Description

Book Synopsis
Harry Van Trees s Detection, Estimation, and Modulation Theory, Part I is one of the great time-tested classics in the field of signal processing. This new edition has been thoroughly revised and expanded, making it again the most comprehensive and up-to-date treatment of the subject.

Table of Contents

Preface xv

Preface to the First Edition xix

1 Introduction 1

1.1 Introduction 1

1.2 Topical Outline 1

1.3 Possible Approaches 11

1.4 Organization 14

2 Classical Detection Theory 17

2.1 Introduction 17

2.2 Simple Binary Hypothesis Tests 20

2.3 m Hypotheses 51

2.4 Performance Bounds and Approximations 63

2.5 Monte Carlo Simulation 80

2.6 Summary 109

2.7 Problems 110

3 General Gaussian Detection 125

3.1 Detection of Gaussian Random Vectors 126

3.2 Equal Covariance Matrices 138

3.3 Equal Mean Vectors 174

3.4 General Gaussian 197

3.5 m Hypotheses 209

3.6 Summary 213

3.7 Problems 215

4 Classical Parameter Estimation 230

4.1 Introduction 230

4.2 Scalar Parameter Estimation 232

4.3 Multiple Parameter Estimation 293

4.4 Global Bayesian Bounds 332

4.5 Composite Hypotheses 348

4.6 Summary 375

4.7 Problems 377

5 General Gaussian Estimation 400

5.1 Introduction 400

5.2 Nonrandom Parameters 401

5.3 Random Parameters 483

5.4 Sequential Estimation 495

5.5 Summary 507

5.6 Problems 510

6 Representation of Random Processes 519

6.1 Introduction 519

6.2 Orthonormal Expansions: Deterministic Signals 520

6.3 Random Process Characterization 528

6.4 Homogeous Integral Equations and Eigenfunctions 540

6.5 Vector Random Processes 564

6.6 Summary 568

6.7 Problems 569

7 Detection of Signals–Estimation of Signal Parameters 584

7.1 Introduction 584

7.2 Detection and Estimation in White Gaussian Noise 591

7.3 Detection and Estimation in Nonwhite Gaussian Noise 629

7.4 Signals with Unwanted Parameters: The Composite Hypothesis Problem 675

7.5 Multiple Channels 712

7.6 Multiple Parameter Estimation 716

7.7 Summary 721

7.8 Problems 722

8 Estimation of Continuous-Time Random Processes 771

8.1 Optimum Linear Processors 771

8.2 Realizable Linear Filters: Stationary Processes, Infinite Past: Wiener Filters 787

8.3 Gaussian–Markov Processes: Kalman Filter 807

8.4 Bayesian Estimation of Non-Gaussian Models 842

8.5 Summary 852

8.6 Problems 855

9 Estimation of Discrete–Time Random Processes 880

9.1 Introduction 880

9.2 Discrete-Time Wiener Filtering 882

9.3 Discrete-Time Kalman Filter 919

9.4 Summary 1016

9.5 Problems 1016

10 Detection of Gaussian Signals 1030

10.1 Introduction 1030

10.2 Detection of Continuous-Time Gaussian Processes 1030

10.3 Detection of Discrete-Time Gaussian Processes 1067

10.4 Summary 1076

10.5 Problems 1077

11 Epilogue 1084

11.1 Classical Detection and Estimation Theory 1084

11.2 Representation of Random Processes 1093

11.3 Detection of Signals and Estimation of Signal Parameters 1095

11.4 Linear Estimation of Random Processes 1098

11.5 Observations 1105

11.6 Conclusion 1106

Appendix A: Probability Distributions and Mathematical Functions 1107

Appendix B: Example Index 1119

References 1125

Index 1145

Detection Estimation and Modulation Theory Part I

Product form

£87.26

Includes FREE delivery

RRP £96.95 – you save £9.69 (9%)

Order before 4pm today for delivery by Sat 20 Dec 2025.

