Description

Book Synopsis

Electromagnetics for Electrical Machines offers a comprehensive yet accessible treatment of the linear theory of electromagnetics and its application to the design of electrical machines. Leveraging valuable classroom insight gained by the authors during their impressive and ongoing teaching careers, this text emphasizes concepts rather than numerical methods, providing presentation/project problems at the end of each chapter to enhance subject knowledge.

Highlighting the essence of electromagnetic field (EMF) theory and its correlation with electrical machines, this book:

  • Reviews Maxwell's equations and scalar and vector potentials
  • Describes the special cases leading to the Laplace, Poisson's, eddy current, and wave equations
  • Explores the utility of the uniqueness, generalized Poynting, Helmholtz, and approximation theorems
  • Discusses the SchwarzChristoffel transformation, as well as the determination of airgap permeance
  • Addre

    Trade Review

    "… unravels intricacies of the subject in a simple and systematic manner. … one of few books which cover a difficult subject through inquisition and using programmed concept for learning. The authors have spent considerable time in formulating the structure of the book and its contents. I think they have been successful in their attempt. There have been several books on electromagnetic fields, each one having its own flavor. However, the present book is a different attempt to teach the concept of electromagnetic field theory (EMFT), and its application to the theory and design of electrical machines. The contributions of the authors of this book in various research and scientific areas are outstanding. They are academicians who have devoted themselves to the task of educating young minds and inculcating scientific temper amongst them. I must heartily congratulate the authors for the magnificent job they have done."
    — Brig. (Dr.) Surjit Pabla, Vice Chancellor, Mangalayatan University, Aligarh, India

    "The authors of this book set out to achieve the goal of presenting electromagnetics for electrical machines in a simple and systematic manner. I think they achieve that goal. They reduce Maxwell’s equations to Laplace’s equation, Poisson’s equation, wave equation, and eddy current equation and apply them to electrical machines."
    — Matthew Sadiku, Prairie View A&M University

    "I particularly value the approach taken of developing accurate theoretical electromagnetic models for several electrical machine structures. Traditional approaches of using lumped element models for machine parts, and then trying to modify the resulting equivalent network by taking into account the effect of these elements having non-zero physical size in a piece-meal fashion do not develop the user’s basic comprehensive insight into all aspects of the electromagnetic fields which can have some effect on machine behavior."
    — Philip H. Alexander, Electrical and Computer Engineering, University of Windsor


    "… unravels intricacies of the subject in a simple and systematic manner. … one of few books which cover a difficult subject through inquisition and using programmed concept for learning. The authors have spent considerable time in formulating the structure of the book and its contents. I think they have been successful in their attempt. There have been several books on electromagnetic fields, each one having its own flavor. However, the present book is a different attempt to teach the concept of electromagnetic field theory (EMFT), and its application to the theory and design of electrical machines. The contributions of the authors of this book in various research and scientific areas are outstanding. They are academicians who have devoted themselves to the task of educating young minds and inculcating scientific temper amongst them. I must heartily congratulate the authors for the magnificent job they have done."
    —Brig. (Dr.) Surjit Pabla, Vice Chancellor, Mangalayatan University, Aligarh, India

    "… unravels intricacies of the subject in a simple and systematic manner. … one of few books which cover a difficult subject through inquisition and using programmed concept for learning. The authors have spent considerable time in formulating the structure of the book and its contents. I think they have been successful in their attempt. There have been several books on electromagnetic fields, each one having its own flavor. However, the present book is a different attempt to teach the concept of electromagnetic field theory (EMFT), and its application to the theory and design of electrical machines. The contributions of the authors of this book in various research and scientific areas are outstanding. They are academicians who have devoted themselves to the task of educating young minds and inculcating scientific temper amongst them. I must heartily congratulate the authors for the magnificent job they have done."
    —Brig. (Dr.) Surjit Pabla, Vice Chancellor, Mangalayatan University, Aligarh, India

    "The authors of this book set out to achieve the goal of presenting electromagnetics for electrical machines in a simple and systematic manner. I think they achieve that goal. They reduce Maxwell’s equations to Laplace’s equation, Poisson’s equation, wave equation, and eddy current equation and apply them to electrical machines."
    —Matthew Sadiku, Prairie View A&M University

    "I particularly value the approach taken of developing accurate theoretical electromagnetic models for several electrical machine structures. Traditional approaches of using lumped element models for machine parts, and then trying to modify the resulting equivalent network by taking into account the effect of these elements having non-zero physical size in a piece-meal fashion do not develop the user’s basic comprehensive insight into all aspects of the electromagnetic fields which can have some effect on machine behavior."
    —Philip H. Alexander, Electrical and Computer Engineering, University of Windsor



    Table of Contents

    Introduction. Review of Field Equations. Theorems, Revisited. Laplacian Fields. Eddy Currents in Magnetic Cores. Laminated-Rotor Polyphase Induction Machines. Un-Laminated Rotor Polyphase Induction Machines. Case Studies. Numerical Computation. Appendices.

Electromagnetics for Electrical Machines

Product form

£142.50

Includes FREE delivery

RRP £150.00 – you save £7.50 (5%)

Order before 4pm today for delivery by Thu 18 Dec 2025.

