Description

Book Synopsis
Computer Vision in Vehicle Technology: Land, Sea & Air Antonio M. Lopez, Universitat Autonoma de Barcelona, Spain Atsushi Imiya, Chiba University, Japan Tomas Pajdla, Czech Technical University, Prague Jose M.

Table of Contents

List of Contributors ix

Preface xi

Abbreviations and Acronyms xiii

1 Computer Vision in Vehicles 1
Reinhard Klette

1.1 Adaptive Computer Vision for Vehicles 1

1.1.1 Applications 1

1.1.2 Traffic Safety and Comfort 2

1.1.3 Strengths of (Computer) Vision 2

1.1.4 Generic and Specific Tasks 3

1.1.5 Multi-module Solutions 4

1.1.6 Accuracy, Precision, and Robustness 5

1.1.7 Comparative Performance Evaluation 5

1.1.8 There Are Many Winners 6

1.2 Notation and Basic Definitions 6

1.2.1 Images and Videos 6

1.2.2 Cameras 8

1.2.3 Optimization 10

1.3 Visual Tasks 12

1.3.1 Distance 12

1.3.2 Motion 16

1.3.3 Object Detection and Tracking 18

1.3.4 Semantic Segmentation 21

1.4 Concluding Remarks 23

Acknowledgments 23

2 Autonomous Driving 24
Uwe Franke

2.1 Introduction 24

2.1.1 The Dream 24

2.1.2 Applications 25

2.1.3 Level of Automation 26

2.1.4 Important Research Projects 27

2.1.5 Outdoor Vision Challenges 30

2.2 Autonomous Driving in Cities 31

2.2.1 Localization 33

2.2.2 Stereo Vision-Based Perception in 3D 36

2.2.3 Object Recognition 43

2.3 Challenges 49

2.3.1 Increasing Robustness 49

2.3.2 Scene Labeling 50

2.3.3 Intention Recognition 52

2.4 Summary 52

Acknowledgments 54

3 Computer Vision for MAVs 55
Friedrich Fraundorfer

3.1 Introduction 55

3.2 System and Sensors 57

3.3 Ego-Motion Estimation 58

3.3.1 State Estimation Using Inertial and Vision Measurements 58

3.3.2 MAV Pose from Monocular Vision 62

3.3.3 MAV Pose from Stereo Vision 63

3.3.4 MAV Pose from Optical Flow Measurements 65

3.4 3D Mapping 67

3.5 Autonomous Navigation 71

3.6 Scene Interpretation 72

3.7 Concluding Remarks 73

4 Exploring the Seafloor with Underwater Robots 75
Rafael Garcia, Nuno Gracias, Tudor Nicosevici, Ricard Prados, Natalia Hurtos, Ricard Campos, Javier Escartin, Armagan Elibol, Ramon Hegedus and Laszlo Neumann

