Description

Book Synopsis

Novel deep learning approaches are achieving state-of-the-art accuracy in the area of radar target recognition, enabling applications beyond the scope of human-level performance. This book provides an introduction to the unique aspects of machine learning for radar signal processing that any scientist or engineer seeking to apply these technologies ought to be aware of.

The book begins with three introductory chapters on radar systems and phenomenology, machine learning principles, and optimization for training common deep neural network (DNN) architectures. Subsequently, the book summarizes radar-specific issues relating to the different domain representations in which radar data may be presented to DNNs and synthetic data generation for training dataset augmentation. Further chapters focus on specific radar applications, which relate to DNN design for micro-Doppler analysis, SAR-based automatic target recognition, radar remote sensing, and emerging fields, such as data fusion and image reconstruction.

Edited by an acknowledged expert, and with contributions from an international team of authors, this book provides a solid introduction to the fundamentals of radar and machine learning, and then goes on to explore a range of technologies, applications and challenges in this developing field. This book is also a valuable resource for both radar engineers seeking to learn more about deep learning, as well as computer scientists who are seeking to explore novel applications of machine learning.

In an era where the applications of RF sensing are multiplying by the day, this book serves as an easily accessible primer on the nuances of deep learning for radar applications.



Table of Contents
  • Prologue: perspectives on deep learning of RF data
  • Part I: Fundamentals
    • Chapter 1: Radar systems, signals, and phenomenology
    • Chapter 2: Basic principles of machine learning
    • Chapter 3: Theoretical foundations of deep learning
  • Part II: Special topics
    • Chapter 4: Radar data representation for classification of activities of daily living
    • Chapter 5: Challenges in training DNNs for classification of radar micro-Doppler signatures
    • Chapter 6: Machine learning techniques for SAR data augmentation
  • Part III: Applications
    • Chapter 7: Classifying micro-Doppler signatures using deep convolutional neural networks
    • Chapter 8: Deep neural network design for SAR/ISAR-based automatic target recognition
    • Chapter 9: Deep learning for passive synthetic aperture radar imaging
    • Chapter 10: Fusion of deep representations in multistatic radar networks
    • Chapter 11: Application of deep learning to radar remote sensing
  • Epilogue: looking toward the future

Deep Neural Network Design for Radar Applications

Product form

£123.50

Includes FREE delivery

RRP £130.00 – you save £6.50 (5%)

Order before 4pm today for delivery by Fri 19 Dec 2025.

A Hardback by Sevgi Zubeyde Gurbuz

1 in stock


    View other formats and editions of Deep Neural Network Design for Radar Applications by Sevgi Zubeyde Gurbuz

    Publisher: Institution of Engineering and Technology
    Publication Date: 04/02/2021
    ISBN13: 9781785618529, 978-1785618529
    ISBN10: 1785618520
    Also in:
    Radar technology

    Description

    Book Synopsis

    Novel deep learning approaches are achieving state-of-the-art accuracy in the area of radar target recognition, enabling applications beyond the scope of human-level performance. This book provides an introduction to the unique aspects of machine learning for radar signal processing that any scientist or engineer seeking to apply these technologies ought to be aware of.

    The book begins with three introductory chapters on radar systems and phenomenology, machine learning principles, and optimization for training common deep neural network (DNN) architectures. Subsequently, the book summarizes radar-specific issues relating to the different domain representations in which radar data may be presented to DNNs and synthetic data generation for training dataset augmentation. Further chapters focus on specific radar applications, which relate to DNN design for micro-Doppler analysis, SAR-based automatic target recognition, radar remote sensing, and emerging fields, such as data fusion and image reconstruction.

    Edited by an acknowledged expert, and with contributions from an international team of authors, this book provides a solid introduction to the fundamentals of radar and machine learning, and then goes on to explore a range of technologies, applications and challenges in this developing field. This book is also a valuable resource for both radar engineers seeking to learn more about deep learning, as well as computer scientists who are seeking to explore novel applications of machine learning.

    In an era where the applications of RF sensing are multiplying by the day, this book serves as an easily accessible primer on the nuances of deep learning for radar applications.



    Table of Contents
    • Prologue: perspectives on deep learning of RF data
    • Part I: Fundamentals
      • Chapter 1: Radar systems, signals, and phenomenology
      • Chapter 2: Basic principles of machine learning
      • Chapter 3: Theoretical foundations of deep learning
    • Part II: Special topics
      • Chapter 4: Radar data representation for classification of activities of daily living
      • Chapter 5: Challenges in training DNNs for classification of radar micro-Doppler signatures
      • Chapter 6: Machine learning techniques for SAR data augmentation
    • Part III: Applications
      • Chapter 7: Classifying micro-Doppler signatures using deep convolutional neural networks
      • Chapter 8: Deep neural network design for SAR/ISAR-based automatic target recognition
      • Chapter 9: Deep learning for passive synthetic aperture radar imaging
      • Chapter 10: Fusion of deep representations in multistatic radar networks
      • Chapter 11: Application of deep learning to radar remote sensing
    • Epilogue: looking toward the future

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account