A Hardback by Saurabh Kumar Mukerji, Ahmad Shahid Khan, Yatendra Pal Singh

1 in stock


    View other formats and editions of Electromagnetics for Electrical Machines by Saurabh Kumar Mukerji

    Publisher: Taylor & Francis Inc
    Publication Date: 06/03/2015
    ISBN13: 9781498709132, 978-1498709132
    ISBN10: 1498709133

    Description

    Book Synopsis

    Electromagnetics for Electrical Machines offers a comprehensive yet accessible treatment of the linear theory of electromagnetics and its application to the design of electrical machines. Leveraging valuable classroom insight gained by the authors during their impressive and ongoing teaching careers, this text emphasizes concepts rather than numerical methods, providing presentation/project problems at the end of each chapter to enhance subject knowledge.

    Highlighting the essence of electromagnetic field (EMF) theory and its correlation with electrical machines, this book:

    • Reviews Maxwell's equations and scalar and vector potentials
    • Describes the special cases leading to the Laplace, Poisson's, eddy current, and wave equations
    • Explores the utility of the uniqueness, generalized Poynting, Helmholtz, and approximation theorems
    • Discusses the SchwarzChristoffel transformation, as well as the determination of airgap permeance
    • Addre

      Trade Review

      "… unravels intricacies of the subject in a simple and systematic manner. … one of few books which cover a difficult subject through inquisition and using programmed concept for learning. The authors have spent considerable time in formulating the structure of the book and its contents. I think they have been successful in their attempt. There have been several books on electromagnetic fields, each one having its own flavor. However, the present book is a different attempt to teach the concept of electromagnetic field theory (EMFT), and its application to the theory and design of electrical machines. The contributions of the authors of this book in various research and scientific areas are outstanding. They are academicians who have devoted themselves to the task of educating young minds and inculcating scientific temper amongst them. I must heartily congratulate the authors for the magnificent job they have done."
      — Brig. (Dr.) Surjit Pabla, Vice Chancellor, Mangalayatan University, Aligarh, India

      "The authors of this book set out to achieve the goal of presenting electromagnetics for electrical machines in a simple and systematic manner. I think they achieve that goal. They reduce Maxwell’s equations to Laplace’s equation, Poisson’s equation, wave equation, and eddy current equation and apply them to electrical machines."
      — Matthew Sadiku, Prairie View A&M University

      "I particularly value the approach taken of developing accurate theoretical electromagnetic models for several electrical machine structures. Traditional approaches of using lumped element models for machine parts, and then trying to modify the resulting equivalent network by taking into account the effect of these elements having non-zero physical size in a piece-meal fashion do not develop the user’s basic comprehensive insight into all aspects of the electromagnetic fields which can have some effect on machine behavior."
      — Philip H. Alexander, Electrical and Computer Engineering, University of Windsor


      "… unravels intricacies of the subject in a simple and systematic manner. … one of few books which cover a difficult subject through inquisition and using programmed concept for learning. The authors have spent considerable time in formulating the structure of the book and its contents. I think they have been successful in their attempt. There have been several books on electromagnetic fields, each one having its own flavor. However, the present book is a different attempt to teach the concept of electromagnetic field theory (EMFT), and its application to the theory and design of electrical machines. The contributions of the authors of this book in various research and scientific areas are outstanding. They are academicians who have devoted themselves to the task of educating young minds and inculcating scientific temper amongst them. I must heartily congratulate the authors for the magnificent job they have done."
      —Brig. (Dr.) Surjit Pabla, Vice Chancellor, Mangalayatan University, Aligarh, India

      "… unravels intricacies of the subject in a simple and systematic manner. … one of few books which cover a difficult subject through inquisition and using programmed concept for learning. The authors have spent considerable time in formulating the structure of the book and its contents. I think they have been successful in their attempt. There have been several books on electromagnetic fields, each one having its own flavor. However, the present book is a different attempt to teach the concept of electromagnetic field theory (EMFT), and its application to the theory and design of electrical machines. The contributions of the authors of this book in various research and scientific areas are outstanding. They are academicians who have devoted themselves to the task of educating young minds and inculcating scientific temper amongst them. I must heartily congratulate the authors for the magnificent job they have done."
      —Brig. (Dr.) Surjit Pabla, Vice Chancellor, Mangalayatan University, Aligarh, India

      "The authors of this book set out to achieve the goal of presenting electromagnetics for electrical machines in a simple and systematic manner. I think they achieve that goal. They reduce Maxwell’s equations to Laplace’s equation, Poisson’s equation, wave equation, and eddy current equation and apply them to electrical machines."
      —Matthew Sadiku, Prairie View A&M University

      "I particularly value the approach taken of developing accurate theoretical electromagnetic models for several electrical machine structures. Traditional approaches of using lumped element models for machine parts, and then trying to modify the resulting equivalent network by taking into account the effect of these elements having non-zero physical size in a piece-meal fashion do not develop the user’s basic comprehensive insight into all aspects of the electromagnetic fields which can have some effect on machine behavior."
      —Philip H. Alexander, Electrical and Computer Engineering, University of Windsor



      Table of Contents

      Introduction. Review of Field Equations. Theorems, Revisited. Laplacian Fields. Eddy Currents in Magnetic Cores. Laminated-Rotor Polyphase Induction Machines. Un-Laminated Rotor Polyphase Induction Machines. Case Studies. Numerical Computation. Appendices.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account