4.1 Introduction 75

4.2 Challenges of Underwater Imaging 77

4.3 Online Computer Vision Techniques 79

4.3.1 Dehazing 79

4.3.2 Visual Odometry 84

4.3.3 SLAM 87

4.3.4 Laser Scanning 91

4.4 Acoustic Imaging Techniques 92

4.4.1 Image Formation 92

4.4.2 Online Techniques for Acoustic Processing 95

4.5 Concluding Remarks 98

Acknowledgments 99

5 Vision-Based Advanced Driver Assistance Systems 100
David Gerónimo, David Vázquez and Arturo de la Escalera

5.1 Introduction 100

5.2 Forward Assistance 101

5.2.1 Adaptive Cruise Control (ACC) and Forward Collision Avoidance (FCA) 101

5.2.2 Traffic Sign Recognition (TSR) 103

5.2.3 Traffic Jam Assist (TJA) 105

5.2.4 Vulnerable Road User Protection 106

5.2.5 Intelligent Headlamp Control 109

5.2.6 Enhanced Night Vision (Dynamic Light Spot) 110

5.2.7 Intelligent Active Suspension 111

5.3 Lateral Assistance 112

5.3.1 Lane Departure Warning (LDW) and Lane Keeping System (LKS) 112

5.3.2 Lane Change Assistance (LCA) 115

5.3.3 Parking Assistance 116

5.4 Inside Assistance 117

5.4.1 Driver Monitoring and Drowsiness Detection 117

5.5 Conclusions and Future Challenges 119

5.5.1 Robustness 119

5.5.2 Cost 121

Acknowledgments 121

6 Application Challenges from a Bird’s-Eye View 122
Davide Scaramuzza

6.1 Introduction to Micro Aerial Vehicles (MAVs) 122

6.1.1 Micro Aerial Vehicles (MAVs) 122

6.1.2 Rotorcraft MAVs 123

6.2 GPS-Denied Navigation 124

6.2.1 Autonomous Navigation with Range Sensors 124

6.2.2 Autonomous Navigation with Vision Sensors 125

6.2.3 SFLY: Swarm of Micro Flying Robots 126

6.2.4 SVO, a Visual-Odometry Algorithm for MAVs 126

6.3 Applications and Challenges 127

6.3.1 Applications 127

6.3.2 Safety and Robustness 128

6.4 Conclusions 132

7 Application Challenges of Underwater Vision 133
Nuno Gracias, Rafael Garcia, Ricard Campos, Natalia Hurtos, Ricard Prados, ASM Shihavuddin, Tudor Nicosevici, Armagan Elibol, Laszlo Neumann and Javier Escartin

7.1 Introduction 133

7.2 Offline Computer Vision Techniques for Underwater Mapping and Inspection 134

7.2.1 2D Mosaicing 134

7.2.2 2.5D Mapping 144

7.2.3 3D Mapping 146

7.2.4 Machine Learning for Seafloor Classification 154

7.3 Acoustic Mapping Techniques 157

7.4 Concluding Remarks 159

8 Closing Notes 161
Antonio M. López

References 164

Index 195

Computer Vision in Vehicle Technology

Product form

£67.46

Includes FREE delivery

RRP £74.95 – you save £7.49 (9%)

Order before 4pm today for delivery by Tue 20 Jan 2026.

A Hardback by Antonio M. López, Atsushi Imiya, Tomas Pajdla

15 in stock


    View other formats and editions of Computer Vision in Vehicle Technology by Antonio M. López

    Publisher: John Wiley & Sons Inc
    Publication Date: 31/03/2017
    ISBN13: 9781118868072, 978-1118868072
    ISBN10: 1118868072

    Description

    Book Synopsis
    Computer Vision in Vehicle Technology: Land, Sea & Air Antonio M. Lopez, Universitat Autonoma de Barcelona, Spain Atsushi Imiya, Chiba University, Japan Tomas Pajdla, Czech Technical University, Prague Jose M.