A Hardback by Harry L. Van Trees, Kristine L. Bell, Zhi Tian

Out of stock


    View other formats and editions of Detection Estimation and Modulation Theory Part I by Harry L. Van Trees

    Publisher: John Wiley & Sons Inc
    Publication Date: 17/05/2013
    ISBN13: 9780470542965, 978-0470542965
    ISBN10: 0470542969

    Description

    Book Synopsis
    Harry Van Trees s Detection, Estimation, and Modulation Theory, Part I is one of the great time-tested classics in the field of signal processing. This new edition has been thoroughly revised and expanded, making it again the most comprehensive and up-to-date treatment of the subject.

    Table of Contents

    Preface xv

    Preface to the First Edition xix

    1 Introduction 1

    1.1 Introduction 1

    1.2 Topical Outline 1

    1.3 Possible Approaches 11

    1.4 Organization 14

    2 Classical Detection Theory 17

    2.1 Introduction 17

    2.2 Simple Binary Hypothesis Tests 20

    2.3 m Hypotheses 51

    2.4 Performance Bounds and Approximations 63

    2.5 Monte Carlo Simulation 80

    2.6 Summary 109

    2.7 Problems 110

    3 General Gaussian Detection 125

    3.1 Detection of Gaussian Random Vectors 126

    3.2 Equal Covariance Matrices 138

    3.3 Equal Mean Vectors 174

    3.4 General Gaussian 197

    3.5 m Hypotheses 209

    3.6 Summary 213

    3.7 Problems 215

    4 Classical Parameter Estimation 230

    4.1 Introduction 230

    4.2 Scalar Parameter Estimation 232

    4.3 Multiple Parameter Estimation 293

    4.4 Global Bayesian Bounds 332

    4.5 Composite Hypotheses 348

    4.6 Summary 375

    4.7 Problems 377

    5 General Gaussian Estimation 400

    5.1 Introduction 400

    5.2 Nonrandom Parameters 401

    5.3 Random Parameters 483

    5.4 Sequential Estimation 495

    5.5 Summary 507

    5.6 Problems 510

    6 Representation of Random Processes 519

    6.1 Introduction 519

    6.2 Orthonormal Expansions: Deterministic Signals 520

    6.3 Random Process Characterization 528

    6.4 Homogeous Integral Equations and Eigenfunctions 540

    6.5 Vector Random Processes 564

    6.6 Summary 568

    6.7 Problems 569

    7 Detection of Signals–Estimation of Signal Parameters 584

    7.1 Introduction 584

    7.2 Detection and Estimation in White Gaussian Noise 591

    7.3 Detection and Estimation in Nonwhite Gaussian Noise 629

    7.4 Signals with Unwanted Parameters: The Composite Hypothesis Problem 675

    7.5 Multiple Channels 712

    7.6 Multiple Parameter Estimation 716

    7.7 Summary 721

    7.8 Problems 722

    8 Estimation of Continuous-Time Random Processes 771

    8.1 Optimum Linear Processors 771

    8.2 Realizable Linear Filters: Stationary Processes, Infinite Past: Wiener Filters 787

    8.3 Gaussian–Markov Processes: Kalman Filter 807

    8.4 Bayesian Estimation of Non-Gaussian Models 842

    8.5 Summary 852

    8.6 Problems 855

    9 Estimation of Discrete–Time Random Processes 880

    9.1 Introduction 880

    9.2 Discrete-Time Wiener Filtering 882

    9.3 Discrete-Time Kalman Filter 919

    9.4 Summary 1016

    9.5 Problems 1016

    10 Detection of Gaussian Signals 1030

    10.1 Introduction 1030

    10.2 Detection of Continuous-Time Gaussian Processes 1030

    10.3 Detection of Discrete-Time Gaussian Processes 1067

    10.4 Summary 1076

    10.5 Problems 1077

    11 Epilogue 1084

    11.1 Classical Detection and Estimation Theory 1084

    11.2 Representation of Random Processes 1093

    11.3 Detection of Signals and Estimation of Signal Parameters 1095

    11.4 Linear Estimation of Random Processes 1098

    11.5 Observations 1105

    11.6 Conclusion 1106

    Appendix A: Probability Distributions and Mathematical Functions 1107

    Appendix B: Example Index 1119

    References 1125

    Index 1145

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account