensors, circuits and systems. The book is also a valuable tool for graduated level teachers, and practicing professionals who need to understand and master energy efficient revolutionary device concepts, associated circuits, and architectures that may greatly extend the practical engineering limits of future energy-efficient computation from device to system level.
-Industrial Electronics Magazine (IEM)



Table of Contents

Section I Emerging Low Power Devices: A FinFET-Based Framework for VLSI Design at the 7 nm Node. Molecular Phenomena in MOSFET Gate Dielectrics and Interfaces. Tunneling Field Effect Transistors. The Exploitation of the Spin-Transfer Torque Effect for CMOS Compatible Beyond Von Neumann Computing. Ferroelectric Tunnel Junctions As Ultra-Low-Power Computing Devices. Section II Sensors, Interconnects and Rectifiers: X-ray Sensors Based on Chromium Compensated Gallium Arsenide (HR GaAs:Cr). Vertical-Cavity Surface-Emitting Lasers for Interconnects. Low-Power Optoelectronic Interconnects on Two-Dimensional Semiconductors. GaN-Based Schottky Barriers for Low Turn-On Voltage Rectifiers. Compound Semiconductor Oscillation Device Fabricated by Stoichiometry Controlled-Epitaxial Growth and Its Application to Terahertz and Infrared Imaging and Spectroscopy. Section III Systems Design and Applications: Low Power Biosensor Design Techniques Based on Information Theoretic Principles. Low-Power Processor Design Methodology: High-Level Estimation and Optimization via Processor Description Language. Spatio-Temporal Multi-Application Request Scheduling in Energy-Efficient Data Centers. Ultra-Low-Voltage Implementation of Neural Networks. Multi-Pattern Matching Based Dynamic Malware Detection in Smart Phones.

Energy Efficient Computing Electronics

Product form

£147.25

Includes FREE delivery

RRP £155.00 – you save £7.75 (5%)

Order before 4pm tomorrow for delivery by Wed 28 Jan 2026.

A Hardback by Santosh K. Kurinec, Sumeet Walia

15 in stock


    View other formats and editions of Energy Efficient Computing Electronics by Santosh K. Kurinec

    Publisher: Taylor & Francis Ltd
    Publication Date: 1/12/2019 12:02:00 AM
    ISBN13: 9781138710368, 978-1138710368
    ISBN10: 1138710369

    Description

    Book Synopsis

    In our abundant computing infrastructure, performance improvements across most all application spaces are now severely limited by the energy dissipation involved in processing, storing, and moving data. The exponential increase in the volume of data to be handled by our computational infrastructure is driven in large part by unstructured data from countless sources. This book explores revolutionary device concepts, associated circuits, and architectures that will greatly extend the practical engineering limits of energy-efficient computation from device to circuit to system level. With chapters written by international experts in their corresponding field, the text investigates new approaches to lower energy requirements in computing.

    Features

    Has a comprehensive coverage of various technologies

    Written by international experts in their corresponding field

    Covers revolutionary concepts at the device, circuit, and system levels



    Trade Review

    The book Energy Efficient Computing & Electronics: Devices to Systems contains a wealth of valuable resources being of paramount importance for graduated students, engineers, researchers and scientists willing to start exploring energy efficient designs of electronic devices, sensors, circuits and systems. The book is also a valuable tool for graduated level teachers, and practicing professionals who need to understand and master energy efficient revolutionary device concepts, associated circuits, and architectures that may greatly extend the practical engineering limits of future energy-efficient computation from device to system level.
    -Industrial Electronics Magazine (IEM)



    Table of Contents

    Section I Emerging Low Power Devices: A FinFET-Based Framework for VLSI Design at the 7 nm Node. Molecular Phenomena in MOSFET Gate Dielectrics and Interfaces. Tunneling Field Effect Transistors. The Exploitation of the Spin-Transfer Torque Effect for CMOS Compatible Beyond Von Neumann Computing. Ferroelectric Tunnel Junctions As Ultra-Low-Power Computing Devices. Section II Sensors, Interconnects and Rectifiers: X-ray Sensors Based on Chromium Compensated Gallium Arsenide (HR GaAs:Cr). Vertical-Cavity Surface-Emitting Lasers for Interconnects. Low-Power Optoelectronic Interconnects on Two-Dimensional Semiconductors. GaN-Based Schottky Barriers for Low Turn-On Voltage Rectifiers. Compound Semiconductor Oscillation Device Fabricated by Stoichiometry Controlled-Epitaxial Growth and Its Application to Terahertz and Infrared Imaging and Spectroscopy. Section III Systems Design and Applications: Low Power Biosensor Design Techniques Based on Information Theoretic Principles. Low-Power Processor Design Methodology: High-Level Estimation and Optimization via Processor Description Language. Spatio-Temporal Multi-Application Request Scheduling in Energy-Efficient Data Centers. Ultra-Low-Voltage Implementation of Neural Networks. Multi-Pattern Matching Based Dynamic Malware Detection in Smart Phones.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account