    Table of Contents

    List of Contributors ix

    Preface xi

    Abbreviations and Acronyms xiii

    1 Computer Vision in Vehicles 1
    Reinhard Klette

    1.1 Adaptive Computer Vision for Vehicles 1

    1.1.1 Applications 1

    1.1.2 Traffic Safety and Comfort 2

    1.1.3 Strengths of (Computer) Vision 2

    1.1.4 Generic and Specific Tasks 3

    1.1.5 Multi-module Solutions 4

    1.1.6 Accuracy, Precision, and Robustness 5

    1.1.7 Comparative Performance Evaluation 5

    1.1.8 There Are Many Winners 6

    1.2 Notation and Basic Definitions 6

    1.2.1 Images and Videos 6

    1.2.2 Cameras 8

    1.2.3 Optimization 10

    1.3 Visual Tasks 12

    1.3.1 Distance 12

    1.3.2 Motion 16

    1.3.3 Object Detection and Tracking 18

    1.3.4 Semantic Segmentation 21

    1.4 Concluding Remarks 23

    Acknowledgments 23

    2 Autonomous Driving 24
    Uwe Franke

    2.1 Introduction 24

    2.1.1 The Dream 24

    2.1.2 Applications 25

    2.1.3 Level of Automation 26

    2.1.4 Important Research Projects 27

    2.1.5 Outdoor Vision Challenges 30

    2.2 Autonomous Driving in Cities 31

    2.2.1 Localization 33

    2.2.2 Stereo Vision-Based Perception in 3D 36

    2.2.3 Object Recognition 43

    2.3 Challenges 49

    2.3.1 Increasing Robustness 49

    2.3.2 Scene Labeling 50

    2.3.3 Intention Recognition 52

    2.4 Summary 52

    Acknowledgments 54

    3 Computer Vision for MAVs 55
    Friedrich Fraundorfer

    3.1 Introduction 55

    3.2 System and Sensors 57

    3.3 Ego-Motion Estimation 58

    3.3.1 State Estimation Using Inertial and Vision Measurements 58

    3.3.2 MAV Pose from Monocular Vision 62

    3.3.3 MAV Pose from Stereo Vision 63

    3.3.4 MAV Pose from Optical Flow Measurements 65

    3.4 3D Mapping 67

    3.5 Autonomous Navigation 71

    3.6 Scene Interpretation 72

    3.7 Concluding Remarks 73

    4 Exploring the Seafloor with Underwater Robots 75
    Rafael Garcia, Nuno Gracias, Tudor Nicosevici, Ricard Prados, Natalia Hurtos, Ricard Campos, Javier Escartin, Armagan Elibol, Ramon Hegedus and Laszlo Neumann

    4.1 Introduction 75

    4.2 Challenges of Underwater Imaging 77

    4.3 Online Computer Vision Techniques 79

    4.3.1 Dehazing 79

    4.3.2 Visual Odometry 84

    4.3.3 SLAM 87

    4.3.4 Laser Scanning 91

    4.4 Acoustic Imaging Techniques 92

    4.4.1 Image Formation 92

    4.4.2 Online Techniques for Acoustic Processing 95

    4.5 Concluding Remarks 98

    Acknowledgments 99

    5 Vision-Based Advanced Driver Assistance Systems 100
    David Gerónimo, David Vázquez and Arturo de la Escalera

    5.1 Introduction 100

    5.2 Forward Assistance 101

    5.2.1 Adaptive Cruise Control (ACC) and Forward Collision Avoidance (FCA) 101

    5.2.2 Traffic Sign Recognition (TSR) 103

    5.2.3 Traffic Jam Assist (TJA) 105

    5.2.4 Vulnerable Road User Protection 106

    5.2.5 Intelligent Headlamp Control 109

    5.2.6 Enhanced Night Vision (Dynamic Light Spot) 110

    5.2.7 Intelligent Active Suspension 111

    5.3 Lateral Assistance 112

    5.3.1 Lane Departure Warning (LDW) and Lane Keeping System (LKS) 112

    5.3.2 Lane Change Assistance (LCA) 115

    5.3.3 Parking Assistance 116

    5.4 Inside Assistance 117

    5.4.1 Driver Monitoring and Drowsiness Detection 117

    5.5 Conclusions and Future Challenges 119

    5.5.1 Robustness 119

    5.5.2 Cost 121

    Acknowledgments 121

    6 Application Challenges from a Bird’s-Eye View 122
    Davide Scaramuzza

    6.1 Introduction to Micro Aerial Vehicles (MAVs) 122

    6.1.1 Micro Aerial Vehicles (MAVs) 122

    6.1.2 Rotorcraft MAVs 123

    6.2 GPS-Denied Navigation 124

    6.2.1 Autonomous Navigation with Range Sensors 124

    6.2.2 Autonomous Navigation with Vision Sensors 125

    6.2.3 SFLY: Swarm of Micro Flying Robots 126

    6.2.4 SVO, a Visual-Odometry Algorithm for MAVs 126

    6.3 Applications and Challenges 127

    6.3.1 Applications 127

    6.3.2 Safety and Robustness 128

    6.4 Conclusions 132

    7 Application Challenges of Underwater Vision 133
    Nuno Gracias, Rafael Garcia, Ricard Campos, Natalia Hurtos, Ricard Prados, ASM Shihavuddin, Tudor Nicosevici, Armagan Elibol, Laszlo Neumann and Javier Escartin

    7.1 Introduction 133

    7.2 Offline Computer Vision Techniques for Underwater Mapping and Inspection 134

    7.2.1 2D Mosaicing 134

    7.2.2 2.5D Mapping 144

    7.2.3 3D Mapping 146

    7.2.4 Machine Learning for Seafloor Classification 154

    7.3 Acoustic Mapping Techniques 157

    7.4 Concluding Remarks 159

    8 Closing Notes 161
    Antonio M. López

    References 164

    Index 195

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account