Description

Book Synopsis
Increased consumption of electronic equipment has brought with it a greater demand for rare earth elements and metals. Adding to this is the growth in low carbon technologies such as hybrid fuel vehicles. It is predicted that the global supply of rare earth elements could soon be exhausted. A sustainable approach to the use and recovery of rare earth elements is needed, and this book addresses the political, economic and research agendas concerning them. The problem is discussed thoroughly and a multi-disciplinary team of authors from the chemistry, engineering and biotechnology sectors presents a range of solutions, from traditional metallurgical methods to innovations in biotechnology. Case studies add value to the theory presented, and indirect targets for recovery, such as municipal waste and combustion ash are considered. This book will be essential reading for researchers in academia and industry tackling sustainable element recovery, as well as postgraduate students in chemistry, engineering and biotechnology. Environmental scientists and policy makers will also benefit from reading about potential benefits of recovery from waste streams.

Trade Review
It is a real problem that “low carbon technologies” that are utilized by electric cars, energy saving light bulbs, fuel cells and catalytic converters require the use of rare and precious metals. The reader will encounter the critical elements, the expected trends, and the possible solutions of the problems involved. This book shows a sustainable approach to the use and recovery of the critical elements that are needed. The multi-disciplinary team of authors, including chemists, engineers and biotechnological specialists presents good means for the solution of problems, illustrated via examples. The book is warmly recommended to researchers in academia and industry who are committed to any kind of chemistry utilising rare and precious metals in any form. The contents of this book may also be useful at any level of university courses for students. -- György Keglevich * Current Green Chemistry *
the book presents an objective insight into element recovery and sustainability. It can be used in both undergraduate and post-graduate programs, since the information is presented in a simple and coherent manner. Several case studies are included which allows a better understanding of the different topics. Besides, the book contains several references for those who want to deepen into any of the topics presented. -- Carlos Ortega * Green Process Synth 2014; aop *

Table of Contents
Elemental Sustainability and the Importance of Scarce Element Recovery; Integration of Traditional Methods for Elemental Recovery in a Zero-Waste Recyling Flow Sheet; Ionometallurgy (Ionic Liquids in Metallurgy); Biosorption of Elements; Hyperaccumulation by Plants; Anthropospheric Losses of Platinum-Group Elements; F-Block Elements Recovery; WEEE Waste Recovery; Mining Municipal Waste: Prospective for Elemental Recovery

Element Recovery and Sustainability

Product form

£142.49

Includes FREE delivery

RRP £149.99 – you save £7.50 (5%)

Order before 4pm tomorrow for delivery by Mon 5 Jan 2026.

A Hardback by Andrew Hunt

Out of stock


    View other formats and editions of Element Recovery and Sustainability by Andrew Hunt

    Publisher: Royal Society of Chemistry
    Publication Date: 29/07/2013
    ISBN13: 9781849736169, 978-1849736169
    ISBN10: 1849736162

    Description

    Book Synopsis
    Increased consumption of electronic equipment has brought with it a greater demand for rare earth elements and metals. Adding to this is the growth in low carbon technologies such as hybrid fuel vehicles. It is predicted that the global supply of rare earth elements could soon be exhausted. A sustainable approach to the use and recovery of rare earth elements is needed, and this book addresses the political, economic and research agendas concerning them. The problem is discussed thoroughly and a multi-disciplinary team of authors from the chemistry, engineering and biotechnology sectors presents a range of solutions, from traditional metallurgical methods to innovations in biotechnology. Case studies add value to the theory presented, and indirect targets for recovery, such as municipal waste and combustion ash are considered. This book will be essential reading for researchers in academia and industry tackling sustainable element recovery, as well as postgraduate students in chemistry, engineering and biotechnology. Environmental scientists and policy makers will also benefit from reading about potential benefits of recovery from waste streams.

    Trade Review
    It is a real problem that “low carbon technologies” that are utilized by electric cars, energy saving light bulbs, fuel cells and catalytic converters require the use of rare and precious metals. The reader will encounter the critical elements, the expected trends, and the possible solutions of the problems involved. This book shows a sustainable approach to the use and recovery of the critical elements that are needed. The multi-disciplinary team of authors, including chemists, engineers and biotechnological specialists presents good means for the solution of problems, illustrated via examples. The book is warmly recommended to researchers in academia and industry who are committed to any kind of chemistry utilising rare and precious metals in any form. The contents of this book may also be useful at any level of university courses for students. -- György Keglevich * Current Green Chemistry *
    the book presents an objective insight into element recovery and sustainability. It can be used in both undergraduate and post-graduate programs, since the information is presented in a simple and coherent manner. Several case studies are included which allows a better understanding of the different topics. Besides, the book contains several references for those who want to deepen into any of the topics presented. -- Carlos Ortega * Green Process Synth 2014; aop *

    Table of Contents
    Elemental Sustainability and the Importance of Scarce Element Recovery; Integration of Traditional Methods for Elemental Recovery in a Zero-Waste Recyling Flow Sheet; Ionometallurgy (Ionic Liquids in Metallurgy); Biosorption of Elements; Hyperaccumulation by Plants; Anthropospheric Losses of Platinum-Group Elements; F-Block Elements Recovery; WEEE Waste Recovery; Mining Municipal Waste: Prospective for Elemental Recovery

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account